Skip to main content

Intracellular Mechanisms of Resistance

  • Chapter
  • First Online:
Drug Resistance in Leishmania Parasites
  • 1027 Accesses

Summary

The current therapeutic modalities for visceral leishmaniasis (VL) are plagued with the limited availability of antileishmanial compounds coupled with an alarming increase in nonresponsiveness to conventional antimonial therapy. Studies pertaining to the mechanism(s) by which Leishmania spp. acquire resistance to antimony is a subject of intense research. It has been demonstrated to be multifactorial phenomena and include alterations in drug influx, drug metabolism, thiol metabolism, and drug efflux. In antimony-resistant strains, the availability of antimony (Sb) is impeded by the diminished conversion of pentavalent Sb to trivalent Sb by antimony reductase along with decreased entry of antimony into the cell, following downregulation of the transporter, Aquaglyceroporin-1. Furthermore, as antimonials mediate their antileishmanial activity via generation of oxidative stress, upregulation of the antioxidant pathways, e.g., nonprotein thiols, protects parasites from antimony-mediated oxidative stress. Indeed, in antimony-resistant strains, the increased biosynthesis of trypanothione (a bis(glutathionyl)spermidine conjugate, T[SH]2), the major intracellular thiol of Leishmania parasites, occurs, following amplification of GSH1 gene coding for γ-glutamylcysteine synthetase and/or overexpression of ornithine decarboxylase, establishing rate-limiting steps in synthesis of glutathione and spermidine, respectively. Furthermore, an amplified T[SH]2-dependent antioxidant system, especially tryparedoxin peroxidase, also contributes by curtailing antimony-mediated production of reactive oxygen/nitrogen species. This increased formation of SbIII-thiol complexes (either spontaneously or via enzymes) if accompanied with an enhanced extrusion, at a rate sufficient to outmatch the influx, helps to sustain antimonial resistance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aikat BK et al. (1979) Clinical profile of cases of kala-azar in Bihar. Indian J Med Res 70:563–570

    PubMed  CAS  Google Scholar 

  • Augustyns K et al. (2001) Trypanothione as a target in the design of antitrypanosomal and antileishmanial agents. Curr Pharm Des 7:1117–1141

    Article  PubMed  CAS  Google Scholar 

  • Berman JD et al. (1982) Susceptibility of clinically sensitive and resistant Leishmania to pentavalent antimony in vitro. Am J Trop Med Hyg 31:459–465

    PubMed  CAS  Google Scholar 

  • Carter KC et al. (2003) The in vivo susceptibility of Leishmania donovani to sodium stibogluconate is drug specific and can be reversed by inhibiting glutathione biosynthesis. Antimicrob Agents Chemother 47:1529–1535

    Article  PubMed  CAS  Google Scholar 

  • Carter KC et al. (2006) Resistance of Leishmania donovani to sodium stibogluconate is related to the expression of host and parasite gamma-glutamylcysteine synthetase. Antimicrob Agents Chemother 50:88–95

    Article  PubMed  CAS  Google Scholar 

  • Croft SL, Olliaro P (2011) Leishmaniasis chemotherapy-challenges and opportunities. Clin Microbiol Infect 17:1478–83. doi:10.1111/j.1469-0691.2011.03630.x

    Google Scholar 

  • Croft SL, Sundar S, Fairlamb AH (2006) Drug resistance in leishmaniasis. Clin Microbiol Rev 19:111–126

    Article  PubMed  CAS  Google Scholar 

  • Decuypere S et al. (2005) Gene expression analysis of the mechanism of natural SbV resistance in Leishmania donovani isolates from Nepal. Antimicrob Agents Chemother 49:4616–4621

    Article  PubMed  CAS  Google Scholar 

  • Dube A et al. (2005) Refractoriness to the treatment of sodium stibogluconate in Indian kala-azar field isolates persists in in vitro and in vivo experimental models. Parasitol Res 96:216–223

    Article  PubMed  Google Scholar 

  • Ephros M, Waldman E, Zilberstein D (1997) Pentostam induces resistance to antimony and the preservative chlorocresol in Leishmania donovani promastigotes and axenically grown amastigotes. Antimicrob Agents Chemother 41:1064–1068

    PubMed  CAS  Google Scholar 

  • Fairlamb AH, Cerami A (1992) Metabolism and functions of trypanothione in the Kinetoplastida. Annu Rev Microbiol 46:695–729

