Skip to main content

The Brain’s Extracellular Matrix and Its Role in Synaptic Plasticity

  • Chapter
  • First Online:
Synaptic Plasticity

Abstract

The extracellular matrix (ECM) of the brain has important roles in regulating synaptic function and plasticity. A juvenile ECM supports the wiring of neuronal networks, synaptogenesis, and synaptic maturation. The closure of critical periods for experience-dependent shaping of neuronal circuits coincides with the implementation of a mature form of ECM that is characterized by highly elaborate hyaluronan-based structures, the perineuronal nets (PNN), and PNN-like perisynaptic ECM specializations. In this chapter, we will focus on some recently reported aspects of ECM functions in brain plasticity. These include (a) the discovery that the ECM can act as a passive diffusion barrier for cell surface molecules including neurotransmitter receptors and in this way compartmentalize cell surfaces, (b) the specific functions of ECM components in actively regulating synaptic plasticity and homeostasis, and (c) the shaping processes of the ECM by extracellular proteases and in turn the activation particular signaling pathways.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alpar, A., Gartner, U., Hartig, W., & Bruckner, G. (2006). Distribution of pyramidal cells associated with perineuronal nets in the neocortex of rat. Brain Research, 1120, 13–22.

    Article  PubMed  CAS  Google Scholar 

  • Araque, A., Parpura, V., Sanzgiri, R. P., & Haydon, P. G. (1999). Tripartite synapses: Glia, the unacknowledged partner. Trends in Neurosciences, 22, 208–215.

    Article  PubMed  CAS  Google Scholar 

  • Bandtlow, C. E., & Zimmermann, D. R. (2000). Proteoglycans in the developing brain: New conceptual insights for old proteins. Physiological Reviews, 80, 1267–1290.

    PubMed  CAS  Google Scholar 

  • Berardi, N., Pizzorusso, T., Ratto, G. M., & Maffei, L. (2003). Molecular basis of plasticity in the visual cortex. Trends in Neurosciences, 26, 369–378.

    Article  PubMed  CAS  Google Scholar 

  • Bolliger, M. F., Zurlinden, A., Luscher, D., Butikofer, L., Shakhova, O., Francolini, M., Kozlov, S. V., Cinelli, P., Stephan, A., Kistler, A. D., Rulicke, T., Pelczar, P., Ledermann, B., Fumagalli, G., Gloor, S. M., Kunz, B., & Sonderegger, P. (2010). Specific proteolytic cleavage of agrin regulates maturation of the neuromuscular junction. Journal of Cell Science, 123, 3944–3955.

    Article  PubMed  CAS  Google Scholar 

  • Borgdorff, A. J., & Choquet, D. (2002). Regulation of AMPA receptor lateral movements. Nature, 417, 649–653.

    Article  PubMed  CAS  Google Scholar 

  • Brakebusch, C., Seidenbecher, C. I., Asztely, F., Rauch, U., Matthies, H., Meyer, H., Krug, M., Bockers, T. M., Zhou, X., Kreutz, M. R., Montag, D., Gundelfinger, E. D., & Fassler, R. (2002). Brevican-deficient mice display impaired hippocampal CA1 long-term potentiation but show no obvious deficits in learning and memory. Molecular and Cellular Biology, 22, 7417–7427.

    Article  PubMed  CAS  Google Scholar 

  • Bruckner, G., Grosche, J., Schmidt, S., Hartig, W., Margolis, R. U., Delpech, B., Seidenbecher, C. I., Czaniera, R., & Schachner, M. (2000). Postnatal development of perineuronal nets in wild-type mice and in a mutant deficient in tenascin-R. The Journal of Comparative Neurology, 428, 616–629.

    Article  PubMed  CAS  Google Scholar 

  • Bukalo, O., Schachner, M., & Dityatev, A. (2001). Modification of extracellular matrix by enzymatic removal of chondroitin sulfate and by lack of tenascin-R differentially affects several forms of synaptic plasticity in the hippocampus. Neuroscience, 104, 359–369.

    Google Scholar 

  • Bukalo, O., Schachner, M., & Dityatev, A. (2007). Hippocampal metaplasticity induced by deficiency in the extracellular matrix glycoprotein tenascin-R. Journal of Neuroscience, 27, 6019–6028.

