Skip to main content

Microdomain Organization and the Role of Second Messengers

Microdomain Organization of SOCE Signaling

  • Chapter
  • First Online:
Store-operated Ca2+ entry (SOCE) pathways

Abstract

Store-operated calcium entry (SOCE) occurs at specialized regions where the endoplasmic reticulum and plasma membranes are closely apposed. Several molecules converge in these junctions to form a complex that spatiotemporally circumscribes SOCE signaling. We have named recently this complex as SOCIC (Store Operated Calcium Influx Complex). There is a growing list of SOCIC members, including the Ca2+ sensor and channel activator STIM1, the Orai and TRPC1 channels, SOCE regulators as CaM and CRACR2A, and SOCE-regulated proteins as SERCA and adenylyl cyclases. Considering that under physiological conditions Ca2+ entry is transient, SOCIC should be a dynamic structure that goes through assembly and disassembly cycles depending on cell requirements, and on the depleted state of intracellular Ca2+ stores. Moreover SOCIC seems to assembly at specialized regions of plasma membrane known as lipid rafts. In this chapter we discuss the evidence supporting the idea that SOCE occurs at microdomains and introduce the SOCIC components known so far. Then we illustrate some ideas on how this complex is assembled and disassembled. Finally we address the evidence of physiological and pathological implications of the microdomain organization of SOCE.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alicia S, Angelica Z, Carlos S, Alfonso S, Vaca L (2008) STIM1 converts TRPC1 from a receptor-operated to a store-operated channel: moving TRPC1 in and out of lipid rafts. Cell Calcium 44(5):479–491

    Article  PubMed  CAS  Google Scholar 

  • Ambudkar IS, Ong HL, Liu X, Bandyopadhyay BC, Cheng KT (2007) TRPC1: the link between functionally distinct store-operated calcium channels. Cell Calcium 42(2):213–223

    Article  PubMed  CAS  Google Scholar 

  • Baba Y, Hayashi K, Fujii Y, Mizushima A, Watarai H, Wakamori M, Numaga T, Mori Y, Iino M, Hikida M, Kurosaki T (2006) Coupling of STIM1 to store-operated Ca2+ entry through its constitutive and inducible movement in the endoplasmic reticulum. Proc Natl Acad Sci USA 103(45):16704–16709

    Article  PubMed  CAS  Google Scholar 

  • Bauer MC, O’Connell D, Cahill DJ, Linse S (2008) Calmodulin binding to the polybasic C-termini of STIM proteins involved in store-operated calcium entry. Biochemistry 47(23):6089–6091

    Article  PubMed  CAS  Google Scholar 

  • Brazer SC, Singh BB, Liu X, Swaim W, Ambudkar IS (2003) Caveolin-1 contributes to assembly of store-operated Ca2+ influx channels by regulating plasma membrane localization of TRPC1. J Biol Chem 278(29):27208–27215

    Article  PubMed  CAS  Google Scholar 

  • Chin D, Means AR (2000) Calmodulin: a prototypical calcium sensor. Trends Cell Biol 10(8):322–328

    Article  PubMed  CAS  Google Scholar 

  • Cooper DM, Yoshimura M, Zhang Y, Chiono M, Mahey R (1994) Capacitative Ca2+ entry regulates Ca(2+)-sensitive adenylyl cyclases. Biochem J 297(Pt 3):437–440

    PubMed  CAS  Google Scholar 

  • Deng X, Wang Y, Zhou Y, Soboloff J, Gill DL (2009) STIM and Orai: dynamic intermembrane coupling to control cellular calcium signals. J Biol Chem 284(34):22501–22505

    Article  PubMed  CAS  Google Scholar 

  • Derler I, Fahrner M, Muik M, Lackner B, Schindl R, Groschner K, Romanin C (2009) A Ca2(+)release-activated Ca2(+) (CRAC) modulatory domain (CMD) within STIM1 mediates fast Ca2(+)-dependent inactivation of ORAI1 channels. J Biol Chem 284(37):24933–24938