    Article  PubMed  CAS  Google Scholar 

  • Fairlamb AH et al. (1985) Trypanothione: a novel bis(glutathionyl)-spermidine cofactor for glutathione reductase in trypanosomatids. Science 227:1485–1487

    Article  PubMed  CAS  Google Scholar 

  • Faraut-Gambarelli F et al. (1997) In vitro and in vivo resistance of Leishmania infantum to meglumine antimoniate: a study of 37 strains collected from patients with visceral leishmaniasis. Antimicrob Agents Chemother 41:827–830

    PubMed  CAS  Google Scholar 

  • Flohé L, Hecht HJ, Steinert P (1999) Glutathione and trypanothione in parasitic hydroperoxide metabolism. Free Radic Biol Med 27:966–984

    Article  PubMed  Google Scholar 

  • Gebre-Hiwot A et al. (1992) An in vitro model for screening antileishmanial drugs: the human leukemia monocyte cell line, THP-1. Acta Trop 51:237–245

    Article  PubMed  CAS  Google Scholar 

  • Ghosh S, Goswami S, Adhya S (2003) Role of superoxide dismutase in survival of Leishmania within the macrophage. Biochem J 369:447–452

    Article  PubMed  CAS  Google Scholar 

  • Grögl M et al. (1989) Leishmania spp.: development of pentostam-resistant clones in vitro by discontinuous drug exposure. Exp Parasitol 69:78–90

    Article  PubMed  Google Scholar 

  • Grondin K, Papadopoulou B, Ouellette M (1993) Homologous recombination between direct repeat sequences yields P-glycoprotein containing amplicons in arsenite resistant Leishmania. Nucleic Acids Res 21:1895–1901

    Article  PubMed  CAS  Google Scholar 

  • Grondin K et al. (1997) Co-amplification of the gamma-glutamylcysteine synthetase gene gsh1 and of the ABC transporter gene pgpA in arsenite-resistant Leishmania tarentolae. EMBO J 16:3057–3065

    Article  PubMed  CAS  Google Scholar 

  • Haimeur A et al. (1999) Elevated levels of polyamines and trypanothione resulting from overexpression of the ornithine decarboxylase gene in arsenite-resistant Leishmania. Mol Microbiol 34:726–735

    Article  PubMed  CAS  Google Scholar 

  • Haimeur A et al. (2000) Amplification of the ABC transporter gene PGPA and increased trypanothione levels in potassium antimonyl tartrate (SbIII) resistant Leishmania tarentolae. Mol Biochem Parasitol 108:131–135

    Article  PubMed  CAS  Google Scholar 

  • Jha TK (2006) Drug unresponsiveness & combination therapy for kala-azar. Indian J Med Res 123:389–398

    PubMed  CAS  Google Scholar 

  • Krauth-Siegel LR, Comini MA, Schlecker T (2007) The trypanothione system. Subcell Biochem 44:231–251

    Article  PubMed  Google Scholar 

  • Laurent T et al. (2007) Epidemiological dynamics of antimonial resistance in Leishmania donovani: genotyping reveals a polyclonal population structure among naturally-resistant clinical isolates from Nepal. Infect Genet Evol 7:206–212

    Article  PubMed  Google Scholar 

  • Lin YC et al. (2005) Distinct overexpression of cytosolic and mitochondrial tryparedoxin peroxidases results in preferential detoxification of different oxidants in arsenite-resistant Leishmania amazonensis with and without DNA amplification. Mol Biochem Parasitol 142:66–75

    Article  PubMed  CAS  Google Scholar 

  • Lira R et al. (1999) Evidence that the high incidence of treatment failures in Indian kala-azar is due to the emergence of antimony-resistant strains of Leishmania donovani. J Infect Dis 180:564–567

    Article  PubMed  CAS  Google Scholar 

  • Lu SC (2000) Regulation of glutathione synthesis. Curr Top Cell Regul 36:95–116

    Article  PubMed  CAS  Google Scholar 

  • Mandal G (2007) Antimonial resistance in Indian leishmaniasis: role of the multidrug resistance (MDR) phenotype. PhD thesis, submitted to University of Calcutta

    Google Scholar 

  • Mandal G et al. (2007) Increased levels of thiols protect antimony unresponsive Leishmania donovani field isolates against reactive oxygen species generated by trivalent antimony. Parasitology 134:1679–1687