    Article  PubMed  CAS  Google Scholar 

  • Campo, C. G., Sinagra, M., Verrier, D., Manzoni, O. J., & Chavis, P. (2009). Reelin secreted by GABAergic neurons regulates glutamate receptor homeostasis. PloS One, 4, e5505.

    Article  PubMed  CAS  Google Scholar 

  • Carulli, D., Pizzorusso, T., Kwok, J. C., Putignano, E., Poli, A., Forostyak, S., Andrews, M. R., Deepa, S. S., Glant, T. T., & Fawcett, J. W. (2010). Animals lacking link protein have attenuated perineuronal nets and persistent plasticity. Brain, 133, 2331–2347.

    Article  PubMed  Google Scholar 

  • Carulli, D., Rhodes, K. E., & Fawcett, J. W. (2007). Upregulation of aggrecan, link protein 1, and hyaluronan synthases during formation of perineuronal nets in the rat cerebellum. The Journal of Comparative Neurology, 501, 83–94.

    Article  PubMed  CAS  Google Scholar 

  • Celio, M. R., & Blumcke, I. (1994). Perineuronal nets – A specialized form of extracellular matrix in the adult nervous system. Brain Research: Brain Research Reviews, 19, 128–145.

    Article  PubMed  CAS  Google Scholar 

  • Celio, M. R., Spreafico, R., De Biasi, S., & Vitellaro-Zuccarello, L. (1998). Perineuronal nets: Past and present. Trends in Neurosciences, 21, 510–515.

    Article  PubMed  CAS  Google Scholar 

  • Chai, X., Forster, E., Zhao, S., Bock, H. H., & Frotscher, M. (2009). Reelin stabilizes the actin cytoskeleton of neuronal processes by inducing n-cofilin phosphorylation at serine3. Journal of Neuroscience, 29, 288–299.

    Article  PubMed  CAS  Google Scholar 

  • Chan, C. S., Weeber, E. J., Zong, L., Fuchs, E., Sweatt, J. D., & Davis, R. L. (2006). Beta1-integrins are required for hippocampal AMPA receptor-dependent synaptic transmission, synaptic plasticity, and working memory. Journal of Neuroscience, 26, 223–232.

    Article  PubMed  CAS  Google Scholar 

  • Chang, M. C., Park, J. M., Pelkey, K. A., Grabenstatter, H. L., Xu, D., Linden, D. J., Sutula, T. P., McBain, C. J., & Worley, P. F. (2010). Narp regulates homeostatic scaling of excitatory synapses on parvalbumin-expressing interneurons. Nature Neuroscience, 13, 1090–1097.

    Article  PubMed  CAS  Google Scholar 

  • Charrier, C., Machado, P., Tweedie-Cullen, R. Y., Rutishauser, D., Mansuy, I. M., & Triller, A. (2010). A crosstalk between beta1 and beta3 integrins controls glycine receptor and gephyrin trafficking at synapses. Nature Neuroscience, 13, 1388–1395.

    Article  PubMed  CAS  Google Scholar 

  • Chavis, P., & Westbrook, G. (2001). Integrins mediate functional pre- and postsynaptic maturation at a hippocampal synapse. Nature, 411, 317–321.

    Article  PubMed  CAS  Google Scholar 

  • Choquet, D., & Triller, A. (2003). The role of receptor diffusion in the organization of the postsynaptic membrane. Nature Reviews Neuroscience, 4, 251–265.

    Article  PubMed  CAS  Google Scholar 

  • Christopherson, K. S., Ullian, E. M., Stokes, C. C., Mullowney, C. E., Hell, J. W., Agah, A., Lawler, J., Mosher, D. F., Bornstein, P., & Barres, B. A. (2005). Thrombospondins are astrocyte-secreted proteins that promote CNS synaptogenesis. Cell, 120, 421–433.

    Article  PubMed  CAS  Google Scholar 

  • Cingolani, L. A., Thalhammer, A., Yu, L. M., Catalano, M., Ramos, T., Colicos, M. A., & Goda, Y. (2008). Activity-dependent regulation of synaptic AMPA receptor composition and abundance by beta3 integrins. Neuron, 58, 749–762.

    Article  PubMed  CAS  Google Scholar 

  • Deepa, S. S., Carulli, D., Galtrey, C., Rhodes, K., Fukuda, J., Mikami, T., Sugahara, K., & Fawcett, J. W. (2006). Composition of perineuronal net extracellular matrix in rat brain: A different disaccharide composition for the net-associated proteoglycans. Journal of Biological Chemistry, 281, 17789–17800.

    Article  PubMed  CAS  Google Scholar 

  • Devanathan, V., Jakovcevski, I., Santuccione, A., Li, S., Lee, H. J., Peles, E., Leshchyns’ka, I., Sytnyk, V., & Schachner, M. (2010). Cellular form of prion protein inhibits reelin-mediated shedding of Caspr from the neuronal cell surface to potentiate Caspr-mediated inhibition of neurite outgrowth. Journal of Neuroscience, 30, 9292–9305.

    PubMed  CAS  Google Scholar 

  • Dityatev, A., Bruckner, G., Dityateva, G., Grosche, J., Kleene, R., & Schachner, M. (2007). Activity-dependent formation and functions of chondroitin sulfate-rich extracellular matrix of perineuronal nets. Developmental Neurobiology, 67, 570–588.

    Article  PubMed  CAS  Google Scholar 

  • Dityatev, A., & Fellin, T. (2008). Extracellular matrix in plasticity and epileptogenesis. Neuron Glia Biology, 4, 235–247.

    Article  PubMed  Google Scholar 

  • Dityatev, A., Frischknecht, R., & Seidenbecher, C. I. (2006). Extracellular matrix and synaptic functions. Results and Problems in Cell Differentiation, 43, 69–97.

    Article  PubMed  CAS  Google Scholar 

  • Dityatev, A., & Schachner, M. (2003). Extracellular matrix molecules and synaptic plasticity. Nature Reviews Neuroscience, 4, 456–468.

    Article  PubMed  CAS  Google Scholar 

  • Dityatev, A., Schachner, M., & Sonderegger, P. (2010a). The dual role of the extracellular matrix in synaptic plasticity and homeostasis. Nature Reviews Neuroscience, 11, 735–746.

    Article  PubMed  CAS  Google Scholar 

  • Dityatev, A., Seidenbecher, C. I., & Schachner, M. (2010b). Compartmentalization from the outside: The extracellular matrix and functional microdomains in the brain. Trends in Neurosciences, 33, 503–512.

    Article  PubMed  CAS  Google Scholar 

  • Eroglu, C. (2009). The role of astrocyte-secreted matricellular proteins in central nervous system development and function. Journal of Cell Communication Signaling, 3, 167–176.

    Article  Google Scholar 

  • Eroglu, C., Allen, N. J., Susman, M. W., O’Rourke, N. A., Park, C. Y., Ozkan, E., Chakraborty, C., Mulinyawe, S. B., Annis, D. S., Huberman, A. D., Green, E. M., Lawler, J., Dolmetsch, R., Garcia, K. C., Smith, S. J., Luo, Z. D., Rosenthal, A., Mosher, D. F., & Barres, B. A. (2009). Gabapentin receptor alpha2delta-1 is a neuronal thrombospondin receptor responsible for excitatory CNS synaptogenesis. Cell, 139, 380–392.

    Article  PubMed  CAS  Google Scholar 

  • Ethell, I. M., & Ethell, D. W. (2007). Matrix metalloproteinases in brain development and remodeling: Synaptic functions and targets. Journal of Neuroscience Research, 85, 2813–2823.

    Article  PubMed  CAS  Google Scholar 

  • Faissner, A., Pyka, M., Geissler, M., Sobik, T., Frischknecht, R., Gundelfinger, E. D., & Seidenbecher, C. (2010). Contributions of astrocytes to synapse formation and maturation – Potential functions of the perisynaptic extracellular matrix. Brain Research Reviews, 63, 26–38.

    Article  PubMed  CAS  Google Scholar 

  • Fawcett, J. (2009a). Molecular control of brain plasticity and repair. Progress in Brain Research, 175, 501–509.

    Article  PubMed  CAS  Google Scholar 

  • Fawcett, J. W. (2009b). Recovery from spinal cord injury: Regeneration, plasticity and rehabilitation. Brain, 132, 1417–1418.

    Article  PubMed  Google Scholar 

  • Foscarin, S., Ponchione, D., Pajaj, E., Leto, K., Gawlak, M., Wilczynski, G. M., Rossi, F., & Carulli, D. (2011). Experience-dependent plasticity and modulation of growth regulatory molecules at central synapses. PloS One, 6, e16666.

    Article  PubMed  CAS  Google Scholar 

  • Frischknecht, R., Fejtova, A., Viesti, M., Stephan, A., & Sonderegger, P. (2008). Activity-induced synaptic capture and exocytosis of the neuronal serine protease neurotrypsin. Journal of Neuroscience, 28, 1568–1579.

    Article  PubMed  CAS  Google Scholar 

  • Frischknecht, R., Heine, M., Perrais, D., Seidenbecher, C. I., Choquet, D., & Gundelfinger, E. D. (2009). Brain extracellular matrix affects AMPA receptor lateral mobility and short-term synaptic plasticity. Nature Neuroscience, 12, 897–904.

    Article  PubMed  CAS  Google Scholar 

  • Frischknecht, R., & Seidenbecher, C. I. (2008). The crosstalk of hyaluronan-based extracellular matrix and synapses. Neuron Glia Biology, 4, 249–257.

    Article  PubMed  Google Scholar 

  • Frotscher, M. (2010). Role for reelin in stabilizing cortical architecture. Trends in Neurosciences, 33, 407–414.

    Article  PubMed  CAS  Google Scholar 

  • Galtrey, C. M., & Fawcett, J. W. (2007). The role of chondroitin sulfate proteoglycans in regeneration and plasticity in the central nervous system. Brain Research Reviews, 54, 1–18.

    Article  PubMed  CAS  Google Scholar 

  • Giamanco, K. A., Morawski, M., & Matthews, R. T. (2010). Perineuronal net formation and structure in aggrecan knockout mice. Neuroscience, 170, 1314–1327.

    Article  PubMed  CAS  Google Scholar 

  • Gogolla, N., Caroni, P., Luthi, A., & Herry, C. (2009). Perineuronal nets protect fear memories from erasure. Science, 325, 1258–1261.

    Article  PubMed  CAS  Google Scholar 

  • Groc, L., Choquet, D., Stephenson, F. A., Verrier, D., Manzoni, O. J., & Chavis, P. (2007). NMDA receptor surface trafficking and synaptic subunit composition are developmentally regulated by the extracellular matrix protein reelin. Journal of Neuroscience, 27, 10165–10175.

    Article  PubMed  CAS  Google Scholar 

  • Hartig, W., Derouiche, A., Welt, K., Brauer, K., Grosche, J., Mader, M., Reichenbach, A., & Bruckner, G. (1999). Cortical neurons immunoreactive for the potassium channel Kv3.1b subunit are predominantly surrounded by perineuronal nets presumed as a buffering system for cations. Brain Research, 842, 15–29.

    Article  PubMed  CAS  Google Scholar 

  • Haydon, P. G. (2001). GLIA: Listening and talking to the synapse. Nature Reviews Neuroscience, 2, 185–193.

    Article  PubMed  CAS  Google Scholar 

  • Heine, M., Groc, L., Frischknecht, R., Beique, J. C., Lounis, B., Rumbaugh, G., Huganir, R. L., Cognet, L., & Choquet, D. (2008). Surface mobility of postsynaptic AMPARs tunes synaptic transmission. Science, 320, 201–205.

    Article  PubMed  CAS  Google Scholar 

  • Herz, J., & Chen, Y. (2006). Reelin, lipoprotein receptors and synaptic plasticity. Nature Reviews Neuroscience, 7, 850–859.

    Article  PubMed  CAS  Google Scholar 

  • John, N., Krugel, H., Frischknecht, R., Smalla, K. H., Schultz, C., Kreutz, M. R., Gundelfinger, E. D., & Seidenbecher, C. I. (2006). Brevican-containing perineuronal nets of extracellular matrix in dissociated hippocampal primary cultures. Molecular and Cellular Neuroscience, 31, 774–784.

    Article  PubMed  CAS  Google Scholar 

  • Kochlamazashvili, G., Henneberger, C., Bukalo, O., Dvoretskova, E., Senkov, O., Lievens, P. M., Westenbroek, R., Engel, A. K., Catterall, W. A., Rusakov, D. A., Schachner, M., & Dityatev, A. (2010). The extracellular matrix molecule hyaluronic acid regulates hippocampal synaptic plasticity by modulating postsynaptic L-type Ca(2+) channels. Neuron, 67, 116–128.

    Article  PubMed  CAS  Google Scholar 

  • Kohno, T., & Hattori, M. (2010). Re-evaluation of protease activity of reelin. Biological and Pharmaceutical Bulletin, 33, 1047–1049.

    Article  PubMed  CAS  Google Scholar 

  • Kusumi, A., Ike, H., Nakada, C., Murase, K., & Fujiwara, T. (2005). Single-molecule tracking of membrane molecules: Plasma membrane compartmentalization and dynamic assembly of raft-philic signaling molecules. Seminars in Immunology, 17, 3–21.

    Article  PubMed  CAS  Google Scholar 

  • Kusumi, A., Sako, Y., & Yamamoto, M. (1993). Confined lateral diffusion of membrane receptors as studied by single particle tracking (nanovid microscopy). Effects of calcium-induced differentiation in cultured epithelial cells. Biophysical Journal, 65, 2021–2040.

    Article  PubMed  CAS  Google Scholar 

  • Kwok, J. C., Carulli, D., & Fawcett, J. W. (2010). In vitro modeling of perineuronal nets: Hyaluronan synthase and link protein are necessary for their formation and integrity. Journal of Neurochemistry, 114, 1447–1459.

    PubMed  CAS  Google Scholar 

  • Li, K. W., Hornshaw, M. P., Van Der Schors, R. C., Watson, R., Tate, S., Casetta, B., Jimenez, C. R., Gouwenberg, Y., Gundelfinger, E. D., Smalla, K. H., & Smit, A. B. (2004). Proteomics analysis of rat brain postsynaptic density. Implications of the diverse protein functional groups for the integration of synaptic physiology. Journal of Biological Chemistry, 279, 987–1002.

    Article  PubMed  CAS  Google Scholar 

  • Mataga, N., Mizuguchi, Y., & Hensch, T. K. (2004). Experience-dependent pruning of dendritic spines in visual cortex by tissue plasminogen activator. Neuron, 44, 1031–1041.

    Article  PubMed  CAS  Google Scholar 

  • Mataga, N., Nagai, N., & Hensch, T. K. (2002). Permissive proteolytic activity for visual cortical plasticity. Proceedings of the National Academy of Sciences of the United States of America, 99, 7717–7721.

    Article  PubMed  CAS  Google Scholar 

  • Matsumoto-Miyai, K., Sokolowska, E., Zurlinden, A., Gee, C. E., Luscher, D., Hettwer, S., Wolfel, J., Ladner, A. P., Ster, J., Gerber, U., Rulicke, T., Kunz, B., & Sonderegger, P. (2009). Coincident pre- and postsynaptic activation induces dendritic filopodia via neurotrypsin-dependent agrin cleavage. Cell, 136, 1161–1171.

    Article  PubMed  CAS  Google Scholar 

  • Matthews, R. T., Kelly, G. M., Zerillo, C. A., Gray, G., Tiemeyer, M., & Hockfield, S. (2002). Aggrecan glycoforms contribute to the molecular heterogeneity of perineuronal nets. Journal of Neuroscience, 22, 7536–7547.

    PubMed  CAS  Google Scholar 

  • Michaluk, P., Kolodziej, L., Mioduszewska, B., Wilczynski, G. M., Dzwonek, J., Jaworski, J., Gorecki, D. C., Ottersen, O. P., & Kaczmarek, L. (2007). Beta-dystroglycan as a target for MMP-9, in response to enhanced neuronal activity. Journal of Biological Chemistry, 282, 16036–16041.

    Article  PubMed  CAS  Google Scholar 

  • Michaluk, P., Mikasova, L., Groc, L., Frischknecht, R., Choquet, D., & Kaczmarek, L. (2009). Matrix metalloproteinase-9 controls NMDA receptor surface diffusion through integrin beta1 signaling. Journal of Neuroscience, 29, 6007–6012.

    Article  PubMed  CAS  Google Scholar 

  • Milev, P., Maurel, P., Chiba, A., Mevissen, M., Popp, S., Yamaguchi, Y., Margolis, R. K., & Margolis, R. U. (1998). Differential regulation of expression of hyaluronan-binding proteoglycans in developing brain: Aggrecan, versican, neurocan, and brevican. Biochemical and Biophysical Research Communications, 247, 207–212.

    Article  PubMed  CAS  Google Scholar 

  • Miyata, S., Nishimura, Y., Hayashi, N., & Oohira, A. (2005). Construction of perineuronal net-like structure by cortical neurons in culture. Neuroscience, 136, 95–104.

    Article  PubMed  CAS  Google Scholar 

  • Molinari, F., Rio, M., Meskenaite, V., Encha-Razavi, F., Auge, J., Bacq, D., Briault, S., Vekemans, M., Munnich, A., Attie-Bitach, T., Sonderegger, P., & Colleaux, L. (2002). Truncating neurotrypsin mutation in autosomal recessive nonsyndromic mental retardation. Science, 298, 1779–1781.

    Article  PubMed  CAS  Google Scholar 

  • Nagy, V., Bozdagi, O., Matynia, A., Balcerzyk, M., Okulski, P., Dzwonek, J., Costa, R. M., Silva, A. J., Kaczmarek, L., & Huntley, G. W. (2006). Matrix metalloproteinase-9 is required for hippocampal late-phase long-term potentiation and memory. Journal of Neuroscience, 26, 1923–1934.

    Article  PubMed  CAS  Google Scholar 

  • Newpher, T. M., & Ehlers, M. D. (2008). Glutamate receptor dynamics in dendritic microdomains. Neuron, 58, 472–497.

    Article  PubMed  CAS  Google Scholar 

  • O’Brien, R. J., Xu, D., Petralia, R. S., Steward, O., Huganir, R. L., & Worley, P. (1999). Synaptic clustering of AMPA receptors by the extracellular immediate-early gene product Narp. Neuron, 23, 309–323.

    Article  PubMed  Google Scholar 

  • Oray, S., Majewska, A., & Sur, M. (2004). Dendritic spine dynamics are regulated by monocular deprivation and extracellular matrix degradation. Neuron, 44, 1021–1030.

    Article  PubMed  CAS  Google Scholar 

  • Petrini, E. M., Lu, J., Cognet, L., Lounis, B., Ehlers, M. D., & Choquet, D. (2009). Endocytic trafficking and recycling maintain a pool of mobile surface AMPA receptors required for synaptic potentiation. Neuron, 63, 92–105.

    Article  PubMed  CAS  Google Scholar 

  • Pizzorusso, T. (2009). Neuroscience. Erasing fear memories. Science, 325, 1214–1215.

    Article  PubMed  CAS  Google Scholar 

  • Pizzorusso, T., Medini, P., Berardi, N., Chierzi, S., Fawcett, J. W., & Maffei, L. (2002). Reactivation of ocular dominance plasticity in the adult visual cortex. Science, 298, 1248–1251.

    Article  PubMed  CAS  Google Scholar 

  • Pizzorusso, T., Medini, P., Landi, S., Baldini, S., Berardi, N., & Maffei, L. (2006). Structural and functional recovery from early monocular deprivation in adult rats. Proceedings of the National Academy of Sciences of the United States of America, 103, 8517–8522.

    Article  PubMed  CAS  Google Scholar 

  • Pozo, K., & Goda, Y. (2010). Unraveling mechanisms of homeostatic synaptic plasticity. Neuron, 66, 337–351.

    Article  PubMed  CAS  Google Scholar 

  • Rauch, U. (2004). Extracellular matrix components associated with remodeling processes in brain. Cellular and Molecular Life Sciences, 61, 2031–2045.

    Article  PubMed  CAS  Google Scholar 

  • Reif, R., Sales, S., Dreier, B., Luscher, D., Wolfel, J., Gisler, C., Baici, A., Kunz, B., & Sonderegger, P. (2008). Purification and enzymological characterization of murine neurotrypsin. Protein Expression and Purification, 61, 13–21.

    Article  PubMed  CAS  Google Scholar 

  • Reif, R., Sales, S., Hettwer, S., Dreier, B., Gisler, C., Wolfel, J., Luscher, D., Zurlinden, A., Stephan, A., Ahmed, S., Baici, A., Ledermann, B., Kunz, B., & Sonderegger, P. (2007). Specific cleavage of agrin by neurotrypsin, a synaptic protease linked to mental retardation. The FASEB Journal, 21, 3468–3478.

    Article  CAS  Google Scholar 

  • Rogers, J. T., & Weeber, E. J. (2008). Reelin and apoE actions on signal transduction, synaptic function and memory formation. Neuron Glia Biology, 4, 259–270.

    Article  PubMed  Google Scholar 

  • Sanes, J. R., & Lichtman, J. W. (2001). Induction, assembly, maturation and maintenance of a postsynaptic apparatus. Nature Reviews Neuroscience, 2, 791–805.

    Article  PubMed  CAS  Google Scholar 

  • Seidenbecher, C., Richter, K., & Gundelfinger, E. D. (1997). Brevican, a conditional proteoglycan from rat brain: Characterization of secreted and GPI-anchored isoforms. In A. W. Teelken & J. Korf (Eds.), Neurochemistry (pp. 901–904). New York: Plenum Press.

    Chapter  Google Scholar 

  • Seidenbecher, C. I., Richter, K., Rauch, U., Fassler, R., Garner, C. C., & Gundelfinger, E. D. (1995). Brevican, a chondroitin sulfate proteoglycan of rat brain, occurs as secreted and cell surface glycosylphosphatidylinositol-anchored isoforms. Journal of Biological Chemistry, 270, 27206–27212.

    Article  PubMed  CAS  Google Scholar 

  • Seidenbecher, C. I., Smalla, K. H., Fischer, N., Gundelfinger, E. D., & Kreutz, M. R. (2002). Brevican isoforms associate with neural membranes. Journal of Neurochemistry, 83, 738–746.

    Article  PubMed  CAS  Google Scholar 

  • Sia, G. M., Beique, J. C., Rumbaugh, G., Cho, R., Worley, P. F., & Huganir, R. L. (2007). Interaction of the N-terminal domain of the AMPA receptor GluR4 subunit with the neuronal pentraxin NP1 mediates GluR4 synaptic recruitment. Neuron, 55, 87–102.

    Article  PubMed  CAS  Google Scholar 

  • Sinagra, M., Verrier, D., Frankova, D., Korwek, K. M., Blahos, J., Weeber, E. J., Manzoni, O. J., & Chavis, P. (2005). Reelin, very-low-density lipoprotein receptor, and apolipoprotein E receptor 2 control somatic NMDA receptor composition during hippocampal maturation in vitro. Journal of Neuroscience, 25, 6127–6136.

    Article  PubMed  CAS  Google Scholar 

  • Slezak, M., & Pfrieger, F. W. (2003). New roles for astrocytes: Regulation of CNS synaptogenesis. Trends in Neurosciences, 26, 531–535.

    Article  PubMed  CAS  Google Scholar 

  • Sobolevsky, A. I., Rosconi, M. P., & Gouaux, E. (2009). X-ray structure, symmetry and mechanism of an AMPA-subtype glutamate receptor. Nature, 462, 745–756.

    Article  PubMed  CAS  Google Scholar 

  • Sohal, V. S., Zhang, F., Yizhar, O., & Deisseroth, K. (2009). Parvalbumin neurons and gamma rhythms enhance cortical circuit performance. Nature, 459, 698–702.

    Article  PubMed  CAS  Google Scholar 

  • Staubli, U., Chun, D., & Lynch, G. (1998). Time-dependent reversal of long-term potentiation by an integrin antagonist. Journal of Neuroscience, 18, 3460–3469.

    PubMed  CAS  Google Scholar 

  • Steinmetz, C. C., & Turrigiano, G. G. (2010). Tumor necrosis factor-alpha signaling maintains the ability of cortical synapses to express synaptic scaling. Journal of Neuroscience, 30, 14685–14690.

    Article  PubMed  CAS  Google Scholar 

  • Szklarczyk, A., Lapinska, J., Rylski, M., McKay, R. D., & Kaczmarek, L. (2002). Matrix metalloproteinase-9 undergoes expression and activation during dendritic remodeling in adult hippocampus. Journal of Neuroscience, 22, 920–930.

    PubMed  CAS  Google Scholar 

  • Tidow, H., Mattle, D., & Nissen, P. (2011). Structural and biophysical characterisation of agrin laminin G3 domain constructs. Protein Engineering, Design & Selection, 24, 219–224.

    Article  CAS  Google Scholar 

  • Triller, A., & Choquet, D. (2008). New concepts in synaptic biology derived from single-molecule imaging. Neuron, 59, 359–374.

    Article  PubMed  CAS  Google Scholar 

  • Tsui, C. C., Copeland, N. G., Gilbert, D. J., Jenkins, N. A., Barnes, C., & Worley, P. F. (1996). Narp, a novel member of the pentraxin family, promotes neurite outgrowth and is dynamically regulated by neuronal activity. Journal of Neuroscience, 16, 2463–2478.

    PubMed  CAS  Google Scholar 

  • VanSaun, M., Herrera, A. A., & Werle, M. J. (2003). Structural alterations at the neuromuscular junctions of matrix metalloproteinase 3 null mutant mice. Journal of Neurocytology, 32, 1129–1142.

    Article  PubMed  CAS  Google Scholar 

  • Wang, X. B., Bozdagi, O., Nikitczuk, J. S., Zhai, Z. W., Zhou, Q., & Huntley, G. W. (2008). Extracellular proteolysis by matrix metalloproteinase-9 drives dendritic spine enlargement and long-term potentiation coordinately. Proceedings of the National Academy of Sciences of the United States of America, 105, 19520–19525.

    Article  PubMed  CAS  Google Scholar 

  • Wegner, F., Hartig, W., Bringmann, A., Grosche, J., Wohlfarth, K., Zuschratter, W., & Bruckner, G. (2003). Diffuse perineuronal nets and modified pyramidal cells immunoreactive for glutamate and the GABA(A) receptor alpha1 subunit form a unique entity in rat cerebral cortex. Experimental Neurology, 184, 705–714.

    Article  PubMed  CAS  Google Scholar 

  • Werle, M. J., & VanSaun, M. (2003). Activity dependent removal of agrin from synaptic basal lamina by matrix metalloproteinase 3. Journal of Neurocytology, 32, 905–913.

    Article  PubMed  CAS  Google Scholar 

  • Wiesel, T. N., & Hubel, D. H. (1963). Effects of visual deprivation on morphology and physiology of cells in the cats lateral geniculate body. Journal of Neurophysiology, 26, 978–993.

    PubMed  CAS  Google Scholar 

  • Xu, D., Hopf, C., Reddy, R., Cho, R. W., Guo, L., Lanahan, A., Petralia, R. S., Wenthold, R. J., O’Brien, R. J., & Worley, P. (2003). Narp and NP1 form heterocomplexes that function in developmental and activity-dependent synaptic plasticity. Neuron, 39, 513–528.

    Article  PubMed  CAS  Google Scholar 

  • Xu, J., Xiao, N., & Xia, J. (2010). Thrombospondin 1 accelerates synaptogenesis in hippocampal neurons through neuroligin 1. Nature Neuroscience, 13, 22–24.

    Article  PubMed  CAS  Google Scholar 

  • Yamada, H., Fredette, B., Shitara, K., Hagihara, K., Miura, R., Ranscht, B., Stallcup, W. B., & Yamaguchi, Y. (1997). The brain chondroitin sulfate proteoglycan brevican associates with astrocytes ensheathing cerebellar glomeruli and inhibits neurite outgrowth from granule neurons. Journal of Neuroscience, 17, 7784–7795.

    PubMed  CAS  Google Scholar 

  • Yamaguchi, Y. (2000). Lecticans: Organizers of the brain extracellular matrix. Cellular and Molecular Life Sciences, 57, 276–289.

    Article  PubMed  CAS  Google Scholar 

  • Zhou, X. H., Brakebusch, C., Matthies, H. et al. (2001). Neurocan is dispensable for brain development. Mol Cell Biol, 21, 5970–5978.

    Google Scholar 

  • Zimmermann, D. R., & Dours-Zimmermann, M. T. (2008). Extracellular matrix of the central nervous system: From neglect to challenge. Histochemistry and Cell Biology, 130, 635–653.

    Article  PubMed  CAS  Google Scholar 

  • Zuber, B., Nikonenko, I., Klauser, P., Muller, D., & Dubochet, J. (2005). The mammalian central nervous synaptic cleft contains a high density of periodically organized complexes. Proceedings of the National Academy of Sciences of the United States of America, 102, 19192–19197.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Work in the authors’ laboratory was supported by the Deutsche Forschungsgemeinschaft (GU 230/5-3) and the German Federal Minster for Education and Science BMBF via EraNET NEURON (Moddifsyn).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Renato Frischknecht .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag/WIen

About this chapter

Cite this chapter

Frischknecht, R., Gundelfinger, E.D. (2012). The Brain’s Extracellular Matrix and Its Role in Synaptic Plasticity. In: Kreutz, M., Sala, C. (eds) Synaptic Plasticity. Advances in Experimental Medicine and Biology, vol 970. Springer, Vienna. https://doi.org/10.1007/978-3-7091-0932-8_7

Download citation

Publish with us

Policies and ethics