Skip to main content

JAK/STAT Signaling and Invertebrate Immune Responses

  • Chapter
  • First Online:
Jak-Stat Signaling : From Basics to Disease
  • 1976 Accesses

Abstract

This review focuses on JAK/STAT signaling and its role in response to infection in invertebrates. Most of our knowledge comes from studies conducted in the model organism Drosophila melanogaster. However, we tentatively cover available information on JAK/STAT signaling in other invertebrates, including mosquitoes. Covered topics include the components of JAK/STAT signaling and their role in humoral, cellular and mucosal immunity. Finally, we summarize recent developments on the role of JAK/STAT signaling in the maintenance of homeostasis in response to intestinal challenge.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agaisse H, Petersen UM, Boutros M, Mathey-Prevot B, Perrimon N (2003) Signaling role of hemocytes in Drosophila JAK/STAT-dependent response to septic injury. Dev Cell 5:441–450

    PubMed  CAS  Google Scholar 

  • Amcheslavsky A, Jiang J, Ip YT (2009) Tissue damage-induced intestinal stem cell division in Drosophila. Cell Stem Cell 4:49–61

    PubMed  CAS  Google Scholar 

  • Araki T, Gamper M, Early A, Fukuzawa M, Abe T, Kawata T, Kim E, Firtel RA, Williams JG (1998) Developmentally and spatially regulated activation of a Dictyostelium STAT protein by a serpentine receptor. EMBO J 17:4018–4028

    PubMed  CAS  Google Scholar 

  • Arbouzova NI, Bach EA, Zeidler MP (2006) Ken and Barbie selectively regulates the expression of a subset of Jak/STAT pathway target genes. Curr Biol 16:80–88

    PubMed  CAS  Google Scholar 

  • Avadhanula V, Weasner BP, Hardy GG, Kumar JP, Hardy RW (2009) A novel system for the launch of alphavirus RNA synthesis reveals a role for the Imd pathway in arthropod antiviral response. PLoS Pathog 5:e1000582

    PubMed  Google Scholar 

  • Babcock DT, Brock AR, Fish GS, Wang Y, Perrin L, Krasnow MA, Galko MJ (2008) Circulating blood cells function as a surveillance system for damaged tissue in Drosophila larvae. Proc Natl Acad Sci USA 105:10017–10022

    PubMed  CAS  Google Scholar 

  • Bach EA, Ekas LA, Ayala-Camargo A, Flaherty MS, Lee H, Perrimon N, Baeg GH (2007) GFP reporters detect the activation of the Drosophila JAK/STAT pathway in vivo. Gene Exp Pattern 7:323–331

    CAS  Google Scholar 

  • Badenhorst P, Voas M, Rebay I, Wu C (2002) Biological functions of the ISWI chromatin remodeling complex NURF. Genes Dev 16:3186–3198

    PubMed  CAS  Google Scholar 

  • Baeg GH, Zhou R, Perrimon N (2005) Genome-wide RNAi analysis of JAK/STAT signaling components in Drosophila. Genes Dev 19:1861–1870

    PubMed  CAS  Google Scholar 

  • Barillas-Mury C, Han Y-S, Seeley D, Kafatos FC (1999) Anopheles gambiae Ag-STAT, a new insect member of the STAT family, is activated in response to bacterial infection. EMBO J 18:959–967

    PubMed  CAS  Google Scholar 

  • Basset A, Khush RS, Braun A, Gardan L, Boccard F, Hoffmann JA, Lemaitre B (2000) The phytopathogenic bacteria Erwinia carotovora infects Drosophila and activates an immune response. Proc Natl Acad Sci USA 97:3376–3381

    PubMed  CAS  Google Scholar 

  • Baton LA, Ranford-Cartwright LC (2005) Spreading the seeds of million-murdering death: metamorphoses of malaria in the mosquito. Trends Parasitol 21:573–580

    PubMed  Google Scholar 

  • Baumer D, Trauner J, Hollfelder D, Cerny A, Schoppmeier M (2011) JAK-STAT signalling is required throughout telotrophic oogenesis and short-germ embryogenesis of the beetle Tribolium. Dev Biol 350:169–182

    PubMed  Google Scholar 

  • Beer J, Technau GM, Campos-Ortega JA (1987) Lineage analysis of transplanted individual cells in embryos of Drosophila melanogaster. IV. Commitment and proliferative capabilities of mesodermal cells. Roux’s Arch Dev Biol 196:222–230

    Google Scholar 

  • Betz A, Lampen N, Martinek S, Young MW, Darnell JE Jr (2001) A Drosophila PIAS homologue negatively regulates stat92E. Proc Natl Acad Sci USA 98:9563–9568