    Article  PubMed  CAS  Google Scholar 

  • Mehlotra RK (1996) Antioxidant defense mechanisms in parasitic protozoa. Crit Rev Microbiol 22:295–314

    Article  PubMed  CAS  Google Scholar 

  • Mehta A, Shaha C (2006) Mechanism of metalloid-induced death in Leishmania spp.: role of iron, reactive oxygen species, Ca2+, and glutathione. Free Radic Biol Med 40:1857–1868

    Article  PubMed  CAS  Google Scholar 

  • Meister A, Anderson ME (1983) Glutathione. Annu Rev Biochem 52:711–760

    Article  PubMed  CAS  Google Scholar 

  • Mittal MK et al. (2007) Characterization of natural antimony resistance in Leishmania donovani isolates. Am J Trop Med Hyg 76:681–688

    PubMed  CAS  Google Scholar 

  • Mookerjee Basu J et al. (2006) Sodium antimony gluconate induces generation of reactive oxygen species and nitric oxide via phosphoinositide 3-kinase and mitogen-activated protein kinase activation in Leishmania donovani-infected macrophages. Antimicrob Agents Chemother 50:1788–1797

    Article  PubMed  Google Scholar 

  • Mukherjee A et al. (2007) Role of ABC transporter MRPA, gamma-glutamylcysteine synthetase and ornithine decarboxylase in natural antimony-resistant isolates of Leishmania donovani. J Antimicrob Chemother 59:204–211

    Article  PubMed  CAS  Google Scholar 

  • Mukhopadhyay R et al. (1996) Trypanothione overproduction and resistance to antimonials and arsenicals in Leishmania. Proc Natl Acad Sci USA 93:10383–10387

    Article  PubMed  CAS  Google Scholar 

  • Müller S et al. (2003) Thiol-based redox metabolism of protozoan parasites. Trends Parasitol 19:320–328

    Article  PubMed  Google Scholar 

  • Murray HW, Nathan CF (1999) Macrophage microbicidal mechanisms in vivo: reactive nitrogen versus oxygen intermediates in the killing of intracellular visceral Leishmania donovani. J Exp Med 189:741–746

    Article  PubMed  CAS  Google Scholar 

  • Neal RA et al. (1995) The sensitivity of Leishmania species to aminosidine. J Antimicrob Chemother 35:577–584

    Article  PubMed  CAS  Google Scholar 

  • Ouellette M (2001) Biochemical and molecular mechanisms of drug resistance in parasites. Trop Med Int Health 6:874–882

    Article  PubMed  CAS  Google Scholar 

  • Paramchuk WJ et al. (1997) Cloning, characterization and overexpression of two iron superoxide dismutase cDNAs from Leishmania chagasi: role in pathogenesis. Mol Biochem Parasitol 90:203–221

    Article  PubMed  CAS  Google Scholar 

  • Pratt S et al. (2006) Kinetic validation of the use of carboxydichlorofluorescein as a drug surrogate for MRP5-mediated transport. Eur J Pharm Sci 27:524–532

    Article  PubMed  CAS  Google Scholar 

  • Rijal S et al. (2007) Antimonial treatment of visceral leishmaniasis: are current in vitro susceptibility assays adequate for prognosis of in vivo therapy outcome? Microbes Infect 9:529–535

    Article  PubMed  CAS  Google Scholar 

  • Roberts WL, Rainey PM (1993) Antileishmanial activity of sodium stibogluconate fractions. Antimicrob Agents Chemother 37:1842–1846

    Article  PubMed  CAS  Google Scholar 

  • Rojas R et al. (2006) Resistance to antimony and treatment failure in human Leishmania (Viannia) infection. J Infect Dis 193:1375–1383

    Article  PubMed  CAS  Google Scholar 

  • Sarkar A et al. (2009) Flow cytometric determination of intracellular non-protein thiols in Leishmania promastigotes using 5-chloromethyl fluorescein diacetate. Exp Parasitol 122:299–305

    Article  PubMed  CAS  Google Scholar 

  • Seifert K, Escobar P, Croft SL (2010) In vitro activity of anti-leishmanial drugs against Leishmania donovani is host cell dependent. J Antimicrob Chemother 65:508–511