    Article  PubMed  CAS  Google Scholar 

  • Dziadek MA, Johnstone LS (2007) Biochemical properties and cellular localisation of STIM proteins. Cell Calcium 42(2):123–132

    Article  PubMed  CAS  Google Scholar 

  • Edwards JN, Murphy RM, Cully TR, von Wegner F, Friedrich O, Launikonis BS (2010) Ultra-rapid activation and deactivation of store-operated Ca(2+) entry in skeletal muscle. Cell Calcium 47(5):458–467

    Article  PubMed  CAS  Google Scholar 

  • Fagan KA, Mahey R, Cooper DM (1996) Functional co-localization of transfected Ca(2+)-stimulable adenylyl cyclases with capacitative Ca2+ entry sites. J Biol Chem 271(21):12438–12444

    Article  PubMed  CAS  Google Scholar 

  • Fagan KA, Graf RA, Tolman S, Schaack J, Cooper DM (2000) Regulation of a Ca2+-sensitive adenylyl cyclase in an excitable cell. Role of voltage-gated versus capacitative Ca2+ entry. J Biol Chem 275(51):40187–40194

    Article  PubMed  CAS  Google Scholar 

  • Feng JM, Hu YK, Xie LH, Colwell CS, Shao XM, Sun XP, Chen B, Tang H, Campagnoni AT (2006) Golli protein negatively regulates store depletion-induced calcium influx in T cells. Immunity 24(6):717–727

    Article  PubMed  CAS  Google Scholar 

  • Feske S, Gwack Y, Prakriya M, Srikanth S, Puppel SH, Tanasa B, Hogan PG, Lewis RS, Daly M, Rao A (2006) A mutation in Orai1 causes immune deficiency by abrogating CRAC channel function. Nature 441(7090):179–185

    Article  PubMed  CAS  Google Scholar 

  • Galan C, Woodard GE, Dionisio N, Salido GM, Rosado JA (2010) Lipid rafts modulate the activation but not the maintenance of store-operated Ca(2+) entry. Biochim Biophys Acta 1803(9):1083–1093

    Article  PubMed  CAS  Google Scholar 

  • Golovina VA (2005) Visualization of localized store-operated calcium entry in mouse astrocytes. Close proximity to the endoplasmic reticulum. J Physiol 564(Pt 3):737–749

    Article  PubMed  CAS  Google Scholar 

  • Grigoriev I, Gouveia SM, van der Vaart B, Demmers J, Smyth JT, Honnappa S, Splinter D, Steinmetz MO, Putney JW Jr, Hoogenraad CC, Akhmanova A (2008) STIM1 is a MT-plus-end-tracking protein involved in remodeling of the ER. Curr Biol 18(3):177–182

    Article  PubMed  CAS  Google Scholar 

  • Gu C, Cooper DM (1999) Calmodulin-binding sites on adenylyl cyclase type VIII. J Biol Chem 274(12):8012–8021

    Article  PubMed  CAS  Google Scholar 

  • Gwack Y, Srikanth S, Feske S, Cruz-Guilloty F, Oh-hora M, Neems DS, Hogan PG, Rao A (2007) Biochemical and functional characterization of Orai proteins. J Biol Chem 282(22):16232–16243

    Article  PubMed  CAS  Google Scholar 

  • Hogan PG, Lewis RS, Rao A (2010) Molecular basis of calcium signaling in lymphocytes: STIM and ORAI. Annu Rev Immunol 28:491–533

    Article  PubMed  CAS  Google Scholar 

  • Hong JH, Li Q, Kim MS, Shin DM, Feske S, Birnbaumer L, Cheng KT, Ambudkar IS, Muallem S (2011) Polarized but differential localization and recruitment of STIM1/Orai1 and STIM1/TRPC channels in secretory cells. Traffic 12(2):232–245

    Article  PubMed  CAS  Google Scholar 

  • Hoth M, Penner R (1992) Depletion of intracellular calcium stores activates a calcium current in mast cells. Nature 355(6358):353–356

    Article  PubMed  CAS  Google Scholar 

  • Huang GN, Zeng W, Kim JY, Yuan JP, Han L, Muallem S, Worley PF (2006) STIM1 carboxyl-terminus activates native SOC, I(crac) and TRPC1 channels. Nat Cell Biol 8(9):1003–1010

    Article  PubMed  CAS  Google Scholar 

  • Jaconi M, Pyle J, Bortolon R, Ou J, Clapham D (1997) Calcium release and influx colocalize to the endoplasmic reticulum. Curr Biol 7(8):599–602

    Article  PubMed  CAS  Google Scholar 

  • Jardin I, Salido GM, Rosado JA (2008) Role of lipid rafts in the interaction between hTRPC1, Orai1 and STIM1. Channels 2(6):401–403

    Article  PubMed  Google Scholar 

  • Jousset H, Frieden M, Demaurex N (2007) STIM1 knockdown reveals that store-operated Ca2+ channels located close to sarco/endoplasmic Ca2+ ATPases (SERCA) pumps silently refill the endoplasmic reticulum. J Biol Chem 282(15):11456–11464

    Article  PubMed  CAS  Google Scholar 

  • Kiselyov K, Wang X, Shin DM, Zang W, Muallem S (2006) Calcium signaling complexes in microdomains of polarized secretory cells. Cell Calcium 40(5–6):451–459

    Article  PubMed  CAS  Google Scholar 

  • Launikonis BS, Rios E (2007) Store-operated Ca2+ entry during intracellular Ca2+ release in mammalian skeletal muscle. J Physiol 583(Pt 1):81–97

    Article  PubMed  CAS  Google Scholar 

  • Lee KP, Yuan JP, Hong JH, So I, Worley PF, Muallem S (2009a) An endoplasmic reticulum/plasma membrane junction: STIM1/Orai1/TRPCs. FEBS Lett 584(10):2022–2027

    Article  PubMed  CAS  Google Scholar 

  • Lee KP, Yuan JP, Zeng W, So I, Worley PF, Muallem S (2009b) Molecular determinants of fast Ca2+-dependent inactivation and gating of the Orai channels. Proc Natl Acad Sci USA 106(34):14687–14692

    Article  PubMed  CAS  Google Scholar 

  • Lee KP, Yuan JP, So I, Worley PF, Muallem S (2010) STIM1-dependent and STIM1-independent function of TRPC channels tunes their store-operated mode. J Biol Chem 285(49):38666–38673

    Article  PubMed  CAS  Google Scholar 

  • Lee MG, Xu X, Zeng W, Diaz J, Kuo TH, Wuytack F, Racymaekers L, Muallem S (1997) Polarized expression of Ca2+ pumps in pancreatic and salivary gland cells. Role in initiation and propagation of [Ca2+]i waves. J Biol Chem 272(25):15771–15776

    Article  PubMed  CAS  Google Scholar 

  • Lefkimmiatis K, Srikanthan M, Maiellaro I, Moyer MP, Curci S, Hofer AM (2009) Store-operated cyclic AMP signalling mediated by STIM1. Nat Cell Biol 11(4):433–442

    Article  PubMed  CAS  Google Scholar 

  • Liao Y, Erxleben C, Yildirim E, Abramowitz J, Armstrong DL, Birnbaumer L (2007) Orai proteins interact with TRPC channels and confer responsiveness to store depletion. Proc Natl Acad Sci USA 104(11):4682–4687

    Article  PubMed  CAS  Google Scholar 

  • Liao Y, Plummer NW, George MD, Abramowitz J, Zhu MX, Birnbaumer L (2009) A role for Orai in TRPC-mediated Ca2+ entry suggests that a TRPC:Orai complex may mediate store and receptor operated Ca2+ entry. Proc Natl Acad Sci U S A 106(9):3202–3206

    Article  PubMed  CAS  Google Scholar 

  • Lingwood D, Simons K (2010) Lipid rafts as a membrane-organizing principle. Science 327(5961):46–50

    Article  PubMed  CAS  Google Scholar 

  • Liou J, Kim ML, Heo WD, Jones JT, Myers JW, Ferrell JE Jr, Meyer T (2005) STIM is a Ca2+ sensor essential for Ca2+-store-depletion-triggered Ca2+ influx. Curr Biol 15(13):1235–1241

    Article  PubMed  CAS  Google Scholar 

  • Liou J, Fivaz M, Inoue T, Meyer T (2007) Live-cell imaging reveals sequential oligomerization and local plasma membrane targeting of stromal interaction molecule 1 after Ca2+ store depletion. Proc Natl Acad Sci U S A 104(22):9301–9306

    Article  PubMed  CAS  Google Scholar 

  • Lioudyno MI, Kozak JA, Penna A, Safrina O, Zhang SL, Sen D, Roos J, Stauderman KA, Cahalan MD (2008) Orai1 and STIM1 move to the immunological synapse and are up-regulated during T cell activation. Proc Natl Acad Sci U S A 105(6):2011–2016

    Article  PubMed  CAS  Google Scholar 

  • Litjens T, Harland ML, Roberts ML, Barritt GJ, Rychkov GY (2004) Fast Ca(2+)-dependent inactivation of the store-operated Ca2+ current (ISOC) in liver cells: a role for calmodulin. J Physiol 558(Pt 1):85–97

    Article  PubMed  CAS  Google Scholar 

  • Lockwich TP, Liu X, Singh BB, Jadlowiec J, Weiland S, Ambudkar IS (2000) Assembly of Trp1 in a signaling complex associated with caveolin-scaffolding lipid raft domains. J Biol Chem 275(16):11934–11942

    Article  PubMed  CAS  Google Scholar 

  • Lopez JJ, Jardin I, Bobe R, Pariente JA, Enouf J, Salido GM, Rosado JA (2008) STIM1 regulates acidic Ca2+ store refilling by interaction with SERCA3 in human platelets. Biochem Pharmacol 75(11):2157–2164

    Article  PubMed  CAS  Google Scholar 

  • Luik RM, Wu MM, Buchanan J, Lewis RS (2006) The elementary unit of store-operated Ca2+ entry: local activation of CRAC channels by STIM1 at ER-plasma membrane junctions. J Cell Biol 174(6):815–825

    Article  PubMed  CAS  Google Scholar 

  • Lur G, Haynes LP, Prior IA, Gerasimenko OV, Feske S, Petersen OH, Burgoyne RD, Tepikin AV (2009) Ribosome-free terminals of rough ER allow formation of STIM1 puncta and segregation of STIM1 from IP(3) receptors. Curr Biol 19(19):1648–1653

    Article  PubMed  CAS  Google Scholar 

  • Malli R, Frieden M, Hunkova M, Trenker M, Graier WF (2007) Ca2+ refilling of the endoplasmic reticulum is largely preserved albeit reduced Ca2+ entry in endothelial cells. Cell Calcium 41(1):63–76

    Article  PubMed  CAS  Google Scholar 

  • Martin AC, Willoughby D, Ciruela A, Ayling LJ, Pagano M, Wachten S, Tengholm A, Cooper DM (2009) Capacitative Ca2+ entry via Orai1 and stromal interacting molecule 1 (STIM1) regulates adenylyl cyclase type 8. Mol Pharmacol 75(4):830–842

    Article  PubMed  CAS  Google Scholar 

  • Moreau B, Straube S, Fisher RJ, Putney JW Jr, Parekh AB (2005) Ca2+-calmodulin-dependent facilitation and Ca2+ inactivation of Ca2+ release-activated Ca2+ channels. J Biol Chem 280(10):8776–8783

    Article  PubMed  CAS  Google Scholar 

  • Muik M, Frischauf I, Derler I, Fahrner M, Bergsmann J, Eder P, Schindl R, Hesch C, Polzinger B, Fritsch R, Kahr H, Madl J, Gruber H, Groschner K, Romanin C (2008) Dynamic coupling of the putative coiled-coil domain of ORAI1 with STIM1 mediates ORAI1 channel activation. J Biol Chem 283(12):8014–8022

    Article  PubMed  CAS  Google Scholar 

  • Mullins FM, Park CY, Dolmetsch RE, Lewis RS (2009) STIM1 and calmodulin interact with Orai1 to induce Ca2+-dependent inactivation of CRAC channels. Proc Natl Acad Sci USA 106(36):15495–15500

    Article  PubMed  CAS  Google Scholar 

  • Murata T, Lin MI, Stan RV, Bauer PM, Yu J, Sessa WC (2007) Genetic evidence supporting caveolae microdomain regulation of calcium entry in endothelial cells. J Biol Chem 282(22):16631–16643

    Article  PubMed  CAS  Google Scholar 

  • Negulescu PA, Shastri N, Cahalan MD (1994) Intracellular calcium dependence of gene expression in single T lymphocytes. Proc Natl Acad Sci USA 91(7):2873–2877

    Article  PubMed  CAS  Google Scholar 

  • Negulescu PA, Krasieva TB, Khan A, Kerschbaum HH, Cahalan MD (1996) Polarity of T cell shape, motility, and sensitivity to antigen. Immunity 4(5):421–430

    Article  PubMed  CAS  Google Scholar 

  • Ong HL, Cheng KT, Liu X, Bandyopadhyay BC, Paria BC, Soboloff J, Pani B, Gwack Y, Srikanth S, Singh BB, Gill DL, Ambudkar IS (2007) Dynamic assembly of TRPC1-STIM1-Orai1 ternary complex is involved in store-operated calcium influx. Evidence for similarities in store-operated and calcium release-activated calcium channel components. J Biol Chem 282(12):9105–9116

    Article  PubMed  CAS  Google Scholar 

  • Orci L, Ravazzola M, Le Coadic M, Shen WW, Demaurex N, Cosson P (2009) From the Cover: STIM1-induced precortical and cortical subdomains of the endoplasmic reticulum. Proc Natl Acad Sci USA 106(46):19358–19362

    Article  PubMed  CAS  Google Scholar 

  • Pagano M, Clynes MA, Masada N, Ciruela A, Ayling LJ, Wachten S, Cooper DM (2009) Insights into the residence in lipid rafts of adenylyl cyclase AC8 and its regulation by capacitative calcium entry. Am J Physiol Cell Physiol 296(3):C607–C619

    Article  PubMed  CAS  Google Scholar 

  • Pani B, Singh BB (2009) Lipid rafts/caveolae as microdomains of calcium signaling. Cell Calcium 45(6):625–633

    Article  PubMed  CAS  Google Scholar 

  • Pani B, Ong HL, Liu X, Rauser K, Ambudkar IS, Singh BB (2008) Lipid rafts determine clustering of STIM1 in endoplasmic reticulum-plasma membrane junctions and regulation of store-operated Ca2+ entry (SOCE). J Biol Chem 283(25):17333–17340

    Article  PubMed  CAS  Google Scholar 

  • Pani B, Ong HL, Brazer SC, Liu X, Rauser K, Singh BB, Ambudkar IS (2009) Activation of TRPC1 by STIM1 in ER-PM microdomains involves release of the channel from its scaffold caveolin-1. Proc Natl Acad Sci USA 106(47):20087–20092

    PubMed  CAS  Google Scholar 

  • Park CY, Hoover PJ, Mullins FM, Bachhawat P, Covington ED, Raunser S, Walz T, Garcia KC, Dolmetsch RE, Lewis RS (2009) STIM1 clusters and activates CRAC channels via direct binding of a cytosolic domain to Orai1. Cell 136(5):876–890

    Article  PubMed  CAS  Google Scholar 

  • Peinelt C, Vig M, Koomoa DL, Beck A, Nadler MJ, Koblan-Huberson M, Lis A, Fleig A, Penner R, Kinet JP (2006) Amplification of CRAC current by STIM1 and CRACM1 (Orai1). Nat Cell Biol 8(7):771–773