    PubMed  CAS  Google Scholar 

  • Binari R, Perrimon N (1994) Stripe-specific regulation of pair-rule genes by hopscotch, a putative Jak family tyrosine kinase in Drosophila. Genes Dev 8:300–312

    PubMed  CAS  Google Scholar 

  • Blandin S, Shiao SH, Moita LF, Janse CJ, Waters AP, Kafatos FC, Levashina EA (2004) Complement-like protein TEP1 is a determinant of vectorial capacity in the malaria vector Anopheles gambiae. Cell 116:661–670

    PubMed  CAS  Google Scholar 

  • Boutros M, Agaisse H, Perrimon N (2002) Sequential activation of signaling pathways during innate immune responses in Drosophila. Dev Cell 3:711–722

    PubMed  CAS  Google Scholar 

  • Brown S, Hu N, Hombria JC (2001) Identification of the first invertebrate interleukin JAK/STAT receptor, the Drosophila gene domeless. Curr Biol 11:1700–1705

    PubMed  CAS  Google Scholar 

  • Buchon N, Broderick NA, Chakrabarti S, Lemaitre B (2009a) Invasive and indigenous microbiota impact intestinal stem cell activity through multiple pathways in Drosophila. Genes Dev 23:2333–2344

    PubMed  CAS  Google Scholar 

  • Buchon N, Broderick NA, Poidevin M, Pradervand S, Lemaitre B (2009b) Drosophila intestinal response to bacterial infection: activation of host defense and stem cell proliferation. Cell Host Microbe 5:200–211

    PubMed  CAS  Google Scholar 

  • Buchon N, Broderick NA, Kuraishi T, Lemaitre B (2010) Drosophila EGFR pathway coordinates stem cell proliferation and gut remodeling following infection. BMC Biol 8:152

    PubMed  CAS  Google Scholar 

  • Callus BA, Mathey-Prevot B (2002) SOCS36E, a novel Drosophila SOCS protein, suppresses JAK/STAT and EGF-R signalling in the imaginal wing disc. Oncogene 21:4812–4821

    PubMed  CAS  Google Scholar 

  • Cerenius L, Lee BL, Soderhall K (2008) The proPO-system: pros and cons for its role in invertebrate immunity. Trends Immunol 29:263–271

    PubMed  CAS  Google Scholar 

  • Chen HW, Chen X, Oh SW, Marinissen MJ, Gutkind JS, Hou SX (2002) mom identifies a receptor for the Drosophila JAK/STAT signal transduction pathway and encodes a protein distantly related to the mammalian cytokine receptor family. Genes Dev 16:388–398

    PubMed  CAS  Google Scholar 

  • Cheng CH, Chen GD, Yeh MS, Chu CY, Hsu YL, Hwang PP, Huang FL, Huang CJ (2010) Expression and characterization of the JAK kinase and STAT protein from brine shrimp, Artemia franciscana. Fish Shellfish Immunol 28:774–782

    PubMed  CAS  Google Scholar 

  • Cherry CM, Matunis EL (2010) Epigenetic regulation of stem cell maintenance in the Drosophila testis via the nucleosome-remodeling factor NURF. Cell Stem Cell 6:557–567

    PubMed  CAS  Google Scholar 

  • Christophides GK, Zdobnov E, Barillas-Mury C, Birney E, Blandin S, Blass C, Brey PT, Collins FH, Danielli A, Dimopoulos G et al (2002) Immunity-related genes and gene families in Anopheles gambiae. Science 298:159–165

    PubMed  CAS  Google Scholar 

  • Classen AK, Bunker BD, Harvey KF, Vaccari T, Bilder D (2009) A tumor suppressor activity of Drosophila Polycomb genes mediated by JAK-STAT signaling. Nat Genet 41:1150–1155

    PubMed  CAS  Google Scholar 

  • Cronin SJ, Nehme NT, Limmer S, Liegeois S, Pospisilik JA, Schramek D, Leibbrandt A, Simoes Rde M, Gruber S, Puc U et al (2009) Genome-wide RNAi screen identifies genes involved in intestinal pathogenic bacterial infection. Science 325:340–343

    PubMed  CAS  Google Scholar 

  • Crozatier M, Valle D, Dubois L, Ibnsouda S, Vincent A (1996) Collier, a novel regulator of Drosophila head development, is expressed in a single mitotic domain. Curr Biol 6:707–718

    PubMed  CAS  Google Scholar 

  • Dierking K, Polanowska J, Omi S, Engelmann I, Gut M, Lembo F, Ewbank JJ, Pujol N (2011) Unusual regulation of a STAT protein by an SLC6 family transporter in C. elegans epidermal innate immunity. Cell Host Microbe 9:425–435

    PubMed  CAS  Google Scholar 

  • Dostert C, Jouanguy E, Irving P, Troxler L, Galiana-Arnoux D, Hetru C, Hoffmann JA, Imler JL (2005) The Jak-STAT signaling pathway is required but not sufficient for the antiviral response of Drosophila. Nat Immunol 6:946–953

    PubMed  CAS  Google Scholar 

  • Ekengren S, Hultmark D (2001) A family of Turandot-related genes in the humoral stress response of Drosophila. Biochem Biophys Res Commun 284:998–1003

    PubMed  CAS  Google Scholar 

  • Ekengren S, Tryselius Y, Dushay MS, Liu G, Steiner H, Hultmark D (2001) A humoral stress response in Drosophila. Curr Biol 11:714–718

    PubMed  CAS  Google Scholar 

  • el Shatoury HH (1955) The structure of the lymph gland of Drosophila larvae. Roux Arch EntwMech Organ 147:489–495

    Google Scholar 

  • Elliott GC, Zeidler MP (2008) MsSOCS expression indicates a potential role for JAK/STAT signalling in the early stages of Manduca sexta spermatogenesis. Insect Mol Biol 17:475–483

    PubMed  CAS  Google Scholar 

  • Ferrandon D, Jung AC, Criqui M, Lemaitre B, Uttenweiler-Joseph S, Michaut L, Reichhart J, Hoffmann JA (1998) A drosomycin-GFP reporter transgene reveals a local immune response in Drosophila that is not dependent on the Toll pathway. EMBO J 17:1217–1227

    PubMed  CAS  Google Scholar 

  • Franc NC, Dimarcq JL, Lagueux M, Hoffmann J, Ezekowitz RA (1996) Croquemort, a novel Drosophila hemocyte/macrophage receptor that recognizes apoptotic cells. Immunity 4:431–443

    PubMed  CAS  Google Scholar 

  • Frolet C, Thoma M, Blandin S, Hoffmann JA, Levashina EA (2006) Boosting NF-kappaB-dependent basal immunity of Anopheles gambiae aborts development of Plasmodium berghei. Immunity 25:677–685

    PubMed  CAS  Google Scholar 

  • Fukuzawa M, Williams JG (2000) Analysis of the promoter of the cudA gene reveals novel mechanisms of Dictyostelium cell type differentiation. Development 127:2705–2713

    PubMed  CAS  Google Scholar 

  • Galiana-Arnoux D, Dostert C, Schneemann A, Hoffmann JA, Imler JL (2006) Essential function in vivo for Dicer-2 in host defense against RNA viruses in Drosophila. Nat Immunol 7:590–597

    PubMed  CAS  Google Scholar 

  • Gilbert MM, Weaver BK, Gergen JP, Reich NC (2005) A novel functional activator of the Drosophila JAK/STAT pathway, unpaired2, is revealed by an in vivo reporter of pathway activation. Mech Dev 122:939–948

    PubMed  CAS  Google Scholar 

  • Girault JA, Labesse G, Mornon JP, Callebaut I (1999) The N-termini of FAK and JAKs contain divergent band 4.1 domains. Trends Biochem Sci 24:54–57

    PubMed  CAS  Google Scholar 

  • Gonzalez I, Simon R, Busturia A (2009) The Polyhomeotic protein induces hyperplastic tissue overgrowth through the activation of the JAK/STAT pathway. Cell Cycle 8:4103–4111

    PubMed  CAS  Google Scholar 

  • Goto A, Yano T, Terashima J, Iwashita S, Oshima Y, Kurata S (2010) Cooperative regulation of the induction of the novel antibacterial Listericin by peptidoglycan recognition protein LE and the JAK-STAT pathway. J Biol Chem 285:15731–15738

    PubMed  CAS  Google Scholar 

  • Gupta L, Molina-Cruz A, Kumar S, Rodrigues J, Dixit R, Zamora RE, Barillas-Mury C (2009) The STAT pathway mediates late-phase immunity against Plasmodium in the mosquito Anopheles gambiae. Cell Host Microbe 5:498–507

    PubMed  CAS  Google Scholar 

  • Ha EM, Oh CT, Bae YS, Lee WJ (2005a) A direct role for dual oxidase in Drosophila gut immunity. Science 310:847–850

