Skip to main content

Introduction

  • Chapter
  • First Online:
Store-operated Ca2+ entry (SOCE) pathways
  • 691 Accesses

Abstract

This volume will present a state-of-the art description and analysis of the rapidly expanding field of store-operated Ca2+ entry (SOCE). And this first section will deal with the most fundamental mechanistic concepts underlying this process. In this brief introduction, I will try to summarize the historical development of the concept of store-operated Ca2+ entry, and say a bit about some recent work that speaks to its general function in cell signaling.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ali H, Christensen SB, Foreman JC, Pearce FL, Piotrowski W, Thastrup O (1985) The ability of thapsigargin and thapsigargicin to activate cells involved in the inflammatory response. Br J Pharmacol 85:705–712

    PubMed  CAS  Google Scholar 

  • Ambudkar IS, Ong HL (2007) Organization and function of TRPC channelosomes. Pflugers Arch 455(2):187–200

    Article  PubMed  CAS  Google Scholar 

  • Barritt GJ (1999) Receptor-activated Ca2+ inflow in animal cells: a variety of pathways tailored to meet different intracellular Ca2+ signalling requirements. Biochem J 337:153–169

    Article  PubMed  CAS  Google Scholar 

  • Berridge MJ (1983) Rapid accumulation of inositol trisphosphate reveals that agonists hydrolyse polyphosphoinositides instead of phosphatidylinositol. Biochem J 212:849–858

    PubMed  CAS  Google Scholar 

  • Berridge MJ, Galione A (1988) Cytosolic calcium oscillators. FASEB J 2:3074–3082

    PubMed  CAS  Google Scholar 

  • Biden TJ, Prentki M, Irvine RF, Berridge MJ, Wollheim CB (1984) Inositol 1,4,5-trisphosphate mobilizes intracellular Ca2+ from permeabilized insulin-secreting cells. Biochem J 223:467–473

    PubMed  CAS  Google Scholar 

  • Bird GS, Putney JW (2005) Capacitative calcium entry supports calcium oscillations in human embryonic kidney cells. J Physiol 562:697–706

    Article  PubMed  CAS  Google Scholar 

  • Bird GS, DeHaven WI, Smyth JT, Putney JW Jr (2008) Methods for studying store-operated calcium entry. Methods 46:204–212

    Article  PubMed  CAS  Google Scholar 

  • Bird GS, Hwang SY, Smyth JT, Fukushima M, Boyles RR, Putney JW Jr (2009) STIM1 is a calcium sensor specialized for digital signaling. Curr Biol 19:1724–1729

    Article  PubMed  CAS  Google Scholar 

  • Bohr DF (1963) Vascular smooth muscle: dual effect of calcium. Science 139:597–599

    Article  PubMed  CAS  Google Scholar 

  • Bohr DF (1973) Vascular smooth muscle updated. Circ Res 32:665–672

    PubMed  CAS  Google Scholar 

  • Bolton TB (1979) Mechanisms of action of transmitters and other substances on smooth muscle. Physiol Rev 59:606–718

    PubMed  CAS  Google Scholar 

  • Brandman O, Liou J, Park WS, Meyer T (2007) STIM2 Is a feedback regulator that stabilizes basal cytosolic and endoplasmic reticulum Ca(2+) Levels. Cell 131:1327–1339

    Article  PubMed  CAS  Google Scholar 

  • Burgess GM, Godfrey PP, McKinney JS, Berridge MJ, Irvine RF, Putney JW (1984) The second messenger linking receptor activation to internal Ca release in liver. Nature 309(5963):63–66

    Article  PubMed  CAS  Google Scholar 

  • Cahalan MD (2009) STIMulating store-operated Ca(2+) entry. Nat Cell Biol 11:669–677

    Article  PubMed  CAS  Google Scholar 

  • Casteels R, Droogmans G (1981) Exchange characteristics of the noradrenaline-sensitive calcium store in vascular smooth muscle cells of rabbit ear artery. J Physiol 317:263–279

    PubMed  CAS  Google Scholar 

  • Chang WC, Di Capite J, Singaravelu K, Nelson C, Halse V, Parekh AB (2008) Local Ca2+ influx through Ca2+ release-activated Ca2+ (CRAC) channels stimulates production of an intracellular messenger and an intercellular pro-inflammatory signal. J Biol Chem 283:4622–4631