    Article  PubMed  CAS  Google Scholar 

  • Penna A, Demuro A, Yeromin AV, Zhang SL, Safrina O, Parker I, Cahalan MD (2008) The CRAC channel consists of a tetramer formed by Stim-induced dimerization of Orai dimers. Nature 456(7218):116–120

    Article  PubMed  CAS  Google Scholar 

  • Picard C, McCarl CA, Papolos A, Khalil S, Luthy K, Hivroz C, LeDeist F, Rieux-Laucat F, Rechavi G, Rao A, Fischer A, Feske S (2009) STIM1 mutation associated with a syndrome of immunodeficiency and autoimmunity. N Engl J Med 360(19):1971–1980

    Article  PubMed  CAS  Google Scholar 

  • Potier M, Trebak M (2008) New developments in the signaling mechanisms of the store-operated calcium entry pathway. Pflugers Arch 457(2):405–415

    Article  PubMed  CAS  Google Scholar 

  • Prakash YS, Thompson MA, Vaa B, Matabdin I, Peterson TE, He T, Pabelick CM (2007) Caveolins and intracellular calcium regulation in human airway smooth muscle. Am J Physiol Lung Cell Mol Physiol 293(5):L1118–L1126

    Article  PubMed  CAS  Google Scholar 

  • Prakriya M, Feske S, Gwack Y, Srikanth S, Rao A, Hogan PG (2006) Orai1 is an essential pore subunit of the CRAC channel. Nature 443(7108):230–233

    Article  PubMed  CAS  Google Scholar 

  • Putney JW Jr (1986) A model for receptor-regulated calcium entry. Cell Calcium 7(1):1–12

    Article  PubMed  CAS  Google Scholar 

  • Putney JW Jr (2007) Recent breakthroughs in the molecular mechanism of capacitative calcium entry (with thoughts on how we got here). Cell Calcium 42(2):103–110

    Article  PubMed  CAS  Google Scholar 

  • Putney JW (2009) Capacitative calcium entry: from concept to molecules. Immunol Rev 231(1):10–22

    Article  PubMed  CAS  Google Scholar 

  • Redondo PC, Jardin I, Lopez JJ, Salido GM, Rosado JA (2008a) Intracellular Ca2+ store depletion induces the formation of macromolecular complexes involving hTRPC1, hTRPC6, the type II IP3 receptor and SERCA3 in human platelets. Biochim Biophys Acta 1783(6):1163–1176

    Article  PubMed  CAS  Google Scholar 

  • Redondo PC, Salido GM, Pariente JA, Sage SO, Rosado JA (2008b) SERCA2b and 3 play a regulatory role in store-operated calcium entry in human platelets. Cell Signal 20(2):337–346

    Article  PubMed  CAS  Google Scholar 

  • Roos J, DiGregorio PJ, Yeromin AV, Ohlsen K, Lioudyno M, Zhang S, Safrina O, Kozak JA, Wagner SL, Cahalan MD, Velicelebi G, Stauderman KA (2005) STIM1, an essential and conserved component of store-operated Ca2+ channel function. J Cell Biol 169(3):435–445

    Article  PubMed  CAS  Google Scholar 

  • Rosado JA, Sage SO (2000) Coupling between inositol 1,4,5-trisphosphate receptors and human transient receptor potential channel 1 when intracellular Ca2+ stores are depleted. Biochem J 350(Pt 3):631–635

    Article  PubMed  CAS  Google Scholar 

  • Rychkov G, Barritt GJ (2007) TRPC1 Ca(2+)-permeable channels in animal cells. Handb Exp Pharmacol 179:23–52

    Article  PubMed  CAS  Google Scholar 

  • Salido GM, Sage SO, Rosado JA (2009) TRPC channels and store-operated Ca(2+) entry. Biochim Biophys Acta 1793(2):223–230

    Article  PubMed  CAS  Google Scholar 

  • Sampieri A, Zepeda A, Asanov A, Vaca L (2009) Visualizing the store-operated channel complex assembly in real time: identification of SERCA2 as a new member. Cell Calcium 45(5):439–446