    Article  PubMed  CAS  Google Scholar 

  • Shaked-Mishan P et al. (2001) Novel Intracellular SbV reducing activity correlates with antimony susceptibility in Leishmania donovani. J Biol Chem 276:3971–3976

    Article  PubMed  CAS  Google Scholar 

  • Shim H, Fairlamb AH (1988) Levels of polyamines, glutathione and glutathione-spermidine conjugates during growth of the insect trypanosomatid Crithidia fasciculata. J Gen Microbiol 134:807–817

    PubMed  CAS  Google Scholar 

  • Singh S et al. (2007) Antileishmanial effect of 3-aminooxy-1-aminopropane is due to polyamine depletion. Antimicrob Agents Chemother 51:528–534

    Article  PubMed  CAS  Google Scholar 

  • Singh G, Jayanarayan KG, Dey CS (2008) Arsenite resistance in Leishmania and possible drug targets. Adv Exp Med Biol 625:1–8, Review

    Article  PubMed  CAS  Google Scholar 

  • Sundar S (2001) Drug resistance in Indian visceral leishmaniasis. Trop Med Int Health 6:849–854

    Article  PubMed  CAS  Google Scholar 

  • Sundar S (2011) challenges in the treatment and control of leishmaniasis in the time of drug resistance: visceral leishmaniasis

    Google Scholar 

  • Sundar S, Chatterjee M (2006) Visceral leishmaniasis: current therapeutic modalities. Indian J Med Res 123:345–352

    PubMed  CAS  Google Scholar 

  • Sundar S et al. (1994) Clinicoepidemiological study of drug resistance in Indian kala-azar. BMJ 308:307

    Article  PubMed  CAS  Google Scholar 

  • Sundar S et al. (1997) Response to interferon-gamma plus pentavalent antimony in Indian visceral leishmaniasis. J Infect Dis 176:1117–1119

    Article  PubMed  CAS  Google Scholar 

  • Sundar S et al. (2000) Failure of pentavalent antimony in visceral leishmaniasis in India: report from the center of the Indian epidemic. Clin Infect Dis 31:1104–1107

    Article  PubMed  CAS  Google Scholar 

  • Thakur CP et al. (1984) Comparison of regimens of treatment with sodium stibogluconate in kala-azar. Br Med J (Clin Res Ed) 288:895–897

    Article  CAS  Google Scholar 

  • Thakur CP et al. (1988) Rationalisation of regimens of treatment of kala-azar with sodium stibogluconate in India: a randomised study. Br Med J (Clin Res Ed) 296:1557–1561

    Article  CAS  Google Scholar 

  • Thakur CP, Kumar M, Pandey AK (1991) Evaluation of efficacy of longer durations of therapy of fresh cases of kala-azar with sodium stibogluconate. Indian J Med Res 93:103–110

    PubMed  CAS  Google Scholar 

  • Wyllie S, Cunningham ML, Fairlamb AH (2004) Dual action of antimonial drugs on thiol redox metabolism in the human pathogen Leishmania donovani. J Biol Chem 279:39925–39932

    Article  PubMed  CAS  Google Scholar 

  • Wyllie S, Vickers TJ, Fairlamb AH (2008) Roles of trypanothione S-transferase and tryparedoxin peroxidase in resistance to antimonials. Antimicrob Agents Chemother 52:1359–1365

    Article  PubMed  CAS  Google Scholar 

  • Wyllie S et al. (2010) Elevated levels of tryparedoxin peroxidase in antimony unresponsive Leishmania donovani field isolates. Mol Biochem Parasitol 173:162–164

    Article  PubMed  CAS  Google Scholar 

  • Yardley V (2011) Pharmacology and chemotherapy of leishmaniasis: classical antileishmanial drugs, state of the art

    Google Scholar 

  • Yardley V et al. (2006) American tegumentary leishmaniasis: is antimonial treatment outcome related to parasite drug susceptibility? J Infect Dis 194:1168–1175

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mitali Chatterjee .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Wien

About this chapter

Cite this chapter

Chatterjee, M. (2013). Intracellular Mechanisms of Resistance. In: Ponte-Sucre, A., Diaz, E., Padrón-Nieves, M. (eds) Drug Resistance in Leishmania Parasites. Springer, Vienna. https://doi.org/10.1007/978-3-7091-1125-3_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-1125-3_14

  • Published:

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-7091-0238-1

  • Online ISBN: 978-3-7091-1125-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics