Skip to main content

The Synaptic Pathology of Drug Addiction

  • Chapter
  • First Online:
Synaptic Plasticity

Abstract

A hallmark of drug addiction is the uncontrollable desire to consume drugs at the expense of severe negative consequences. Moreover, addicts that successfully refrain from drug use have a high vulnerability to relapse even after months or years of abstinence. In this chapter, we will discuss the current understanding of drug-induced neuroplasticity within the mesocorticolimbic brain system that contributes to the development of addiction and the persistence of relapse to drug seeking. I particular, we will focus at animal models that can be translated to human addiction. Although dopaminergic transmission is important for the acute effects of drug intake, the long-lived behavioral abnormalities associated with addiction are thought to arise from pathological plasticity in glutamatergic neurotransmission. The nature of changes in excitatory synaptic plasticity depends on several factors, including the type of drug, the brain area, and the time-point studied in the transition of drug exposure to withdrawal and relapse to drug seeking. Identification of drug-induced neuroplasticity is crucial to understand how molecular and cellular adaptations contribute to the end stage of addiction, which from a clinical perspective, is a time-point where pharmacotherapy may be most effectively employed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abraham, W. C. (2008). Metaplasticity: Tuning synapses and networks for plasticity. Nature Reviews Neuroscience, 9, 387.

    CAS  PubMed  Google Scholar 

  • Aguilar, M. A., Rodriguez-Arias, M., & Minarro, J. (2009). Neurobiological mechanisms of the reinstatement of drug-conditioned place preference. Brain Research Reviews, 59, 253–277.

    PubMed  Google Scholar 

  • Anderson, S. M., Bari, A. A., & Pierce, R. C. (2003). Administration of the D1-like dopamine receptor antagonist SCH-23390 into the medial nucleus accumbens shell attenuates cocaine priming-induced reinstatement of drug-seeking behavior in rats. Psychopharmacology (Berlin), 168, 132–138.

    CAS  Google Scholar 

  • Anderson, S. M., Famous, K. R., Sadri-Vakili, G., Kumaresan, V., Schmidt, H. D., Bass, C. E., Terwilliger, E. F., Cha, J. H., & Pierce, R. C. (2008). CaMKII: A biochemical bridge linking accumbens dopamine and glutamate systems in cocaine seeking. Nature Neuroscience, 11, 344–353.

    CAS  PubMed  Google Scholar 

  • Anderson, S. M., Schmidt, H. D., & Pierce, R. C. (2006). Administration of the D2 dopamine receptor antagonist sulpiride into the shell, but not the core, of the nucleus accumbens attenuates cocaine priming-induced reinstatement of drug seeking. Neuropsychopharmacology, 31, 1452–1461.

    CAS  PubMed  Google Scholar 

  • Argilli, E., Sibley, D. R., Malenka, R. C., England, P. M., & Bonci, A. (2008). Mechanism and time course of cocaine-induced long-term potentiation in the ventral tegmental area. The Journal of Neuroscience, 28, 9092–9100.

    CAS  PubMed  Google Scholar 

  • Bachtell, R. K., Whisler, K., Karanian, D., & Self, D. W. (2005). Effects of intra-nucleus accumbens shell administration of dopamine agonists and antagonists on cocaine-taking and cocaine-seeking behaviors in the rat. Psychopharmacology (Berlin), 183, 41–53.

    CAS  Google Scholar 

  • Baker, D. A., McFarland, K., Lake, R. W., Shen, H., Tang, X. C., Toda, S., & Kalivas, P. W. (2003). Neuroadaptations in cystine-glutamate exchange underlie cocaine relapse. Nature Neuroscience, 6, 743–749.

    CAS  PubMed  Google Scholar 

  • Bardo, M. T., & Bevins, R. A. (2000). Conditioned place preference: What does it add to our preclinical understanding of drug reward? Psychopharmacology (Berlin), 153, 31–43.

    CAS  Google Scholar 

  • Bell, K., & Kalivas, P. W. (1996). Context-specific cross-sensitization between systemic cocaine and intra-accumbens AMPA infusion in the rat. Psychopharmacology (Berlin), 127, 377–383.

    CAS  Google Scholar 

  • Bellone, C., & Luscher, C. (2006). Cocaine triggered AMPA receptor redistribution is reversed in vivo by mGluR-dependent long-term depression. Nature Neuroscience, 9, 636–641.

    CAS  PubMed  Google Scholar 

  • Ben-Shahar, O., Obara, I., Ary, A. W., Ma, N., Mangiardi, M. A., Medina, R. L., & Szumlinski, K. K. (2009). Extended daily access to cocaine results in distinct alterations in Homer 1b/c and NMDA receptor subunit expression within the medial prefrontal cortex. Synapse, 63, 598–609.

    CAS  PubMed  Google Scholar 

  • Borgland, S. L., Malenka, R. C., & Bonci, A. (2004). Acute and chronic cocaine-induced potentiation of synaptic strength in the ventral tegmental area: Electrophysiological and behavioral correlates in individual rats. The Journal of Neuroscience, 24, 7482–7490.

    CAS  PubMed  Google Scholar 

  • Bossert, J. M., Gray, S. M., Lu, L., & Shaham, Y. (2006). Activation of group II metabotropic glutamate receptors in the nucleus accumbens shell attenuates context-induced relapse to heroin seeking. Neuropsychopharmacology, 31, 2197–2209.

    CAS  PubMed  Google Scholar 

  • Bossert, J. M., Poles, G. C., Wihbey, K. A., Koya, E., & Shaham, Y. (2007). Differential effects of blockade of dopamine D1-family receptors in nucleus accumbens core or shell on reinstatement of heroin seeking induced by contextual and discrete cues. The Journal of Neuroscience, 27, 12655–12663.

    CAS  PubMed  Google Scholar 

  • Bossert, J. M., Stern, A. L., Theberge, F. R., Cifani, C., Koya, E., Hope, B. T., & Shaham, Y. (2011). Ventral medial prefrontal cortex neuronal ensembles mediate context-induced relapse to heroin. Nature Neuroscience, 14, 420–422.

    CAS  PubMed  Google Scholar 

  • Boudreau, A. C., Ferrario, C. R., Glucksman, M. J., & Wolf, M. E. (2009). Signaling pathway adaptations and novel protein kinase A substrates related to behavioral sensitization to cocaine. Journal of Neurochemistry, 110, 363–377.

    CAS  PubMed  Google Scholar 

  • Boudreau, A. C., Reimers, J. M., Milovanovic, M., & Wolf, M. E. (2007). Cell surface AMPA receptors in the rat nucleus accumbens increase during cocaine withdrawal but internalize after cocaine challenge in association with altered activation of mitogen-activated protein kinases. The Journal of Neuroscience, 27, 10621–10635.

    CAS  PubMed  Google Scholar 

  • Boudreau, A. C., & Wolf, M. E. (2005). Behavioral sensitization to cocaine is associated with increased AMPA receptor surface expression in the nucleus accumbens. The Journal of Neuroscience, 25, 9144–9151.

    CAS  PubMed  Google Scholar 

  • Brebner, K., Wong, T. P., Liu, L., Liu, Y., Campsall, P., Gray, S., Phelps, L., Phillips, A. G., & Wang, Y. T. (2005). Nucleus accumbens long-term depression and the expression of behavioral sensitization. Science, 310, 1340–1343.

    CAS  PubMed  Google Scholar 

  • Buffalari, D. M., & See, R. E. (2010). Amygdala mechanisms of Pavlovian psychostimulant conditioning and relapse. Current Topics in Behavioral Neurosciences, 3, 73–99.

    PubMed  Google Scholar 

  • Chen, B. T., Bowers, M. S., Martin, M., Hopf, F. W., Guillory, A. M., Carelli, R. M., Chou, J. K., & Bonci, A. (2008). Cocaine but not natural reward self-administration nor passive cocaine infusion produces persistent LTP in the VTA. Neuron, 59, 288–297.

    CAS  PubMed  Google Scholar 

  • Childress, A. R., Mozley, P. D., McElgin, W., Fitzgerald, J., Reivich, M., & O’Brien, C. P. (1999). Limbic activation during cue-induced cocaine craving. The American Journal of Psychiatry, 156, 11–18.

    CAS  PubMed  Google Scholar 

  • Churchill, L., Swanson, C. J., Urbina, M., & Kalivas, P. W. (1999). Repeated cocaine alters glutamate receptor subunit levels in the nucleus accumbens and ventral tegmental area of rats that develop behavioral sensitization. Journal of Neurochemistry, 72, 2397–2403.

    CAS  PubMed  Google Scholar 

  • Conrad, K. L., Tseng, K. Y., Uejima, J. L., Reimers, J. M., Heng, L. J., Shaham, Y., Marinelli, M., & Wolf, M. E. (2008). Formation of accumbens GluR2-lacking AMPA receptors mediates incubation of cocaine craving. Nature, 454, 118–121.

    CAS  PubMed  Google Scholar 

  • Cornish, J. L., Duffy, P., & Kalivas, P. W. (1999). A role for nucleus accumbens glutamate transmission in the relapse to cocaine-seeking behavior. Neuroscience, 93, 1359–1367.

    CAS  PubMed  Google Scholar 

  • Cornish, J. L., & Kalivas, P. W. (2000). Glutamate transmission in the nucleus accumbens mediates relapse in cocaine addiction. The Journal of Neuroscience, 20, RC89.

    CAS  PubMed  Google Scholar 

  • Crombag, H. S., Bossert, J. M., Koya, E., & Shaham, Y. (2008). Review context-induced relapse to drug seeking: A review. Philosophical Transactions of the Royal Society B: Biological Sciences, 363, 3233–3243.

    Google Scholar 

  • Di Chiara, G., & North, R. A. (1992). Neurobiology of opiate abuse. Trends in Pharmacological Sciences, 13, 185–193.

    PubMed  Google Scholar 

  • Di Ciano, P., & Everitt, B. J. (2001). Dissociable effects of antagonism of NMDA and AMPA/KA receptors in the nucleus accumbens core and shell on cocaine-seeking behavior. Neuropsychopharmacology, 25, 341–360.

    PubMed  Google Scholar 

  • Engblom, D., Bilbao, A., Sanchis-Segura, C., Dahan, L., Perreau-Lenz, S., Balland, B., Parkitna, J. R., Lujan, R., Halbout, B., Mameli, M., Parlato, R., Sprengel, R., Luscher, C., Schutz, G., & Spanagel, R. (2008). Glutamate receptors on dopamine neurons control the persistence of cocaine seeking. Neuron, 59, 497–508.

    CAS  PubMed  Google Scholar 

  • Epstein, D. H., Preston, K. L., Stewart, J., & Shaham, Y. (2006). Toward a model of drug relapse: An assessment of the validity of the reinstatement procedure. Psychopharmacology (Berlin), 189, 1–16.

    CAS  Google Scholar 

  • Erb, S., Shaham, Y., & Stewart, J. (1998). The role of corticotropin-releasing factor and corticosterone in stress- and cocaine-induced relapse to cocaine seeking in rats. The Journal of Neuroscience, 18, 5529–5536.

    CAS  PubMed  Google Scholar 

  • Famous, K. R., Kumaresan, V., Sadri-Vakili, G., Schmidt, H. D., Mierke, D. F., Cha, J. H., & Pierce, R. C. (2008). Phosphorylation-dependent trafficking of GluR2-containing AMPA receptors in the nucleus accumbens plays a critical role in the reinstatement of cocaine seeking. The Journal of Neuroscience, 28, 11061–11070.

    CAS  PubMed  Google Scholar 

  • Fitzgerald, L. W., Ortiz, J., Hamedani, A. G., & Nestler, E. J. (1996). Drugs of abuse and stress increase the expression of GluR1 and NMDAR1 glutamate receptor subunits in the rat ventral tegmental area: Common adaptations among cross-sensitizing agents. The Journal of Neuroscience, 16, 274–282.

    CAS  PubMed  Google Scholar 

  • Fu, Y., Pollandt, S., Liu, J., Krishnan, B., Genzer, K., Orozco-Cabal, L., Gallagher, J. P., & Shinnick-Gallagher, P. (2007). Long-term potentiation (LTP) in the central amygdala (CeA) is enhanced after prolonged withdrawal from chronic cocaine and requires CRF1 receptors. Journal of Neurophysiology, 97, 937–941.

    CAS  PubMed  Google Scholar 

  • Fuchs, R. A., Evans, K. A., Ledford, C. C., Parker, M. P., Case, J. M., Mehta, R. H., & See, R. E. (2005). The role of the dorsomedial prefrontal cortex, basolateral amygdala, and dorsal hippocampus in contextual reinstatement of cocaine seeking in rats. Neuropsychopharmacology, 30, 296–309.

    CAS  PubMed  Google Scholar 

  • Fuchs, R. A., Ramirez, D. R., & Bell, G. H. (2008). Nucleus accumbens shell and core involvement in drug context-induced reinstatement of cocaine seeking in rats. Psychopharmacology (Berlin), 200, 545–556.

    CAS  Google Scholar 

  • Fuchs, R. A., & See, R. E. (2002). Basolateral amygdala inactivation abolishes conditioned stimulus- and heroin-induced reinstatement of extinguished heroin-seeking behavior in rats. Psychopharmacology (Berlin), 160, 425–433.

    CAS  Google Scholar 

  • Gabriele, A., & See, R. E. (2010). Reversible inactivation of the basolateral amygdala, but not the dorsolateral caudate putamen, attenuates consolidation of cocaine-cue associative learning in a reinstatement model of drug-seeking. European Journal of Neuroscience, 32, 1024–1029.

    PubMed  Google Scholar 

  • Gardner, E. L. (2000). What we have learned about addiction from animal models of drug self-administration. The American Journal on Addictions, 9, 285–313.

    CAS  PubMed  Google Scholar 

  • Geisler, S., & Wise, R. A. (2008). Functional implications of glutamatergic projections to the ventral tegmental area. Reviews in the Neurosciences, 19, 227–244.

    PubMed  Google Scholar 

  • Gerdjikov, T. V., Ross, G. M., & Beninger, R. J. (2004). Place preference induced by nucleus accumbens amphetamine is impaired by antagonists of ERK or p38 MAP kinases in rats. Behavioral Neuroscience, 118, 740–750.

    CAS  PubMed  Google Scholar 

  • Ghasemzadeh, M. B., Nelson, L. C., Lu, X. Y., & Kalivas, P. W. (1999). Neuroadaptations in ionotropic and metabotropic glutamate receptor mRNA produced by cocaine treatment. Journal of Neurochemistry, 72, 157–165.

    CAS  PubMed  Google Scholar 

  • Goeders, N. E. (2003). The impact of stress on addiction. European Neuropsychopharmacology, 13, 435–441.

    PubMed  Google Scholar 

  • Goldstein, R. Z., & Volkow, N. D. (2002). Drug addiction and its underlying neurobiological basis: Neuroimaging evidence for the involvement of the frontal cortex. The American Journal of Psychiatry, 159, 1642–1652.

    PubMed  Google Scholar 

  • Goussakov, I., Chartoff, E. H., Tsvetkov, E., Gerety, L. P., Meloni, E. G., Carlezon, W. A., Jr., & Bolshakov, V. Y. (2006). LTP in the lateral amygdala during cocaine withdrawal. European Journal of Neuroscience, 23, 239–250.

    PubMed  Google Scholar 

  • Gysling, K., & Wang, R. Y. (1983). Morphine-induced activation of A10 dopamine neurons in the rat. Brain Research, 277, 119–127.

    CAS  PubMed  Google Scholar 

  • Heidbreder, C. A., & Groenewegen, H. J. (2003). The medial prefrontal cortex in the rat: Evidence for a dorso-ventral distinction based upon functional and anatomical characteristics. Neurosci Biobehav Rev, 27, 555–579.

    PubMed  Google Scholar 

  • Hyman, S. E. (2005). Addiction: A disease of learning and memory. The American Journal of Psychiatry, 162, 1414–1422.

    PubMed  Google Scholar 

  • Hyman, S. E., Malenka, R. C., & Nestler, E. J. (2006). Neural mechanisms of addiction: The role of reward-related learning and memory. Annual Review of Neuroscience, 29, 565–598.

    CAS  PubMed  Google Scholar 

  • Isaac, J. T., Ashby, M., & McBain, C. J. (2007). The role of the GluR2 subunit in AMPA receptor function and synaptic plasticity. Neuron, 54, 859–871.

    CAS  PubMed  Google Scholar 

  • Kalivas, P. W. (2009). The glutamate homeostasis hypothesis of addiction. Nature Reviews Neuroscience, 10, 561–572.

    CAS  PubMed  Google Scholar 

  • Kalivas, P. W., & Volkow, N. D. (2005). The neural basis of addiction: A pathology of motivation and choice. The American Journal of Psychiatry, 162, 1403–1413.

    PubMed  Google Scholar 

  • Kalivas, P. W., Volkow, N., & Seamans, J. (2005). Unmanageable motivation in addiction: A pathology in prefrontal-accumbens glutamate transmission. Neuron, 45, 647–650.

    CAS  PubMed  Google Scholar 

  • Kasanetz, F., Deroche-Gamonet, V., Berson, N., Balado, E., Lafourcade, M., Manzoni, O., & Piazza, P. V. (2010). Transition to addiction is associated with a persistent impairment in synaptic plasticity. Science, 328, 1709–1712.

    CAS  PubMed  Google Scholar 

  • Knackstedt, L. A., LaRowe, S., Mardikian, P., Malcolm, R., Upadhyaya, H., Hedden, S., Markou, A., & Kalivas, P. W. (2009a). The role of cystine-glutamate exchange in nicotine dependence in rats and humans. Biological Psychiatry, 65, 841–845.

    CAS  PubMed  Google Scholar 

  • Knackstedt, L. A., Melendez, R. I., & Kalivas, P. W. (2010). Ceftriaxone restores glutamate homeostasis and prevents relapse to cocaine seeking. Biological Psychiatry, 67, 81–84.

    Google Scholar 

  • Kourrich, S., Rothwell, P. E., Klug, J. R., & Thomas, M. J. (2007). Cocaine experience controls bidirectional synaptic plasticity in the nucleus accumbens. The Journal of Neuroscience, 27, 7921–7928.

    CAS  PubMed  Google Scholar 

  • Koya, E., Uejima, J. L., Wihbey, K. A., Bossert, J. M., Hope, B. T., & Shaham, Y. (2009). Role of ventral medial prefrontal cortex in incubation of cocaine craving. Neuropharmacology, 56(Suppl 1), 177–185.

    CAS  PubMed  Google Scholar 

  • Krishnan, B., Centeno, M., Pollandt, S., Fu, Y., Genzer, K., Liu, J., Gallagher, J. P., & Shinnick-Gallagher, P. (2010). Dopamine receptor mechanisms mediate corticotropin-releasing factor-induced long-term potentiation in the rat amygdala following cocaine withdrawal. European Journal of Neuroscience, 31, 1027–1042.

    PubMed  Google Scholar 

  • Kruzich, P. J., Congleton, K. M., & See, R. E. (2001). Conditioned reinstatement of drug-seeking behavior with a discrete compound stimulus classically conditioned with intravenous cocaine. Behavioral Neuroscience, 115, 1086–1092.

    CAS  PubMed  Google Scholar 

  • Kruzich, P. J., & See, R. E. (2001). Differential contributions of the basolateral and central amygdala in the acquisition and expression of conditioned relapse to cocaine-seeking behavior. The Journal of Neuroscience, 21, RC155.

    CAS  PubMed  Google Scholar 

  • LaLumiere, R. T., & Kalivas, P. W. (2008). Glutamate release in the nucleus accumbens core is necessary for heroin seeking. The Journal of Neuroscience, 28, 3170–3177.

    CAS  PubMed  Google Scholar 

  • LaRowe, S. D., Myrick, H., Hedden, S., Mardikian, P., Saladin, M., McRae, A., Brady, K., Kalivas, P. W., & Malcolm, R. (2007). Is cocaine desire reduced by N-acetylcysteine? The American Journal of Psychiatry, 164, 1115–1117.

    PubMed  Google Scholar 

  • Lobo, M. K., Covington, H. E., 3rd, Chaudhury, D., Friedman, A. K., Sun, H., Damez-Werno, D., Dietz, D. M., Zaman, S., Koo, J. W., Kennedy, P. J., Mouzon, E., Mogri, M., Neve, R. L., Deisseroth, K., Han, M. H., & Nestler, E. J. (2010). Cell type-specific loss of BDNF signaling mimics optogenetic control of cocaine reward. Science, 330, 385–390.

    CAS  PubMed  Google Scholar 

  • Lu, H., Cheng, P. L., Lim, B. K., Khoshnevisrad, N., & Poo, M. M. (2010). Elevated BDNF after cocaine withdrawal facilitates LTP in medial prefrontal cortex by suppressing GABA inhibition. Neuron, 67, 821–833.

    CAS  PubMed  Google Scholar 

  • Lu, L., Dempsey, J., Shaham, Y., & Hope, B. T. (2005a). Differential long-term neuroadaptations of glutamate receptors in the basolateral and central amygdala after withdrawal from cocaine self-administration in rats. Journal of Neurochemistry, 94, 161–168.

    CAS  PubMed  Google Scholar 

  • Lu, L., Grimm, J. W., Shaham, Y., & Hope, B. T. (2003). Molecular neuroadaptations in the accumbens and ventral tegmental area during the first 90 days of forced abstinence from cocaine self-administration in rats. Journal of Neurochemistry, 85, 1604–1613.

    CAS  PubMed  Google Scholar 

  • Lu, L., Hope, B. T., Dempsey, J., Liu, S. Y., Bossert, J. M., & Shaham, Y. (2005b). Central amygdala ERK signaling pathway is critical to incubation of cocaine craving. Nature Neuroscience, 8, 212–219.

    CAS  PubMed  Google Scholar 

  • Mameli, M., Balland, B., Lujan, R., & Luscher, C. (2007). Rapid synthesis and synaptic insertion of GluR2 for mGluR-LTD in the ventral tegmental area. Science, 317, 530–533.

    CAS  PubMed  Google Scholar 

  • Mameli, M., Halbout, B., Creton, C., Engblom, D., Parkitna, J. R., Spanagel, R., & Luscher, C. (2009). Cocaine-evoked synaptic plasticity: Persistence in the VTA triggers adaptations in the NAc. Nature Neuroscience, 12, 1036–1041.

    CAS  PubMed  Google Scholar 

  • Mardikian, P. N., LaRowe, S. D., Hedden, S., Kalivas, P. W., & Malcolm, R. J. (2007). An open-label trial of N-acetylcysteine for the treatment of cocaine dependence: A pilot study. Progress in Neuro-Psychopharmacology & Biological Psychiatry, 31, 389–394.

    CAS  Google Scholar 

  • Martin, M., Chen, B. T., Hopf, F. W., Bowers, M. S., & Bonci, A. (2006). Cocaine self-administration selectively abolishes LTD in the core of the nucleus accumbens. Nature Neuroscience, 9, 868–869.

    CAS  PubMed  Google Scholar 

  • McFarland, K., Davidge, S. B., Lapish, C. C., & Kalivas, P. W. (2004). Limbic and motor circuitry underlying footshock-induced reinstatement of cocaine-seeking behavior. The Journal of Neuroscience, 24, 1551–1560.

    CAS  PubMed  Google Scholar 

  • McFarland, K., & Kalivas, P. W. (2001). The circuitry mediating cocaine-induced reinstatement of drug-seeking behavior. The Journal of Neuroscience, 21, 8655–8663.

    CAS  PubMed  Google Scholar 

  • McFarland, K., Lapish, C. C., & Kalivas, P. W. (2003). Prefrontal glutamate release into the core of the nucleus accumbens mediates cocaine-induced reinstatement of drug-seeking behavior. The Journal of Neuroscience, 23, 3531–3537.

    CAS  PubMed  Google Scholar 

  • McLaughlin, J., & See, R. E. (2003). Selective inactivation of the dorsomedial prefrontal cortex and the basolateral amygdala attenuates conditioned-cued reinstatement of extinguished cocaine-seeking behavior in rats. Psychopharmacology (Berlin), 168, 57–65.

    CAS  Google Scholar 

  • Meredith, G. E., Baldo, B. A., Andrezjewski, M. E., & Kelley, A. E. (2008). The structural basis for mapping behavior onto the ventral striatum and its subdivisions. Brain Structure & Function, 213, 17–27.

    Google Scholar 

  • Mereu, G., Yoon, K. W., Boi, V., Gessa, G. L., Naes, L., & Westfall, T. C. (1987). Preferential stimulation of ventral tegmental area dopaminergic neurons by nicotine. European Journal of Pharmacology, 141, 395–399.

    CAS  PubMed  Google Scholar 

  • Miguens, M., Del Olmo, N., Higuera-Matas, A., Torres, I., Garcia-Lecumberri, C., & Ambrosio, E. (2008). Glutamate and aspartate levels in the nucleus accumbens during cocaine self-administration and extinction: A time course microdialysis study. Psychopharmacology (Berlin), 196, 303–313.

    CAS  Google Scholar 

  • Millan, E. Z., Marchant, N. J., & McNally, G. P. (2011). Extinction of drug seeking. Behavioural Brain Research, 217, 454–462.

    CAS  PubMed  Google Scholar 

  • Miller, C. A., & Marshall, J. F. (2005). Molecular substrates for retrieval and reconsolidation of cocaine-associated contextual memory. Neuron, 47, 873–884.

    CAS  PubMed  Google Scholar 

  • Moran, M. M., McFarland, K., Melendez, R. I., Kalivas, P. W., & Seamans, J. K. (2005). Cystine/glutamate exchange regulates metabotropic glutamate receptor presynaptic inhibition of excitatory transmission and vulnerability to cocaine seeking. The Journal of Neuroscience, 25, 6389–6393.

    CAS  PubMed  Google Scholar 

  • Moussawi, K., Pacchioni, A., Moran, M., Olive, M. F., Gass, J. T., Lavin, A., & Kalivas, P. W. (2009). N-Acetylcysteine reverses cocaine-induced metaplasticity. Nature Neuroscience, 12, 182–189.

    CAS  PubMed  Google Scholar 

  • Moussawi, K., Zhou, W., Shen, H., Reichel, C. M., See, R. E., Carr, D. B., & Kalivas, P. W. (2011). Reversing cocaine-induced synaptic potentiation provides enduring protection from relapse. Proceedings of the National Academy of Sciences of the United States of America, 108, 385–390.

    PubMed  Google Scholar 

  • O’Brien, C. P., Ehrman, R. N., & Ternes, J. W. (1986). Classical conditioning in human opioid dependence. Academic Press, Orlando.

    Google Scholar 

  • Park, W. K., Jey, A. R., Anderson, S. M., Spealman, R. D., Rowlett, J. K., & Pierce, R. C. (2002). Cocaine administered into the medial prefrontal cortex reinstates cocaine-seeking behavior by increasing AMPA receptor-mediated glutamate transmission in the nucleus accumbens. The Journal of Neuroscience, 22, 2916–2925.

    CAS  PubMed  Google Scholar 

  • Peters, J., & Kalivas, P. W. (2006). The group II metabotropic glutamate receptor agonist, LY379268, inhibits both cocaine- and food-seeking behavior in rats. Psychopharmacology (Berlin), 186, 143–149.

    CAS  Google Scholar 

  • Peters, J., Kalivas, P. W., & Quirk, G. J. (2009). Extinction circuits for fear and addiction overlap in prefrontal cortex. Learning & Memory, 16, 279–288.

    Google Scholar 

  • Peters, J., LaLumiere, R. T., & Kalivas, P. W. (2008). Infralimbic prefrontal cortex is responsible for inhibiting cocaine seeking in extinguished rats. The Journal of Neuroscience, 28, 6046–6053.

    CAS  PubMed  Google Scholar 

  • Pierce, R. C., Bell, K., Duffy, P., & Kalivas, P. W. (1996). Repeated cocaine augments excitatory amino acid transmission in the nucleus accumbens only in rats having developed behavioral sensitization. The Journal of Neuroscience, 16, 1550–1560.

    CAS  PubMed  Google Scholar 

  • Ping, A., Xi, J., Prasad, B. M., Wang, M. H., & Kruzich, P. J. (2008). Contributions of nucleus accumbens core and shell GluR1 containing AMPA receptors in AMPA- and cocaine-primed reinstatement of cocaine-seeking behavior. Brain Research, 1215, 173–182.

    CAS  PubMed  Google Scholar 

  • Pollandt, S., Liu, J., Orozco-Cabal, L., Grigoriadis, D. E., Vale, W. W., Gallagher, J. P., & Shinnick-Gallagher, P. (2006). Cocaine withdrawal enhances long-term potentiation induced by corticotropin-releasing factor at central amygdala glutamatergic synapses via CRF, NMDA receptors and PKA. European Journal of Neuroscience, 24, 1733–1743.

    PubMed  Google Scholar 

  • Robinson, T. E., & Berridge, K. C. (1993). The neural basis of drug craving: An incentive-sensitization theory of addiction. Brain Research: Brain Research Reviews, 18, 247–291.

    CAS  PubMed  Google Scholar 

  • Rogers, J. L., Ghee, S., & See, R. E. (2008). The neural circuitry underlying reinstatement of heroin-seeking behavior in an animal model of relapse. Neuroscience, 151, 579–588.

    CAS  PubMed  Google Scholar 

  • Saal, D., Dong, Y., Bonci, A., & Malenka, R. C. (2003). Drugs of abuse and stress trigger a common synaptic adaptation in dopamine neurons. Neuron, 37, 577–582.

    CAS  PubMed  Google Scholar 

  • Sarnyai, Z., Hohn, J., Szabo, G., & Penke, B. (1992). Critical role of endogenous corticotropin-releasing factor (CRF) in the mediation of the behavioral action of cocaine in rats. Life Sciences, 51, 2019–2024.

    CAS  PubMed  Google Scholar 

  • Schenk, S., Horger, B. A., Peltier, R., & Shelton, K. (1991). Supersensitivity to the reinforcing effects of cocaine following 6-hydroxydopamine lesions to the medial prefrontal cortex in rats. Brain Research, 543, 227–235.

    CAS  PubMed  Google Scholar 

  • Schmidt, H. D., & Pierce, R. C. (2006). Cooperative activation of D1-like and D2-like dopamine receptors in the nucleus accumbens shell is required for the reinstatement of cocaine-seeking behavior in the rat. Neuroscience, 142, 451–461.

    CAS  PubMed  Google Scholar 

  • Schramm-Sapyta, N. L., Olsen, C. M., & Winder, D. G. (2006). Cocaine self-administration reduces excitatory responses in the mouse nucleus accumbens shell. Neuropsychopharmacology, 31, 1444–1451.

    CAS  PubMed  Google Scholar 

  • Schultz, W. (1998). Predictive reward signal of dopamine neurons. Journal of Neurophysiology, 80, 1–27.

    CAS  PubMed  Google Scholar 

  • Schultz, W. (2007). Multiple dopamine functions at different time courses. Annual Review of Neuroscience, 30, 259–288.

    CAS  PubMed  Google Scholar 

  • Sesack, S. R., Deutch, A. Y., Roth, R. H., & Bunney, B. S. (1989). Topographical organization of the efferent projections of the medial prefrontal cortex in the rat: An anterograde tract-tracing study with Phaseolus vulgaris leucoagglutinin. J Comp Neurol, 290, 213–242.

    CAS  PubMed  Google Scholar 

  • Sesack, S. R., Carr, D. B., Omelchenko, N., & Pinto, A. (2003). Anatomical substrates for glutamate-dopamine interactions: Evidence for specificity of connections and extrasynaptic actions. Annals of the New York Academy of Sciences, 1003, 36–52.

    CAS  PubMed  Google Scholar 

  • Shaham, Y., Erb, S., Leung, S., Buczek, Y., & Stewart, J. (1998). CP-154,526, a selective, non-peptide antagonist of the corticotropin-releasing factor1 receptor attenuates stress-induced relapse to drug seeking in cocaine- and heroin-trained rats. Psychopharmacology (Berlin), 137, 184–190.

    CAS  Google Scholar 

  • Stewart, J., & Badiani, A. (1993). Tolerance and sensitization to the behavioral effects of drugs. Behavioural Pharmacology, 4, 289–312.

    CAS  PubMed  Google Scholar 

  • Stuber, G. D., Klanker, M., de Ridder, B., Bowers, M. S., Joosten, R. N., Feenstra, M. G., & Bonci, A. (2008). Reward-predictive cues enhance excitatory synaptic strength onto midbrain dopamine neurons. Science, 321, 1690–1692.

    CAS  PubMed  Google Scholar 

  • Sutton, M. A., Schmidt, E. F., Choi, K. H., Schad, C. A., Whisler, K., Simmons, D., Karanian, D. A., Monteggia, L. M., Neve, R. L., & Self, D. W. (2003). Extinction-induced upregulation in AMPA receptors reduces cocaine-seeking behaviour. Nature, 421, 70–75.

    CAS  PubMed  Google Scholar 

  • Tang, W., Wesley, M., Freeman, W. M., Liang, B., & Hemby, S. E. (2004). Alterations in ionotropic glutamate receptor subunits during binge cocaine self-administration and withdrawal in rats. Journal of Neurochemistry, 89, 1021–1033.

    CAS  PubMed  Google Scholar 

  • Thomas, M. J., Beurrier, C., Bonci, A., & Malenka, R. C. (2001). Long-term depression in the nucleus accumbens: A neural correlate of behavioral sensitization to cocaine. Nature Neuroscience, 4, 1217–1223.

    CAS  PubMed  Google Scholar 

  • Tsai, H. C., Zhang, F., Adamantidis, A., Stuber, G. D., Bonci, A., de Lecea, L., & Deisseroth, K. (2009). Phasic firing in dopaminergic neurons is sufficient for behavioral conditioning. Science, 324, 1080–1084.

    CAS  PubMed  Google Scholar 

  • Tye, K. M., Stuber, G. D., de Ridder, B., Bonci, A., & Janak, P. H. (2008). Rapid strengthening of thalamo-amygdala synapses mediates cue-reward learning. Nature, 453, 1253–1257.

    CAS  PubMed  Google Scholar 

  • Tzschentke, T. M. (2001). Pharmacology and behavioral pharmacology of the mesocortical dopamine system. Progress in Neurobiology, 63, 241–320.

    CAS  PubMed  Google Scholar 

  • Ungless, M. A., Whistler, J. L., Malenka, R. C., & Bonci, A. (2001). Single cocaine exposure in vivo induces long-term potentiation in dopamine neurons. Nature, 411, 583–587.

    CAS  PubMed  Google Scholar 

  • Van den Oever, M. C., Goriounova, N. A., Li, K. W., Van der Schors, R. C., Binnekade, R., Schoffelmeer, A. N., Mansvelder, H. D., Smit, A. B., Spijker, S., & De Vries, T. J. (2008). Prefrontal cortex AMPA receptor plasticity is crucial for cue-induced relapse to heroin-seeking. Nature Neuroscience, 11, 1053–1058.

    PubMed  Google Scholar 

  • Van den Oever, M. C., Lubbers, B. R., Goriounova, N. A., Li, K. W., Van der Schors, R. C., Loos, M., Riga, D., Wiskerke, J., Binnekade, R., Stegeman, M., Schoffelmeer, A. N., Mansvelder, H. D., Smit, A. B., De Vries, T. J., & Spijker, S. (2010a). Extracellular matrix plasticity and GABAergic inhibition of prefrontal cortex pyramidal cells facilitates relapse to heroin seeking. Neuropsychopharmacology, 35, 2120–2133.

    PubMed  Google Scholar 

  • Van den Oever, M. C., Spijker, S., Smit, A. B., & De Vries, T. J. (2010b). Prefrontal cortex plasticity mechanisms in drug seeking and relapse. Neuroscience and Biobehavioral Reviews, 35, 276–284.

    PubMed  Google Scholar 

  • Van der Staay, F. J., Arndt, S. S., & Nordquist, R. E. (2009). Evaluation of animal models of neurobehavioral disorders. Behavioral and Brain Functions, 5, 11.

    PubMed  Google Scholar 

  • Vanderschuren, L. J., Tjon, G. H., Nestby, P., Mulder, A. H., Schoffelmeer, A. N., & De Vries, T. J. (1997). Morphine-induced long-term sensitization to the locomotor effects of morphine and amphetamine depends on the temporal pattern of the pretreatment regimen. Psychopharmacology (Berlin), 131, 115–122.

    CAS  Google Scholar 

  • Vezina, P. (2004). Sensitization of midbrain dopamine neuron reactivity and the self-administration of psychomotor stimulant drugs. Neuroscience and Biobehavioral Reviews, 27, 827–839.

    CAS  PubMed  Google Scholar 

  • Voorn, P., Vanderschuren, L. J., Groenewegen, H. J., Robbins, T. W., & Pennartz, C. M. (2004). Putting a spin on the dorsal-ventral divide of the striatum. Trends in Neurosciences, 27, 468–474.

    CAS  PubMed  Google Scholar 

  • Weissenborn, R., Robbins, T. W., & Everitt, B. J. (1997). Effects of medial prefrontal or anterior cingulate cortex lesions on responding for cocaine under fixed-ratio and second-order schedules of reinforcement in rats. Psychopharmacology (Berlin), 134, 242–257.

    CAS  Google Scholar 

  • White, F. J. (1996). Synaptic regulation of mesocorticolimbic dopamine neurons. Annual Review of Neuroscience, 19, 405–436.

    CAS  PubMed  Google Scholar 

  • White, F. J., Hu, X. T., Zhang, X. F., & Wolf, M. E. (1995). Repeated administration of cocaine or amphetamine alters neuronal responses to glutamate in the mesoaccumbens dopamine system. Journal of Pharmacology and Experimental Therapeutics, 273, 445–454.

    CAS  PubMed  Google Scholar 

  • Williams, J. M., & Galli, A. (2006). The dopamine transporter: A vigilant border control for psychostimulant action. Handbook of Experimental Pharmacology, 175, 215–232.

    CAS  PubMed  Google Scholar 

  • Witten, I. B., Lin, S. C., Brodsky, M., Prakash, R., Diester, I., Anikeeva, P., Gradinaru, V., Ramakrishnan, C., & Deisseroth, K. (2010). Cholinergic interneurons control local circuit activity and cocaine conditioning. Science, 330, 1677–1681.

    CAS  PubMed  Google Scholar 

  • Xi, Z. X., Gilbert, J., Campos, A. C., Kline, N., Ashby, C. R., Jr., Hagan, J. J., Heidbreder, C. A., & Gardner, E. L. (2004). Blockade of mesolimbic dopamine D3 receptors inhibits stress-induced reinstatement of cocaine-seeking in rats. Psychopharmacology (Berlin), 176, 57–65.

    CAS  Google Scholar 

  • Zahm, D. S. (1999). Functional-anatomical implications of the nucleus accumbens core and shell subterritories. Annals of the New York Academy of Sciences, 877, 113–128.

    CAS  PubMed  Google Scholar 

  • Zhou, W., & Kalivas, P. W. (2008). N-acetylcysteine reduces extinction responding and induces enduring reductions in cue- and heroin-induced drug-seeking. Biological Psychiatry, 63, 338–340.

    CAS  PubMed  Google Scholar 

  • Zhu, J. J., Qin, Y., Zhao, M., Van Aelst, L., & Malinow, R. (2002). Ras and Rap control AMPA receptor trafficking during synaptic plasticity. Cell, 110, 443–455.

    CAS  PubMed  Google Scholar 

  • Zweifel, L. S., Argilli, E., Bonci, A., & Palmiter, R. D. (2008). Role of NMDA receptors in dopamine neurons for plasticity and addictive behaviors. Neuron, 59, 486–496.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to August B. Smit .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag/WIen

About this chapter

Cite this chapter

Van den Oever, M.C., Spijker, S., Smit, A.B. (2012). The Synaptic Pathology of Drug Addiction. In: Kreutz, M., Sala, C. (eds) Synaptic Plasticity. Advances in Experimental Medicine and Biology, vol 970. Springer, Vienna. https://doi.org/10.1007/978-3-7091-0932-8_21

Download citation

Publish with us

Policies and ethics