    Article  PubMed  CAS  Google Scholar 

  • Cooper DMF, Yoshimura M, Zhang Y, Chiono M, Mahey R (1994) Capacitative Ca2+ entry regulates v-sensitive adenylyl cyclases. Biochem J 297:437–440

    PubMed  CAS  Google Scholar 

  • Csutora P, Peter K, Kilic H, Park KM, Zarayskiy V, Gwozdz T, Bolotina VM (2008) Novel role for STIM1 as a trigger for calcium influx factor production. J Biol Chem 283:14524–14531

    Article  PubMed  CAS  Google Scholar 

  • De Koninck P, Schulman H (1998) Sensitivity of CaM kinase II to the frequency of Ca2+ oscillations. Science 279:227–230

    Article  PubMed  Google Scholar 

  • DeHaven WI, Smyth JT, Boyles RR, Putney JW (2007) Calcium inhibition and calcium potentiation of Orai1, Orai2, and Orai3 calcium release-activated calcium channels. J Biol Chem 282:17548–17556

    Article  PubMed  CAS  Google Scholar 

  • Di Capite J, Ng SW, Parekh AB (2009) Decoding of cytoplasmic Ca(2+) oscillations through the spatial signature drives gene expression. Curr Biol 19:853–858

    Article  PubMed  Google Scholar 

  • Dolmetsch RE, Xu KL, Lewis RS (1998) Calcium oscillations increase the efficiency and specificity of gene expression. Nature 392:933–936

    Article  PubMed  CAS  Google Scholar 

  • Dupont G, Combettes L, Leybaert L (2007) Calcium dynamics: spatio-temporal organization from the subcellular to the organ level. Int Rev Cytol 261:193–245

    Article  PubMed  CAS  Google Scholar 

  • Feske S (2009) ORAI1 and STIM1 deficiency in human and mice: roles of store-operated Ca2+ entry in the immune system and beyond. Immunol Rev 231:189–209

    Article  PubMed  CAS  Google Scholar 

  • Feske S, Gwack Y, Prakriya M, Srikanth S, Puppel SH, Tanasa B, Hogan PG, Lewis RS, Daly M, Rao A (2006) A mutation in Orai1 causes immune deficiency by abrogating CRAC channel function. Nature 441:179–185

    Article  PubMed  CAS  Google Scholar 

  • Goldbeter A, Dupont G, Berridge MJ (1990) Minimal model for signal-induced Ca2+ oscillations and for their frequency encoding through protein phosphorylation. Proc Natl Acad Sci USA 87:1461–1465

    Article  PubMed  CAS  Google Scholar 

  • Grynkiewicz G, Poenie M, Tsien RY (1986) A new generation of Ca2+ indicators with greatly improved fluorescence properties. J Biol Chem 260:3440–3450

    Google Scholar 

  • Hewavitharana T, Deng X, Soboloff J, Gill DL (2007) Role of STIM and Orai proteins in the store-operated calcium signaling pathway. Cell Calcium 42:173–182

    Article  PubMed  CAS  Google Scholar 

  • Hogan PG, Lewis RS, Rao A (2010) Molecular basis of calcium signaling in lymphocytes: STIM and ORAI. Annu Rev Immunol 28:491–533

    Article  PubMed  CAS  Google Scholar 

  • Hoth M, Penner R (1992) Depletion of intracellular calcium stores activates a calcium current in mast cells. Nature 355:353–355

    Article  PubMed  CAS  Google Scholar 

  • Jackson TR, Patterson SI, Thastrup O, Hanley MR (1988) A novel tumour promoter, thapsigargin, transiently increases cytoplasmic free Ca2+ without generation of inositol phosphates in NG115-401L neuronal cells. Biochem J 253:81–86

    PubMed  CAS  Google Scholar 

  • Lewis RS (2001) Calcium signaling mechanisms in T lymphocytes. Annu Rev Immunol 19:497–521

    Article  PubMed  CAS  Google Scholar 

  • Lewis RS (2003) Calcium oscillations in T-cells: mechanisms and consequences for gene expression. Biochem Soc Trans 31:925–929

    Article  PubMed  CAS  Google Scholar 

  • Liao Y, Erxleben C, Abramowitz J, Flockerzi V, Zhu MX, Armstrong DL, Birnbaumer L (2008) Functional interactions among Orai1, TRPCs, and STIM1 suggest a STIM-regulated heteromeric Orai/TRPC model for SOCE/Icrac channels. Proc Natl Acad Sci USA 105:2895–2900

    Article  PubMed  CAS  Google Scholar 

  • Liao Y, Plummer NW, George MD, Abramowitz J, Zhu MX, Birnbaumer L (2009) A role for Orai in TRPC-mediated Ca2+ entry suggests that a TRPC:Orai complex may mediate store and receptor operated Ca2+ entry. Proc Natl Acad Sci USA 106:3202–3206

    Article  PubMed  CAS  Google Scholar 

  • Liou J, Kim ML, Heo WD, Jones JT, Myers JW, Ferrell JE Jr, Meyer T (2005) STIM is a Ca2+ sensor essential for Ca2+-store-depletion-triggered Ca2+ influx. Curr Biol 15:1235–1241

    Article  PubMed  CAS  Google Scholar 

  • Meissner G (1994) Ryanodine receptor/Ca2+ release channels and their regulation by endogenous effectors. Annu Rev Physiol 56:485–508

    Article  PubMed  CAS  Google Scholar 

  • Meyer T, Stryer L (1988) Molecular model for receptor-stimulated calcium spiking. Proc Natl Acad Sci USA 85:5051–5055

    Article  PubMed  CAS  Google Scholar 

  • Muallem S, Khademazad M, Sachs G (1990) The route of Ca2+ entry during reloading of the intracellular Ca2+ pool in pancreatic acini. J Biol Chem 265:2011–2016

    PubMed  CAS  Google Scholar 

  • Ng SW, Di Capite J, Singaravelu K, Parekh AB (2008) Sustained activation of the tyrosine kinase Syk by antigen in mast cells requires local v influx through Ca2+ release-activated v channels. J Biol Chem 283:31348–31355

    Article  PubMed  CAS  Google Scholar 

  • Ng SW, Nelson C, Parekh AB (2009) Coupling of Ca2+ microdomains to spatially and temporally distinct cellular responses by the tyrosine kinase Syk. J Biol Chem 284:24767–24772

    Article  PubMed  CAS  Google Scholar 

  • Nicholls DG (2005) Mitochondria and calcium signaling. Cell Calcium 38:311–317

    Article  PubMed  CAS  Google Scholar 

  • Parekh AB, Penner R (1997) Store depletion and calcium influx. Physiol Rev 77:901–930

    PubMed  CAS  Google Scholar 

  • Parekh AB, Putney JW (2005) Store-operated calcium channels. Physiol Rev 85:757–810

    Article  PubMed  CAS  Google Scholar 

  • Parekh AB, Fleig A, Penner R (1997) The store-operated calcium current ICRAC: nonlinear activation by InsP3 and dissociation from calcium release. Cell 89:973–980

    Article  PubMed  CAS  Google Scholar 

  • Parod RJ, Putney JW (1978) The role of calcium in the receptor mediated control of potassium permeability in the rat lacrimal gland. J Physiol 281:371–381

    PubMed  CAS  Google Scholar 

  • Patkar SA, Rasmussen U, Diamant B (1979) On the mechanism of histamine release induced by thapsigargin from Thapsia garganica L. Agents Actions 9:53–57

    Article  PubMed  CAS  Google Scholar 

  • Prakriya M (2009) The molecular physiology of CRAC channels. Immunol Rev 231:88–98

    Article  PubMed  CAS  Google Scholar 

  • Prentki M, Biden TJ, Janjic D, Irvine RF, Berridge MJ, Wollheim CB (1984) Rapid mobilization of Ca2+ from rat insulinoma microsomes by inositol-1,4,5-trisphosphate. Nature 309:562–564

    Article  PubMed  CAS  Google Scholar 

  • Putney JW (1976) Biphasic modulation of potassium release in rat parotid gland by carbachol and phenylephrine. J Pharmacol Exp Ther 198:375–384

    PubMed  CAS  Google Scholar 

  • Putney JW (1977) Muscarinic, alpha-adrenergic and peptide receptors regulate the same calcium influx sites in the parotid gland. J Physiol 268:139–149

    PubMed  CAS  Google Scholar 

  • Putney JW (1986) A model for receptor-regulated calcium entry. Cell Calcium 7:1–12

    Article  PubMed  CAS  Google Scholar 

  • Putney JW, McKay RR (1999) Capacitative calcium entry channels. Bioessays 21:38–46

    Article  PubMed  Google Scholar 

  • Putney JW, Poggioli J, Weiss SJ (1981) Receptor regulation of calcium release and calcium permeability in parotid gland cells. Philos Trans R Soc Lond B 296:37–45

    Article  CAS  Google Scholar 

  • Ribeiro CMP, Putney JW (1996) Differential effects of protein kinase C activation on calcium storage and capacitative calcium entry in NIH 3T3 cells. J Biol Chem 271:21522–21528

    Article  PubMed  CAS  Google Scholar 

  • Rizzuto R, Pozzan T (2006) Microdomains of intracellular Ca2+: molecular determinants and functional consequences. Physiol Rev 86:369–408

    Article  PubMed  CAS  Google Scholar 

  • Roos J, DiGregorio PJ, Yeromin AV, Ohlsen K, Lioudyno M, Zhang S, Safrina O, Kozak JA, Wagner SL, Cahalan MD, Velicelebi G, Stauderman KA (2005) STIM1, an essential and conserved component of store-operated Ca2+ channel function. J Cell Biol 169:435–445

    Article  PubMed  CAS  Google Scholar 

  • Sattler R, Tymianski M (2000) Molecular mechanisms of calcium-dependent excitotoxicity. J Mol Med 78:3–13

    Article  PubMed  CAS  Google Scholar 

  • Sitrin MD, Bohr DF (1971) Ca and Na interaction in vascular smooth muscle contraction. Am J Physiol 220:1124–1128

    PubMed  CAS  Google Scholar 

  • Slack BE, Bell JE, Benos DJ (1986) Inositol 1,4,5-trisphosphate injection mimics fertilization potentials in sea urchin eggs. Am J Physiol 250:C340–C344

    PubMed  CAS  Google Scholar 

  • Smyth JT, DeHaven WI, Jones BF, Mercer JC, Trebak M, Vazquez G, Putney JW (2006) Emerging perspectives in store-operated Ca2+ entry: roles of Orai, Stim and TRP. Biochim Biophys Acta 1763:1147–1160

    Article  PubMed  CAS  Google Scholar 

  • Sneyd J, Tsaneva-Atanasova K, Yule DI, Thompson JL, Shuttleworth TJ (2004) Control of calcium oscillations by membrane fluxes. Proc Natl Acad Sci USA 101:1392–1396

    Article  PubMed  CAS  Google Scholar 

  • Steinsland OS, Furchgott RF, Kirpekar SM (1973) Biphasic vasoconstriction of the rabbit ear artery. Circ Res 32:49–58

    PubMed  CAS  Google Scholar 

  • Streb H, Irvine RF, Berridge MJ, Schulz I (1983) Release of Ca2+ from a nonmitochondrial store in pancreatic cells by inositol-1,4,5-trisphosphate. Nature 306:67–68

    Article  PubMed  CAS  Google Scholar 

  • Streb H, Bayerdorffer E, Haase W, Irvine RF, Schulz I (1984) Effect of inositol-1,4,5-trisphosphate on isolated subcellular fractions of rat pancreas. J Membr Biol 81:241–253

    Article  PubMed  CAS  Google Scholar 

  • Takemura H, Putney JW (1989) Capacitative calcium entry in parotid acinar cells. Biochem J 258:409–412

    PubMed  CAS  Google Scholar 

  • Takemura H, Hughes AR, Thastrup O, Putney JW (1989) Activation of calcium entry by the tumor promoter, thapsigargin, in parotid acinar cells. Evidence that an intracellular calcium pool, and not an inositol phosphate, regulates calcium fluxes at the plasma membrane. J Biol Chem 264:12266–12271

    PubMed  CAS  Google Scholar 

  • Thastrup O, Foder B, Scharff O (1987) The calcium mobilizing tumor promoting agent, thapsigargin elevates the platelet cytoplasmic free calcium concentration to a higher steady state level. A possible mechanism of action for the tumor promotion. Biochem Biophys Res Commun 142:654–660

    Article  PubMed  CAS  Google Scholar 

  • Thastrup O, Cullen PJ, Drobak BK, Hanley MR, Dawson AP (1990) Thapsigargin, a tumor promoter, discharges intracellular Ca2+ stores by specific inhibition of the endoplasmic reticulum Ca2+-ATPase. Proc Natl Acad Sci USA 87:2466–2470

    Article  PubMed  CAS  Google Scholar 

  • Thomas AP, Bird GStj, Hajnóczky G, Robb-Gaspers LD, Putney JW (1996) Spatial and temporal aspects of cellular calcium signalling. FASEB J 10:1505–1517

    PubMed  CAS  Google Scholar 

  • Tymianski M (1996) Cytosolic calcium concentrations and cell death in vitro. Adv Neurol 71:85–105

    PubMed  CAS  Google Scholar 

  • Ueda T, Church SH, Noel MW, Gill DL (1986) Influence of inositol 1,4,5-trisphosphate and guanine nucleotides on intracellular calcium release within the N1E-115 neuronal cell line. J Biol Chem 261:3184–3192

    PubMed  CAS  Google Scholar 

  • Van Breemen C (1969) Blockade of membrane calcium fluxes by lanthanum in relation to vascular smooth muscle contractility. Arch Int Physiol Biochim 77:710–716

    Article  PubMed  Google Scholar 

  • Van Breemen C, de Weer P (1970) Lanthanum inhibition of 45Ca2+ efflux from the squid giant axon. Nature 226:760–761

    Article  PubMed  Google Scholar 

  • Van Breemen C, Farinas B, Gerba P, McNaughton ED (1972) Excitation–contraction coupling in rabbit aorta studied by the lanthanum method for measuring cellular calcium influx. Circ Res 30:44–54

    PubMed  Google Scholar 

  • Van Breemen C, Farinas BR, Casteels R, Gerba P, Wuytack F, Deth R (1973) Factors controlling cytoplasmic Ca2+ concentration. Philos Trans R Soc Lond B Biol Sci 265:57–71

    Article  PubMed  Google Scholar 

  • Vig M, Peinelt C, Beck A, Koomoa DL, Rabah D, Koblan-Huberson M, Kraft S, Turner H, Fleig A, Penner R, Kinet JP (2006) CRACM1 Is a plasma membrane protein essential for store-operated Ca2+ entry. Science 312:1220–1223

    Article  PubMed  CAS  Google Scholar 

  • Wedel B, Boyles RR, Putney JW, Bird GS (2007) Role of the store-operated calcium entry proteins, Stim1 and Orai1, in muscarinic-cholinergic receptor stimulated calcium oscillations in human embryonic kidney cells. J Physiol 579:679–689

    Article  PubMed  CAS  Google Scholar 

  • Woods NM, Cuthbertson KS, Cobbold PH (1986) Repetitive transient rises in cytoplasmic free calcium in hormone-stimulated hepatocytes. Nature 319:600–602

    Article  PubMed  CAS  Google Scholar 

  • Yuan JP, Kim MS, Zeng W, Shin DM, Huang G, Worley PF, Muallem S (2009) TRPC channels as STIM1-regulated SOCs. Channels (Austin) 3:221–225

    Article  CAS  Google Scholar 

  • Zhang SL, Yeromin AV, Zhang XH, Yu Y, Safrina O, Penna A, Roos J, Stauderman KA, Cahalan MD (2006) Genome-wide RNAi screen of Ca2+ influx identifies genes that regulate Ca2+ release-activated Ca2+ channel activity. Proc Natl Acad Sci USA 103:9357–9362

    Article  PubMed  CAS  Google Scholar 

  • Zweifach A, Lewis RS (1993) Mitogen-regulated Ca2+ current of T lymphocytes is activated by depletion of intracellular Ca2+ stores. Proc Natl Acad Sci USA 90:6295–6299

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James W. Putney .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Wien

About this chapter

Cite this chapter

Putney, J.W. (2012). Introduction. In: Groschner, K., Graier, W., Romanin, C. (eds) Store-operated Ca2+ entry (SOCE) pathways. Springer, Vienna. https://doi.org/10.1007/978-3-7091-0962-5_1

Download citation

Publish with us

Policies and ethics