Skip to main content

Gliotransmission and the Tripartite Synapse

  • Chapter
  • First Online:
Synaptic Plasticity

Part of the book series: Advances in Experimental Medicine and Biology ((volume 970))

Abstract

In the last years, the classical view of glial cells (in particular of astrocytes) as a simple supportive cell for neurons has been replaced by a new vision in which glial cells are active elements of the brain. Such a new vision is based on the existence of a bidirectional communication between astrocytes and neurons at synaptic level. Indeed, perisynaptic processes of astrocytes express active G-protein-coupled receptors that are able (1) to sense neurotransmitters released from the synapse during synaptic activity, (2) to increase cytosolic levels of calcium, and (3) to stimulate the release of gliotransmitters that in turn can interact with the synaptic elements. The mechanism(s) by which astrocytes can release gliotransmitter has been extensively studied during the last years. Many evidences have suggested that a fraction of astrocytes in situ release neuroactive substances both with calcium-dependent and calcium-independent mechanism(s); whether these mechanisms coexist and under what physiological or pathological conditions they occur, it remains unclear. However, the calcium-dependent exocytotic vesicular release has received considerable attention due to its potential to occur under physiological conditions via a finely regulated way. By releasing gliotransmitters in millisecond time scale with a specific vesicular apparatus, astrocytes can integrate and process synaptic information and control or modulate synaptic transmission and plasticity.

Please note the erratum to this chapter at the end of the book.

An erratum to this chapter can be found at 10.1007/978-3-7091-0932-8_26

An erratum to this chapter can be found at http://dx.doi.org/10.1007/978-3-7091-0932-8_26

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agulhon, C., Fiacco, T. A., & McCarthy, K. D. (2010). Hippocampal short- and long-term plasticity are not modulated by astrocyte Ca2+ signaling. Science, 327, 1250–1254.

    PubMed  CAS  Google Scholar 

  • Agulhon, C., Petravicz, J., McMullen, A. B., Sweger, E. J., Minton, S. K., Taves, S. R., Casper, K. B., Fiacco, T. A., & McCarthy, K. D. (2008). What is the role of astrocyte calcium in neurophysiology? Neuron, 59, 932–946.

    PubMed  CAS  Google Scholar 

  • Allen, J. W., Shanker, G., & Aschner, M. (2001). Methylmercury inhibits the in vitro uptake of the glutathione precursor, cystine, in astrocytes, but not in neurons. Brain Research, 894, 131–140.

    PubMed  CAS  Google Scholar 

  • Andrei, C., Margiocco, P., Poggi, A., Lotti, L. V., Torrisi, M. R., & Rubartelli, A. (2004). Phospholipases C and A2 control lysosome-mediated IL-1 beta secretion: Implications for inflammatory processes. Proceedings of the National Academy of Sciences of the United States of America, 101, 9745–9750.

    PubMed  CAS  Google Scholar 

  • Angulo, M. C., Kozlov, A. S., Charpak, S., & Audinat, E. (2004). Glutamate released from glial cells synchronizes neuronal activity in the hippocampus. Journal of Neuroscience, 24, 6920–6927.

    PubMed  CAS  Google Scholar 

  • Araque, A., Carmignoto, G., & Haydon, P. G. (2001). Dynamic signaling between astrocytes and neurons. Annual Review of Physiology, 63, 795–813.

    PubMed  CAS  Google Scholar 

  • Araque, A., MartĂ­n, E. D., Perea, G., Arellano, J. I., & Buño, W. (2002). Synaptically released acetylcholine evokes Ca2+ elevations in astrocytes in hippocampal slices. Journal of Neuroscience, 22, 2443–2450.

    PubMed  CAS  Google Scholar 

  • Araque, A., Parpura, V., Sanzgiri, R. P., & Haydon, P. G. (1999). Tripartite synapses: Glia, the unacknowledged partner. Trends in Neurosciences, 22, 208–215.

    PubMed  CAS  Google Scholar 

  • Attwell, D., Barbour, B., & Szatkowski, M. (1993). Nonvesicular release of neurotransmitter. Neuron, 11, 401–407.

    PubMed  CAS  Google Scholar 

  • Bailey, S. L., Carpentier, P. A., McMahon, E. J., Begolka, W. S., & Miller, S. D. (2006). Innate and adaptive immune responses of the central nervous system. Critical Reviews in Immunology, 26, 149–188.

    PubMed  CAS  Google Scholar 

  • Bains, J. S., & Oliet, S. H. (2007). Glia: They make your memories stick! Trends in Neurosciences, 30, 417–424.

    PubMed  CAS  Google Scholar 

  • Baker, D. A., Xi, Z. X., Shen, H., Swanson, C. J., & Kalivas, P. W. (2002). The origin and neuronal function of in vivo nonsynaptic glutamate. The Journal of Neuroscience, 22, 9134–9141.

    PubMed  CAS  Google Scholar 

  • Ballas, N., & Mandel, G. (2005). The many faces of REST oversee epigenetic programming of neuronal genes. Current Opinion in Neurobiology, 15, 500–506.

    PubMed  CAS  Google Scholar 

  • Barres, B. A. (2008). The mystery and magic of glia: A perspective on their roles in health and disease. Neuron, 60, 430–440.

    PubMed  CAS  Google Scholar 

  • Beattie, E. C., Stellwagen, D., Morishita, W., Bresnahan, J. C., Ha, B. K., Von Zastrow, M., Beattie, M. S., & Malenka, R. C. (2002). Control of synaptic strength by glial TNFalpha. Science, 295, 2282–2285.

    PubMed  CAS  Google Scholar 

  • Bender, A. S., Reichelt, W., & Norenberg, M. D. (2000). Characterization of cystine uptake in cultured astrocytes. Neurochemistry International, 37, 269–276.

    PubMed  CAS  Google Scholar 

  • Bergami, M., Santi, S., Formaggio, E., Cagnoli, C., Verderio, C., Blum, R., Berninger, B., Matteoli, M., & Canossa, M. (2008). Uptake and recycling of pro-BDNF for transmitter-induced secretion by cortical astrocytes. The Journal of Cell Biology, 183, 213–221.

    PubMed  CAS  Google Scholar 

  • Bergersen, L. H., & Gundersen, V. (2009). Morphological evidence for vesicular glutamate release from astrocytes. Neuroscience, 158, 260–265.

    PubMed  CAS  Google Scholar 

  • Bezzi, P., Carmignoto, G., Pasti, L., Vesce, S., Rossi, D., Rizzini, B. L., Pozzan, T., & Volterra, A. (1998). Prostaglandins stimulate calcium-dependent glutamate release in astrocytes. Nature, 391, 281–285.

    PubMed  CAS  Google Scholar 

  • Bezzi, P., Domercq, M., Brambilla, L., Galli, R., Schols, D., De Clercq, E., Vescovi, A., Bagetta, G., Kollias, G., Meldolesi, J., & Volterra, A. (2001a). CXCR4-activated astrocyte glutamate release via TNFalpha: Amplification by microglia triggers neurotoxicity. Nature Neuroscience, 4, 702–710.

    PubMed  CAS  Google Scholar 

  • Bezzi, P., Domercq, M., Vesce, S., & Volterra, A. (2001b). Neuron-astrocyte cross-talk during synaptic transmission: Physiological and neuropathological implications. Progress in Brain Research, 132, 255–265.

    PubMed  CAS  Google Scholar 

  • Bezzi, P., Gundersen, V., Galbete, J. L., Seifert, G., Steinhauser, C., Pilati, E., & Volterra, A. (2004). Astrocytes contain a vesicular compartment that is competent for regulated exocytosis of glutamate. Nature Neuroscience, 7, 613–620.

    PubMed  CAS  Google Scholar 

  • Bezzi, P., & Volterra, A. (2001). A neuron-glia signalling network in the active brain. Current Opinion in Neurobiology, 11, 387–394.

    PubMed  CAS  Google Scholar 

  • Blum, A. E., Joseph, S. M., Przybylski, R. J., & Dubyak, G. R. (2008). Rho-family GTPases modulate Ca(2+)-dependent ATP release from astrocytes. American Journal of Physiology: Cell Physiology, 295, C231–C241.

    PubMed  CAS  Google Scholar 

  • Boulanger, L. M. (2009). Immune proteins in brain development and synaptic plasticity. Neuron, 64, 93–109.

    PubMed  CAS  Google Scholar 

  • Bowser, D. N., & Khakh, B. S. (2007). Vesicular ATP is the predominant cause of intercellular calcium waves in astrocytes. Journal of General Physiology, 129, 485–491.

    PubMed  CAS  Google Scholar 

  • Burzomato, V., Frugier, G., PĂ©rez-Otaño, I., Kittler, J. T., & Attwell, D. (2010). The receptor subunits generating NMDA receptor mediated currents in oligodendrocytes. Journal of Physiology, 588, 3403–3414.

    PubMed  CAS  Google Scholar 

  • Bushong, E. A., Martone, M. E., Jones, Y. Z., & Ellisman, M. H. (2005). Protoplasmic astrocytes in CA1 stratum radiatum occupy separate anatomical domains. The Journal of Neuroscience, 22, 183–192.

    Google Scholar 

  • Cahoy, J. D., Emery, B., Kaushal, A., Foo, L. C., Zamanian, J. L., Christopherson, K. S., Xing, Y., Lubischer, J. L., Krieg, P. A., Krupenko, S. A., Thompson, W. J., & Barres, B. A. (2008). A transcriptome database for astrocytes, neurons, and oligodendrocytes: A new resource for understanding brain development and function. The Journal of Neuroscience, 28, 264–278.

    PubMed  CAS  Google Scholar 

  • Calegari, F., Coco, S., Taverna, E., Bassetti, M., Verderio, C., Corradi, N., Matteoli, M., & Rosa, P. (1999). A regulated secretory pathway in cultured hippocampal astrocytes. The Journal of Biological Chemistry, 274, 22539–22547.

    PubMed  CAS  Google Scholar 

  • Calì, C., Marchaland, J., Spagnuolo, P., Gremion, J., & Bezzi, P. (2009). Regulated exocytosis from astrocytes physiological and pathological related aspects. International Review of Neurobiology, 85, 261–293.

    PubMed  Google Scholar 

  • Carpentier, P. A., & Palmer, T. D. (2009). Immune influence on adult neural stem cell regulation and function. Neuron, 64, 79–92.

    PubMed  CAS  Google Scholar 

  • Coco, S., Calegari, F., Pravettoni, E., Pozzi, D., Taverna, E., Rosa, P., Matteoli, M., & Verderio, C. (2003). Storage and release of ATP from astrocytes in culture. The Journal of Biological Chemistry, 278, 1354–1362.

    PubMed  CAS  Google Scholar 

  • Cotrina, M. L., Lin, J. H., Alves-Rodrigues, A., Liu, S., Li, J., Azmi-Ghadimi, H., Kang, J., Naus, C. C., & Nedergaard, M. (1998). Connexins regulate calcium signaling by controlling ATP release. Proceedings of the National Academy of Sciences of the United States of America, 95, 15735–15740.

    PubMed  CAS  Google Scholar 

  • Crippa, D., Schenk, U., Francolini, M., Rosa, P., Verderio, C., Zonta, M., Pozzan, T., Matteoli, M., & Carmignoto, G. (2006). Synaptobrevin2-expressing vesicles in rat astrocytes: Insights into molecular characterization, dynamics and exocytosis. The Journal of Physiology, 570, 567–582.

    PubMed  CAS  Google Scholar 

  • D’Alessandro, R., Klajn, A., Stucchi, L., Podini, P., Malosio, M. L., & Meldolesi, J. (2008). Expression of the neurosecretory process in PC12 cells is governed by REST. Journal of Neurochemistry, 105, 1369–1383.

    PubMed  Google Scholar 

  • Dalby, N. O., & Mody, I. (2003). Activation of NMDA receptors in rat dentate gyrus granule cells by spontaneous and evoked transmitter release. Journal of Neurophysiology, 90, 786–797.

    PubMed  CAS  Google Scholar 

  • Davalos, D., Grutzendler, J., Yang, G., Kim, J. V., Zuo, Y., Jung, S., Littman, D. R., Dustin, M. L., & Gan, W. B. (2005). ATP mediates rapid microglial response to local brain injury in vivo. Nature Neuroscience, 8, 752–758.

    PubMed  CAS  Google Scholar 

  • Di Castro MA., Chuquet J., Liaudet N., Bhaukaurally K., Santello M., Bouvier D., Tiret P., Volterra (2011). Local Ca2+ detection and modulation of synaptic release by astrocytes. Nature Neuroscience, 14, 1276–84.

    Google Scholar 

  • Domercq, M., Brambilla, L., Pilati, E., Marchaland, J., Volterra, A., & Bezzi, P. (2006). P2Y1 receptor-evoked glutamate exocytosis from astrocytes: Control by tumor necrosis factor-alpha and prostaglandins. The Journal of Biological Chemistry, 281, 30684–30696.

    PubMed  CAS  Google Scholar 

  • Duan, S., Anderson, C. M., Keung, E. C., Chen, Y., Chen, Y., & Swanson, R. A. (2003). P2X7 receptor-mediated release of excitatory amino acids from astrocytes. The Journal of Neuroscience, 23, 1320–1328.

    PubMed  CAS  Google Scholar 

  • Fellin, T., Pascual, O., Gobbo, S., Pozzan, T., Haydon, P. G., & Carmignoto, G. (2004). Neuronal synchrony mediated by astrocytic glutamate through activation of extrasynaptic NMDA receptors. Neuron, 43, 729–743.

    PubMed  CAS  Google Scholar 

  • Ferro-Novick, S., & Novick, P. (1993). The role of GTP-binding proteins in transport along the exocytic pathway. Annual Review of Cell Biology, 9, 575–599.

    PubMed  CAS  Google Scholar 

  • Fiacco, T. A., Agulhon, C., Taves, S. R., Petravicz, J., Casper, K. B., Dong, X., Chen, J., & McCarthy, K. D. (2007). Selective stimulation of astrocyte calcium in situ does not affect neuronal excitatory synaptic activity. Neuron, 54, 611–626.

    PubMed  CAS  Google Scholar 

  • Fiacco, T. A., & McCarthy, K. D. (2004). Intracellular astrocyte calcium waves in situ increase the frequency of spontaneous AMPA receptor currents in CA1 pyramidal neurons. The Journal of Neuroscience, 24, 722–732.

    PubMed  CAS  Google Scholar 

  • Fiacco, T. A., & McCarthy, K. D. (2006). Astrocyte calcium elevations: Properties, propagation, and effects on brain signaling. Glia, 54, 676–690.

    PubMed  Google Scholar 

  • Fields, R. D., & Stevens, B. (2000). ATP: An extracellular signaling molecule between neurons and glia. Trends in Neurosciences, 23, 625–633.

    PubMed  CAS  Google Scholar 

  • Fujita, T., Tozaki-Saitoh, H., & Inoue, K. (2009). P2Y1 receptor signaling enhances neuroprotection by astrocytes against oxidative stress via IL-6 release in hippocampal cultures. Glia, 57, 244–257.

    PubMed  Google Scholar 

  • Geppert, M., & SĂĽdhof, T. C. (1998). RAB3 and synaptotagmin: The yin and yang of synaptic membrane fusion. Annual Review of Neuroscience, 21, 75–95.

    PubMed  CAS  Google Scholar 

  • Gitler, D., Takagishi, Y., Feng, J., Ren, Y., Rodriguiz, R. M., Wetsel, W. C., Greengard, P., & Augustine, G. J. (2004). Different presynaptic roles of synapsins at excitatory and inhibitory synapses. Journal of Neuroscience, 24, 11368–11380.

    PubMed  CAS  Google Scholar 

  • Grosche, J., Matyash, V., Möller, T., Verkhratsky, A., Reichenbach, A., & Kettenmann, H. (1999). Microdomains for neuron-glia interaction: Parallel fiber signaling to Bergmann glial cells. Nature Neuroscience, 2, 139–143.

    PubMed  CAS  Google Scholar 

  • Halassa, M. M., Fellin, T., Takano, H., Dong, J. H., & Haydon, P. G. (2007). Synaptic islands defined by the territory of a single astrocyte. The Journal of Neuroscience, 27, 6473–6477.

    PubMed  CAS  Google Scholar 

  • Halassa, M. M., & Haydon, P. G. (2010). Integrated brain circuits: Astrocytic networks modulate neuronal activity and behavior. Annual Review of Physiology, 72, 335–355.

    PubMed  CAS  Google Scholar 

  • Hamilton, N. B., & Attwell, D. (2010). Do astrocytes really exocytose neurotransmitters? Nature Reviews Neuroscience, 11, 227–238.

    PubMed  CAS  Google Scholar 

  • Harata, N. C., Aravanis, A. M., & Tsien, R. W. (2006). Kiss-and-run and full-collapse fusion as modes of exo-endocytosis in neurosecretion. Journal of Neurochemistry, 97, 1546–1570.

    PubMed  CAS  Google Scholar 

  • Haskew-Layton, R. E., Rudkouskaya, A., Jin, Y., Feustel, P. J., Kimelberg, H. K., & Mongin, A. A. (2008). Two distinct modes of hypoosmotic medium-induced release of excitatory amino acids and taurine in the rat brain in vivo. PLoS One, 3, e3543.

    PubMed  Google Scholar 

  • Henneberger, C., Papouin, T., Oliet, S. H., & Rusakov, D. A. (2010). Long-term potentiation depends on release of D-serine from astrocytes. Nature, 463, 232–236.

    PubMed  CAS  Google Scholar 

  • Henneberger, C., & Rusakov, D. A. (2010). Synaptic plasticity and Ca2+ signalling in astrocytes. Neuron Glia Biology, 13, 1–6.

    Google Scholar 

  • Honsek, S. D., Walz, C., Kafitz, K. W., & Rose, C. R. (2010). Astrocyte calcium signals at Schaffer collateral to CA1 pyramidal cell synapses correlate with the number of activated synapses but not with synaptic strength. Hippocampus. doi:10.1002/hipo.20843.

  • Hussy, N., Deleuze, C., DesarmĂ©nien, M. G., & Moos, F. C. (2000). Osmotic regulation of neuronal activity: A new role for taurine and glial cells in a hypothalamic neuroendocrine structure. Progress in Neurobiology, 62, 113–134.

    PubMed  CAS  Google Scholar 

  • Imeri, L., & Opp, M. R. (2009). How (and why) the immune system makes us sleep. Nature Reviews Neuroscience, 10, 199–210.

    PubMed  CAS  Google Scholar 

  • Jaiswal, J. K., Fix, M., Takano, T., Nedergaard, M., & Simon, S. M. (2007). Resolving vesicle fusion from lysis to monitor calcium-triggered lysosomal exocytosis in astrocytes. Proceedings of the National Academy of Sciences of the United States of America, 104, 14151–14156.

    PubMed  CAS  Google Scholar 

  • Jourdain, P., Bergersen, L. H., Bhaukaurally, K., Bezzi, P., Santello, M., Domercq, M., Matute, C., Tonello, F., Gundersen, V., & Volterra, A. (2007). Glutamate exocytosis from astrocytes controls synaptic strength. Nature Neuroscience, 10, 331–339.

    PubMed  CAS  Google Scholar 

  • Kaneko, M., Stellwagen, D., Malenka, R. C., & Stryker, M. P. (2008). Tumor necrosis factor-alpha mediates one component of competitive, experience-dependent plasticity in developing visual cortex. Neuron, 58, 673–680.

    PubMed  CAS  Google Scholar 

  • Kang, J., Jiang, L., Goldman, S. A., & Nedergaard, M. (1998). Astrocyte-mediated potentiation of inhibitory synaptic transmission. Nature Neuroscience, 1, 683–692.

    PubMed  CAS  Google Scholar 

  • Kang, J., Kang, N., Lovatt, D., Torres, A., Zhao, Z., Lin, J., & Nedergaard, M. (2008). Connexin 43 hemichannels are permeable to ATP. Journal of Neuroscience, 28, 4702–4711.

    PubMed  CAS  Google Scholar 

  • Kimelberg, H. K., Goderie, S. K., Higman, S., Pang, S., & Waniewski, R. A. (1990). Swelling-induced release of glutamate, aspartate, and taurine from astrocyte cultures. The Journal of Neuroscience, 10, 1583–1591.

    PubMed  CAS  Google Scholar 

  • Kreft, M., Stenovec, M., Rupnik, M., Grilc, S., Krzan, M., Potokar, M., Pangrsic, T., Haydon, P. G., & Zorec, R. (2004). Properties of Ca(2+)-dependent exocytosis in cultured astrocytes. Glia, 46, 437–445.

    PubMed  Google Scholar 

  • Kukley, M., Barden, J. A., Steinhäuser, C., & Jabs, R. (2001). Distribution of P2X receptors on astrocytes in juvenile rat hippocampus. Glia, 36, 11–21.

    PubMed  CAS  Google Scholar 

  • Kupfermann, I. (1991). Functional studies of cotransmission. Physiological Reviews, 71, 683–732.

    PubMed  CAS  Google Scholar 

  • Lang, T., & Jahn, R. (2008). Core proteins of the secretory machinery. Handbook of Experimental Pharmacology, 184, 107–127.

    PubMed  CAS  Google Scholar 

  • Larsen, R. S., Corlew, R. J., Henson, M. A., Roberts, A. C., Mishina, M., Watanabe, M., Lipton, S. A., Nakanishi, N., PĂ©rez-Otaño, I., Weinberg, R. J., & Philpot, B. D. (2011). NR3A-containing NMDARs promote neurotransmitter release and spike timing-dependent plasticity. Nature Neuroscience, 14, 338–344.

    PubMed  CAS  Google Scholar 

  • Lee, C. J., Mannaioni, G., Yuan, H., Woo, D. H., Gingrich, M. B., & Traynelis, S. F. (2007). Astrocytic control of synaptic NMDA receptors. The Journal of Physiology, 581, 1057–1081.

    PubMed  CAS  Google Scholar 

  • Li, Y. H., & Han, T. Z. (2007). Glycine binding sites of presynaptic NMDA receptors may tonically regulate glutamate release in the rat visual cortex. Journal of Neurophysiology, 97, 817–823.

    PubMed  CAS  Google Scholar 

  • Li, P., Li, Y. H., & Han, T. Z. (2009). NR2A-containing NMDA receptors are required for LTP induction in rat dorsolateral striatum in vitro. Brain Research, 1274, 40–46.

    PubMed  CAS  Google Scholar 

  • Li, D., Ropert, N., Koulakoff, A., Giaume, C., & Oheim, M. (2008). Lysosomes are the major vesicular compartment undergoing Ca2+-regulated exocytosis from cortical astrocytes. Journal of Neuroscience, 28, 7648–7658.

    PubMed  CAS  Google Scholar 

  • Liu, H. T., Sabirov, R. Z., & Okada, Y. (2008). Oxygen-glucose deprivation induces ATP release via maxi-anion channels in astrocytes. Purinergic Signal, 4, 147–154.

    PubMed  CAS  Google Scholar 

  • Liu, Q. S., Xu, Q., Arcuino, G., Kang, J., & Nedergaard, M. (2004a). Astrocyte-mediated activation of neuronal kainate receptors. Proceedings of the National Academy of Sciences of the United States of America, 101, 3172–3177.

    PubMed  CAS  Google Scholar 

  • Liu, Q. S., Xu, Q., Kang, J., & Nedergaard, M. (2004b). Astrocyte activation of presynaptic metabotropic glutamate receptors modulates hippocampal inhibitory synaptic transmission. Neuron Glia Biology, 1, 307–316.

    PubMed  CAS  Google Scholar 

  • Longuemare, M. C., & Swanson, R. A. (1997). Net glutamate release from astrocytes is not induced by extracellular potassium concentrations attainable in brain. Journal of Neurochemistry, 69, 879–882.

    PubMed  CAS  Google Scholar 

  • Lovatt, D., Sonnewald, U., Waagepetersen, H. S., Schousboe, A., He, W., Lin, J. H., Han, X., Takano, T., Wang, S., Sim, F. J., Goldman, S. A., & Nedergaard, M. (2007). The transcriptome and metabolic gene signature of protoplasmic astrocytes in the adult murine cortex. The Journal of Neuroscience, 27, 12255–12266.

    PubMed  CAS  Google Scholar 

  • Lukashev, D., Ohta, A., Apasov, S., Chen, J. F., & Sitkovsky, M. (2004). Cutting edge: Physiologic attenuation of proinflammatory transcription by the Gs protein-coupled A2A adenosine receptor in vivo. Journal of Immunology, 173, 21–24.

    CAS  Google Scholar 

  • Malarkey, E. B., & Parpura, V. (2008). Mechanisms of glutamate release from astrocytes. Neurochemistry International, 52, 142–154.

    PubMed  CAS  Google Scholar 

  • Malosio, M. L., Giordano, T., Laslop, A., & Meldolesi, J. (2004). Dense-core granules: A specific hallmark of the neuronal/neurosecretory cell phenotype. Journal of Cell Science, 117, 743–749.

    PubMed  CAS  Google Scholar 

  • Marchaland, J., Cali, C., Voglmaier, S. M., Li, H., Regazzi, R., Edwards, R. H., & Bezzi, P. (2008). Fast sub-plasma membrane Ca2+ transients control exo-endocytosis of SLMVs in astrocytes. Journal of Neuroscience, 28, 9122–9132.

    PubMed  CAS  Google Scholar 

  • Martin, D. L. (1992). Synthesis and release of neuroactive substances by glial cells. Glia, 5, 81–94.

    PubMed  CAS  Google Scholar 

  • Martineau, M., Galli, T., Baux, G., & Mothet, J. P. (2008). Confocal imaging and tracking of the exocytotic routes for D-serine-mediated gliotransmission. Glia, 56, 1271–1284.

    PubMed  Google Scholar 

  • McCoy, M. K., & Tansey, M. G. (2008). TNF signaling inhibition in the CNS: Implications for normal brain function and neurodegenerative disease. Journal of Neuroinflammation, 5, 45.

    PubMed  Google Scholar 

  • McNeil, P. L., & Kirchhausen, T. (2005). An emergency response team for membrane repair. Nature Reviews: Molecular Cell Biology, 6, 499–505.

    PubMed  CAS  Google Scholar 

  • Medhora, M. M. (2000). Retinoic acid upregulates beta(1)-integrin in vascular smooth muscle cells and alters adhesion to fibronectin. American Journal of Physiology: Heart and Circulatory Physiology, 279, H382–H387.

    PubMed  CAS  Google Scholar 

  • Meldolesi, J., Chieregatti, E., & Luisa, M. M. (2004). Requirements for the identification of dense-core granules. Trends in Cell Biology, 14, 13–19.

    PubMed  CAS  Google Scholar 

  • Miyoshi, J., & Takai, Y. (2004). Dual role of DENN/MADD (Rab3GEP) in neurotransmission and neuroprotection. Trends in Molecular Medicine, 10, 476–480.

    PubMed  CAS  Google Scholar 

  • Mongin, A. A., & Kimelberg, H. K. (2002). ATP potently modulates anion channel-mediated excitatory amino acid release from cultured astrocytes. American Journal of Physiology: Cell Physiology, 283, C569–C578.

    PubMed  CAS  Google Scholar 

  • Montana, V., Ni, Y., Sunjara, V., Hua, X., & Parpura, V. (2004). Vesicular glutamate transporter-dependent glutamate release from astrocytes. Journal of Neuroscience, 24, 2633–2642.

    PubMed  CAS  Google Scholar 

  • Moran, M. M., McFarland, K., Melendez, R. I., Kalivas, P. W., & Seamans, J. K. (2005). Cystine/glutamate exchange regulates metabotropic glutamate receptor presynaptic inhibition of excitatory transmission and vulnerability to cocaine seeking. Journal of Neuroscience, 25, 6389–6393.

    PubMed  CAS  Google Scholar 

  • Moran, M. M., Melendez, R., Baker, D., Kalivas, P. W., & Seamans, J. K. (2003). Cystine/glutamate antiporter regulation of vesicular glutamate release. Annals of the New York Academy of Sciences, 1003, 445–447.

    PubMed  Google Scholar 

  • Mothet, J. P., Pollegioni, L., Ouanounou, G., Martineau, M., Fossier, P., & Baux, G. (2005). Glutamate receptor activation triggers a calcium-dependent and SNARE protein-dependent release of the gliotransmitter D-serine. Proceedings of the National Academy of Sciences of the United States of America, 102, 5606–5611.

    PubMed  CAS  Google Scholar 

  • Mothet, J. P., Rouaud, E., Sinet, P. M., Potier, B., Jouvenceau, A., Dutar, P., Videau, C., Epelbaum, J., & Billard, J. M. (2006). A critical role for the glial-derived neuromodulator D-serine in the age-related deficits of cellular mechanisms of learning and memory. Aging Cell, 5, 267–274.

    PubMed  CAS  Google Scholar 

  • Navarrete, M., & Araque, A. (2008). Endocannabinoids mediate neuron-astrocyte communication. Neuron, 57, 883–893.

    PubMed  CAS  Google Scholar 

  • Navarrete, M., & Araque, A. (2010). Endocannabinoids potentiate synaptic transmission through stimulation of astrocytes. Neuron, 68, 113–126.

    PubMed  CAS  Google Scholar 

  • Nedergaard, M., RodrĂ­guez, J. J., & Verkhratsky, A. (2010). Glial calcium and diseases of the nervous system. Cell Calcium, 47, 140–149.

    PubMed  CAS  Google Scholar 

  • Nimmerjahn, A., Kirchhoff, F., & Helmchen, F. (2005). Resting microglial cells are highly dynamic surveillants of brain parenchyma in vivo. Science, 308, 1314–1318.

    PubMed  CAS  Google Scholar 

  • Nimmerjahn, A., Mukamel, E. A., & Schnitzer, M. J. (2009). Motor behavior activates Bergmann glial networks. Neuron, 62, 400–412.

    PubMed  CAS  Google Scholar 

  • Pascual, O., Casper, K. B., Kubera, C., Zhang, J., Revilla-Sanchez, R., Sul, J. Y., Takano, H., Moss, S. J., McCarthy, K., & Haydon, P. G. (2005). Astrocytic purinergic signaling coordinates synaptic networks. Science, 310, 113–116.

    PubMed  CAS  Google Scholar 

  • Pascual, M., Climent, E., & Guerri, C. (2001). BDNF induces glutamate release in cerebrocortical nerve terminals and in cortical astrocytes. Neuroreport, 12, 2673–2677.

    PubMed  CAS  Google Scholar 

  • Pasti, L., Volterra, A., Pozzan, T., & Carmignoto, G. (1997). Intracellular calcium oscillations in astrocytes: A highly plastic, bidirectional form of communication between neurons and astrocytes in situ. Journal of Neuroscience, 17, 7817–7830.

    PubMed  CAS  Google Scholar 

  • Pasti, L., Zonta, M., Pozzan, T., Vicini, S., & Carmignoto, G. (2001). Cytosolic calcium oscillations in astrocytes may regulate exocytotic release of glutamate. Journal of Neuroscience, 21, 477–484.

    PubMed  CAS  Google Scholar 

  • Perea, G., & Araque, A. (2005). Properties of synaptically evoked astrocyte calcium signal reveal synaptic information processing by astrocytes. Journal of Neuroscience, 25, 2192–2203.

    PubMed  CAS  Google Scholar 

  • Perea, G., & Araque, A. (2007). Astrocytes potentiate transmitter release at single hippocampal synapses. Science, 317, 1083–1086.

    PubMed  CAS  Google Scholar 

  • Perea, G., Navarrete, M., & Araque, A. (2009). Tripartite synapses: Astrocytes process and control synaptic information. Trends in Neurosciences, 32, 421–431.

    PubMed  CAS  Google Scholar 

  • Petravicz, J., Fiacco, T. A., & McCarthy, K. D. (2008). Loss of IP3 receptor-dependent Ca2+ increases in hippocampal astrocytes does not affect baseline CA1 pyramidal neuron synaptic activity. Journal of Neuroscience, 28, 4967–4973.

    PubMed  CAS  Google Scholar 

  • Petzold, G. C., Albeanu, D. F., Sato, T. F., & Murthy, V. N. (2008). Coupling of neural activity to blood flow in olfactory glomeruli is mediated by astrocytic pathways. Neuron, 58, 897–910.

    PubMed  CAS  Google Scholar 

  • Pickel, V. M., Chan, J., Veznedaroglu, E., & Milner, T. A. (1995). Neuropeptide Y and dynorphin-immunoreactive large dense-core vesicles are strategically localized for presynaptic modulation in the hippocampal formation and substantia nigra. Synapse, 19, 160–169.

    PubMed  CAS  Google Scholar 

  • Pisoni, R. L., & Thoene, J. G. (1989). Detection and characterization of a nucleoside transport system in human fibroblast lysosomes. The Journal of Biological Chemistry, 264, 4850–4856.

    PubMed  CAS  Google Scholar 

  • Porter, J. T., & McCarthy, K. D. (1996). Hippocampal astrocytes in situ respond to glutamate released from synaptic terminals. Journal of Neuroscience, 16, 5073–5081.

    PubMed  CAS  Google Scholar 

  • Prada, I., Marchaland, M., Podini, P., Magrassi, L., D’Alessandro, R., Bezzi, P., & Meldolesi, J. (2011). REST/NRSF governs the expression of dense-core vesicle gliosecretion in astrocytes. Journal of Cell Biology, 193, 537–549.

    PubMed  CAS  Google Scholar 

  • Ramamoorthy, P., & Whim, M. D. (2008). Trafficking and fusion of neuropeptide Y-containing dense-core granules in astrocytes. Journal of Neuroscience, 28, 13815–13827.

    PubMed  CAS  Google Scholar 

  • Ramon y Cajal, S. (1995). Histology of the nervous system, translated by N.Swanson and L.Swanson, Oxford University Press

    Google Scholar 

  • Re, D. B., Nafia, I., Melon, C., Shimamoto, K., Kerkerian-Le Goff, L., & Had-Aissouni, L. (2006). Glutamate leakage from a compartmentalized intracellular metabolic pool and activation of the lipoxygenase pathway mediate oxidative astrocyte death by reversed glutamate transport. Glia, 54, 47–57.

    PubMed  Google Scholar 

  • Rosa, P., & Gerdes, H. H. (1994). The granin protein family: Markers for neuroendocrine cells and tools for the diagnosis of neuroendocrine tumors. Journal of Endocrinological Investigation, 17, 207–225.

    PubMed  CAS  Google Scholar 

  • Rossi, D., Brambilla, L., Valori, C. F., Crugnola, A., Giaccone, G., Capobianco, R., Mangieri, M., Kingston, A. E., Bloc, A., Bezzi, P., & Volterra, A. (2005). Defective tumor necrosis factor-alpha-dependent control of astrocyte glutamate release in a transgenic mouse model of Alzheimer disease. The Journal of Biological Chemistry, 280, 42088–42096.

    PubMed  CAS  Google Scholar 

  • Rossi, D. J., Oshima, T., & Attwell, D. (2000). Glutamate release in severe brain ischaemia is mainly by reversed uptake. Nature, 403, 316–321.

    PubMed  CAS  Google Scholar 

  • Sala, C., Roussignol, G., Meldolesi, J., & Fagni, L. (2005). Key role of the postsynaptic density scaffold proteins Shank and Homer in the functional architecture of Ca2+ homeostasis at dendritic spines in hippocampal neurons. Journal of Neuroscience, 25, 4587–4592.

    PubMed  CAS  Google Scholar 

  • Santello, M., Bezzi, P., & Volterra, A. (2011). TNFa controls glutamatergic gliotransmission in the hippocampal dentate gyrus. Neuron, 69, 988–1001.

    PubMed  CAS  Google Scholar 

  • Santello, M., & Volterra, A. (2009). Synaptic modulation by astrocytes via Ca2+ -dependent glutamate release. Neuroscience, 158, 253–259.

    PubMed  CAS  Google Scholar 

  • Santello, M., & Volterra, A. (2010). Neuroscience: Astrocytes as aide-mĂ©moires. Nature, 463, 169–170.

    PubMed  CAS  Google Scholar 

  • Sanzgiri, R. P., Araque, A., & Haydon, P. G. (1999). Prostaglandin E(2) stimulates glutamate receptor-dependent astrocyte neuromodulation in cultured hippocampal cells. Journal of Neurobiology, 41, 221–229.

    PubMed  CAS  Google Scholar 

  • Sasaki, T., Kuga, N., Namiki, S., Matsuki, N., & Ikegaya, Y. (2011). Locally synchronized astrocytes. Cerebral Cortex. [Epub ahead of print].

    Google Scholar 

  • SchlĂĽter, O. M., Khvotchev, M., Jahn, R., & SĂĽdhof, T. C. (2002). Localization versus function of Rab3 proteins. Evidence for a common regulatory role in controlling fusion. The Journal of Biological Chemistry, 277, 40919–40929.

    PubMed  Google Scholar 

  • Schummers, J., Yu, H., & Sur, M. (2008). Tuned responses of astrocytes and their influence on hemodynamic signals in the visual cortex. Science, 320, 1638–1643.

    PubMed  CAS  Google Scholar 

  • Serrano, A., Haddjeri, N., Lacaille, J. C., & Robitaille, R. (2006). GABAergic network activation of glial cells underlies hippocampal heterosynaptic depression. Journal of Neuroscience, 26, 5370–5382.

    PubMed  CAS  Google Scholar 

  • Shanker, G., & Aschner, M. (2001). Identification and characterization of uptake systems for cystine and cysteine in cultured astrocytes and neurons: Evidence for methylmercury-targeted disruption of astrocyte transport. Journal of Neuroscience Research, 66, 998–1002.

    PubMed  CAS  Google Scholar 

  • Shi, Y., Liu, X., Gebremedhin, D., Falck, J. R., Harder, D. R., & Koehler, R. C. (2008). Interaction of mechanisms involving epoxyeicosatrienoic acids, adenosine receptors, and metabotropic glutamate receptors in neurovascular coupling in rat whisker barrel cortex. Journal of Cerebral Blood Flow and Metabolism, 28, 111–125.

    PubMed  CAS  Google Scholar 

  • Snyder, S. H., & Kim, P. M. (2000). D-amino acids as putative neurotransmitters: Focus on D-serine. Neurochemical Research, 25, 553–560.

    PubMed  CAS  Google Scholar 

  • Steinmetz, C. C., & Turrigiano, G. G. (2010). Tumor necrosis factor-α signaling maintains the ability of cortical synapses to express synaptic scaling. The Journal of Neuroscience, 30, 14685–14690.

    PubMed  CAS  Google Scholar 

  • Stellwagen, D., Beattie, E. C., Seo, J. Y., & Malenka, R. C. (2005). Differential regulation of AMPA receptor and GABA receptor trafficking by tumor necrosis factor-alpha. The Journal of Neuroscience, 25, 3219–3228.

    PubMed  CAS  Google Scholar 

  • Stellwagen, D., & Malenka, R. C. (2006). Synaptic scaling mediated by glial TNF-alpha. Nature, 440, 1054–1059.

    PubMed  CAS  Google Scholar 

  • Stenmark, H. (2009). Rab GTPases as coordinators of vesicle traffic. Nature Reviews Molecular Cell Biology, 10, 513–525.

    PubMed  CAS  Google Scholar 

  • Stout, C. E., Costantin, J. L., Naus, C. C., & Charles, A. C. (2002). Intercellular calcium signaling in astrocytes via ATP release through connexin hemichannels. The Journal of Biological Chemistry, 277, 10482–10488.

    PubMed  CAS  Google Scholar 

  • Szatkowski, M., Barbour, B., & Attwell, D. (1990). Non-vesicular release of glutamate from glial cells by reversed electrogenic glutamate uptake. Nature, 348, 443–446.

    PubMed  CAS  Google Scholar 

  • Takai, Y., Sasaki, T., Shirataki, H., & Nakanishi, H. (1996). Rab3A small GTP-binding protein in Ca(2+)-dependent exocytosis. Genes to Cells, 1, 615–632.

    PubMed  CAS  Google Scholar 

  • Takata, N., & Hirase, H. (2008). Cortical layer 1 and layer 2/3 astrocytes exhibit distinct calcium dynamics in vivo. PLoS One, 3, e2525.

    PubMed  Google Scholar 

  • Tang, X. C., & Kalivas, P. W. (2003). Bidirectional modulation of cystine/glutamate exchanger activity in cultured cortical astrocytes. Annals of the New York Academy of Sciences, 1003, 472–475.

    PubMed  Google Scholar 

  • Trajkovic, K., Dhaunchak, A. S., Goncalves, J. T., Wenzel, D., Schneider, A., Bunt, G., Nave, K.-A., et al. (2006). Neuron to glia signaling triggers myelin membrane exocytosis from endosomal storage sites. The Journal of cell biology, 172(6), 937–948. doi:10.1083/jcb.200509022.

    Google Scholar 

  • Turrigiano, G. G. (2008). The self-tuning neuron: Synaptic scaling of excitatory synapses. Cell, 135, 422–435.

    PubMed  CAS  Google Scholar 

  • Ventura, R., & Harris, K. M. (1999). Three-dimensional relationships between hippocampal synapses and astrocytes. The Journal of Neuroscience, 19, 6897–6906.

    PubMed  CAS  Google Scholar 

  • Vitkovic, L., Bockaert, J., & Jacque, C. (2000). “Inflammatory” cytokines: Neuromodulators in normal brain? Journal of Neurochemistry, 74, 457–471.

    PubMed  CAS  Google Scholar 

  • Voglmaier, S. M., Kam, K., Yang, H., Fortin, D. L., Hua, Z., Nicoll, R. A., & Edwards, R. H. (2006). Distinct endocytic pathways control the rate and extent of synaptic vesicle protein recycling. Neuron, 51, 71–84.

    PubMed  CAS  Google Scholar 

  • Volterra, A., Bezzi, P., Rizzini, B. L., Trotti, D., Ullensvang, K., Danbolt, N. C., & Racagni, G. (1996). The competitive transport inhibitor L-trans-pyrrolidine-2, 4-dicarboxylate triggers excitotoxicity in rat cortical neuron-astrocyte co-cultures via glutamate release rather than uptake inhibition. European Journal of Neuroscience, 8, 2019–2028.

    PubMed  CAS  Google Scholar 

  • Volterra, A., & Meldolesi, J. (2005). Astrocytes, from brain glue to communication elements: The revolution continues. Nature Reviews Neuroscience, 6, 626–640.

    PubMed  CAS  Google Scholar 

  • Wang, X., Lou, N., Xu, Q., Tian, G. F., Peng, W. G., Han, X., Kang, J., Takano, T., & Nedergaard, M. (2006). Astrocytic Ca2+ signaling evoked by sensory stimulation in vivo. Nature Neuroscience, 9, 816–823.

    PubMed  CAS  Google Scholar 

  • Winship, I. R., Plaa, N., & Murphy, T. H. (2007). Rapid astrocyte calcium signals correlate with neuronal activity and onset of the hemodynamic response in vivo. Journal of Neuroscience, 27, 6268–6272.

    PubMed  CAS  Google Scholar 

  • Yang, Y., Ge, W., Chen, Y., Zhang, Z., Shen, W., Wu, C., Poo, M., & Duan, S. (2003). Contribution of astrocytes to hippocampal long-term potentiation through release of D-serine. Proceedings of the National Academy of Sciences of the United States of America, 100, 15194–15199.

    PubMed  CAS  Google Scholar 

  • Ye, Z. C., Wyeth, M. S., Baltan-Tekkok, S., & Ransom, B. R. (2003). Functional hemichannels in astrocytes: A novel mechanism of glutamate release. The Journal of Neuroscience, 23, 3588–3596.

    PubMed  CAS  Google Scholar 

  • Zerial, M., & McBride, H. (2001). Rab proteins as membrane organizers. Nature Reviews: Molecular Cell Biology, 2, 107–117.

    PubMed  CAS  Google Scholar 

  • Zhang, Z., Chen, G., Zhou, W., Song, A., Xu, T., Luo, Q., Wang, W., Gu, X. S., & Duan, S. (2007). Regulated ATP release from astrocytes through lysosome exocytosis. Nature Cell Biology, 9, 945–953.

    PubMed  CAS  Google Scholar 

  • Zhang, Q., Fukuda, M., Van Bockstaele, E., Pascual, O., & Haydon, P. G. (2004). Synaptotagmin IV regulates glial glutamate release. Proceedings of the National Academy of Sciences of the United States of America, 101, 9441–9446.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paola Bezzi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag/WIen

About this chapter

Cite this chapter

Santello, M., Calì, C., Bezzi, P. (2012). Gliotransmission and the Tripartite Synapse. In: Kreutz, M., Sala, C. (eds) Synaptic Plasticity. Advances in Experimental Medicine and Biology, vol 970. Springer, Vienna. https://doi.org/10.1007/978-3-7091-0932-8_14

Download citation

Publish with us

Policies and ethics