    Article  PubMed  CAS  Google Scholar 

  • Shaw AS (2006) Lipid rafts: now you see them, now you don’t. Nat Immunol 7(11):1139–1142

    Article  PubMed  CAS  Google Scholar 

  • Simons K, Toomre D (2000) Lipid rafts and signal transduction. Nat Rev Mol Cell Biol 1(1):31–39

    Article  PubMed  CAS  Google Scholar 

  • Singh BB, Liu X, Tang J, Zhu MX, Ambudkar IS (2002) Calmodulin regulates Ca(2+)-dependent feedback inhibition of store-operated Ca(2+) influx by interaction with a site in the C terminus of TrpC1. Mol Cell 9(4):739–750

    Article  PubMed  CAS  Google Scholar 

  • Smyth JT, Dehaven WI, Bird GS, Putney JW Jr (2008) Ca2+-store-dependent and -independent reversal of Stim1 localization and function. J Cell Sci 121(Pt 6):762–772

    Article  PubMed  CAS  Google Scholar 

  • Srikanth S, Jung HJ, Kim KD, Souda P, Whitelegge J, Gwack Y (2010) A novel EF-hand protein, CRACR2A, is a cytosolic Ca2+ sensor that stabilizes CRAC channels in T cells. Nat Cell Biol 12(5):436–446

    Article  PubMed  CAS  Google Scholar 

  • Stathopulos PB, Zheng L, Li GY, Plevin MJ, Ikura M (2008) Structural and mechanistic insights into STIM1-mediated initiation of store-operated calcium entry. Cell 135(1):110–122

    Article  PubMed  CAS  Google Scholar 

  • Stiber J, Hawkins A, Zhang ZS, Wang S, Burch J, Graham V, Ward CC, Seth M, Finch E, Malouf N, Williams RS, Eu JP, Rosenberg P (2008) STIM1 signalling controls store-operated calcium entry required for development and contractile function in skeletal muscle. Nat Cell Biol 10(6):688–697

    Article  PubMed  CAS  Google Scholar 

  • Sunahara RK, Taussig R (2002) Isoforms of mammalian adenylyl cyclase: multiplicities of signaling. Mol Interv 2(3):168–184

    Article  PubMed  CAS  Google Scholar 

  • Vaca L (1996) Calmodulin inhibits calcium influx current in vascular endothelium. FEBS Lett 390(3):289–293

    Article  PubMed  CAS  Google Scholar 

  • Vaca L (2010) SOCIC: the store-operated calcium influx complex. Cell Calcium 47(3):199–209

    Article  PubMed  CAS  Google Scholar 

  • Vaca L, Sampieri A (2002) Calmodulin modulates the delay period between release of calcium from internal stores and activation of calcium influx via endogenous TRP1 channels. J Biol Chem 277(44):42178–42187

    Article  PubMed  CAS  Google Scholar 

  • Vaca L, Sinkins WG, Hu Y, Kunze DL, Schilling WP (1994) Activation of recombinant trp by thapsigargin in Sf9 insect cells. Am J Physiol 267(5 Pt 1):C1501–C1505

    PubMed  CAS  Google Scholar 

  • Varnai P, Toth B, Toth DJ, Hunyady L, Balla T (2007) Visualization and manipulation of plasma membrane-endoplasmic reticulum contact sites indicates the presence of additional molecular components within the STIM1-Orai1 Complex. J Biol Chem 282(40):29678–29690

    Article  PubMed  CAS  Google Scholar 

  • Vig M, Beck A, Billingsley JM, Lis A, Parvez S, Peinelt C, Koomoa DL, Soboloff J, Gill DL, Fleig A, Kinet JP, Penner R (2006a) CRACM1 multimers form the ion-selective pore of the CRAC channel. Curr Biol 16(20):2073–2079

    Article  PubMed  CAS  Google Scholar 

  • Vig M, Peinelt C, Beck A, Koomoa DL, Rabah D, Koblan-Huberson M, Kraft S, Turner H, Fleig A, Penner R, Kinet JP (2006b) CRACM1 is a plasma membrane protein essential for store-operated Ca2+ entry. Science 312(5777):1220–1223

    Article  PubMed  CAS  Google Scholar 

  • Vig M, DeHaven WI, Bird GS, Billingsley JM, Wang H, Rao PE, Hutchings AB, Jouvin MH, Putney JW, Kinet JP (2008) Defective mast cell effector functions in mice lacking the CRACM1 pore subunit of store-operated calcium release-activated calcium channels. Nat Immunol 9(1):89–96

    Article  PubMed  CAS  Google Scholar 

  • Walsh CM, Doherty MK, Tepikin AV, Burgoyne RD (2010) Evidence for an interaction between Golli and STIM1 in store-operated calcium entry. Biochem J 430(3):453–460

    Article  PubMed  CAS  Google Scholar 

  • Williams RT, Manji SS, Parker NJ, Hancock MS, Van Stekelenburg L, Eid JP, Senior PV, Kazenwadel JS, Shandala T, Saint R, Smith PJ, Dziadek MA (2001) Identification and characterization of the STIM (stromal interaction molecule) gene family: coding for a novel class of transmembrane proteins. Biochem J 357(Pt 3):673–685

    Article  PubMed  CAS  Google Scholar 

  • Willoughby D, Cooper DM (2007) Organization and Ca2+ regulation of adenylyl cyclases in cAMP microdomains. Physiol Rev 87(3):965–1010

    Article  PubMed  CAS  Google Scholar 

  • Willoughby D, Wachten S, Masada N, Cooper DM (2010) Direct demonstration of discrete Ca2+ microdomains associated with different isoforms of adenylyl cyclase. J Cell Sci 123(Pt 1):107–117

    Article  PubMed  CAS  Google Scholar 

  • Wu MM, Buchanan J, Luik RM, Lewis RS (2006) Ca2+ store depletion causes STIM1 to accumulate in ER regions closely associated with the plasma membrane. J Cell Biol 174(6):803–813

    Article  PubMed  CAS  Google Scholar 

  • Wuytack F, Raeymaekers L, Missiaen L (2002) Molecular physiology of the SERCA and SPCA pumps. Cell Calcium 32(5–6):279–305

    Article  PubMed  CAS  Google Scholar 

  • Xu P, Lu J, Li Z, Yu X, Chen L, Xu T (2006) Aggregation of STIM1 underneath the plasma membrane induces clustering of Orai1. Biochem Biophys Res Commun 350(4):969–976

    Article  PubMed  CAS  Google Scholar 

  • Yeromin AV, Zhang SL, Jiang W, Yu Y, Safrina O, Cahalan MD (2006) Molecular identification of the CRAC channel by altered ion selectivity in a mutant of Orai. Nature 443(7108):226–229

    Article  PubMed  CAS  Google Scholar 

  • Yuan JP, Zeng W, Dorwart MR, Choi YJ, Worley PF, Muallem S (2009) SOAR and the polybasic STIM1 domains gate and regulate Orai channels. Nat Cell Biol 11(3):337–343

    Article  PubMed  CAS  Google Scholar 

  • Zeng W, Yuan JP, Kim MS, Choi YJ, Huang GN, Worley PF, Muallem S (2008) STIM1 gates TRPC channels, but not Orai1, by electrostatic interaction. Mol Cell 32(3):439–448

    Article  PubMed  CAS  Google Scholar 

  • Zhang SL, Yu Y, Roos J, Kozak JA, Deerinck TJ, Ellisman MH, Stauderman KA, Cahalan MD (2005) STIM1 is a Ca2+ sensor that activates CRAC channels and migrates from the Ca2+ store to the plasma membrane. Nature 437(7060):902–905

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luis Vaca .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Wien

About this chapter

Cite this chapter

Moreno, C., Vaca, L. (2012). Microdomain Organization and the Role of Second Messengers. In: Groschner, K., Graier, W., Romanin, C. (eds) Store-operated Ca2+ entry (SOCE) pathways. Springer, Vienna. https://doi.org/10.1007/978-3-7091-0962-5_7

Download citation

Publish with us

Policies and ethics