    PubMed  CAS  Google Scholar 

  • Ha EM, Oh CT, Ryu JH, Bae YS, Kang SW, Jang IH, Brey PT, Lee WJ (2005b) An antioxidant system required for host protection against gut infection in Drosophila. Dev Cell 8:125–132

    PubMed  CAS  Google Scholar 

  • Harrison DA, Binari R, Nahreini TS, Gilman M, Perrimon N (1995) Activation of a Drosophila Janus kinase (JAK) causes hematopoietic neoplasia and developmental defects. EMBO J 14:2857–2865

    PubMed  CAS  Google Scholar 

  • Harrison DA, McCoon PE, Binari R, Gilman M, Perrimon N (1998) Drosophila unpaired encodes a secreted protein that activates the JAK signaling pathway. Genes Dev 12:3252–3263

    PubMed  CAS  Google Scholar 

  • Hedengren M, Asling B, Dushay MS, Ando I, Ekengren S, Wihlborg M, Hultmark D (1999) Relish, a central factor in the control of humoral but not cellular immunity in Drosophila. Mol Cell 4:827–837

    PubMed  CAS  Google Scholar 

  • Holz A, Bossinger B, Strasser T, Janning W, Klapper R (2003) The two origins of hemocytes in Drosophila. Development 130:4955–4962

    PubMed  CAS  Google Scholar 

  • Hombria JC, Brown S, Hader S, Zeidler MP (2005) Characterisation of Upd2, a Drosophila JAK/STAT pathway ligand. Dev Biol 288:420–433

    PubMed  CAS  Google Scholar 

  • Hou XS, Melnick MB, Perrimon N (1996) marelle acts downstream of the Drosophila HOP/JAK kinase and encodes a protein similar to the mammalian STATs. Cell 84:411–419

    PubMed  CAS  Google Scholar 

  • Imler JL, Bulet P (2005) Antimicrobial peptides in Drosophila: structures, activities and gene regulation. Chem Immunol Allergy 86:1–21

    PubMed  CAS  Google Scholar 

  • Jiang H, Patel PH, Kohlmaier A, Grenley MO, McEwen DG, Edgar BA (2009) Cytokine/Jak/Stat signaling mediates regeneration and homeostasis in the Drosophila midgut. Cell 137:1343–1355

    PubMed  Google Scholar 

  • Jiang H, Grenley MO, Bravo MJ, Blumhagen RZ, Edgar BA (2011) EGFR/Ras/MAPK signaling mediates adult midgut epithelial homeostasis and regeneration in Drosophila. Cell Stem Cell 8:84–95

    PubMed  CAS  Google Scholar 

  • Jung SH, Evans CJ, Uemura C, Banerjee U (2005) The Drosophila lymph gland as a developmental model of hematopoiesis. Development 132:2521–2533

    PubMed  CAS  Google Scholar 

  • Kallio J, Myllymaki H, Gronholm J, Armstrong M, Vanha-aho LM, Makinen L, Silvennoinen O, Valanne S, Ramet M (2010) Eye transformer is a negative regulator of Drosophila JAK/STAT signaling. FASEB J 24:4467–4479

    PubMed  CAS  Google Scholar 

  • Karsten P, Hader S, Zeidler MP (2002) Cloning and expression of Drosophila SOCS36E and its potential regulation by the JAK/STAT pathway. Mech Dev 117:343–346

    PubMed  CAS  Google Scholar 

  • Karsten P, Plischke I, Perrimon N, Zeidler MP (2006) Mutational analysis reveals separable DNA binding and trans-activation of Drosophila STAT92E. Cell Signal 18:819–829

    PubMed  CAS  Google Scholar 

  • Kim LK, Choi UY, Cho HS, Lee JS, Lee WB, Kim J, Jeong K, Shim J, Kim-Ha J, Kim YJ (2007) Down-regulation of NF-kappaB target genes by the AP-1 and STAT complex during the innate immune response in Drosophila. PLoS Biol 5:e238

    PubMed  Google Scholar 

  • Klapper R, Holz A, Janning W (1998) Fate map and cell lineage relationships of thoracic and abdominal mesodermal anlagen in Drosophila melanogaster. Mech Dev 71:77–87

    PubMed  CAS  Google Scholar 

  • Krzemien J, Dubois L, Makki R, Meister M, Vincent A, Crozatier M (2007) Control of blood cell homeostasis in Drosophila larvae by the posterior signalling centre. Nature 446:325–328

    PubMed  CAS  Google Scholar 

  • Kwon SY, Xiao H, Glover BP, Tjian R, Wu C, Badenhorst P (2008) The nucleosome remodeling factor (NURF) regulates genes involved in Drosophila innate immunity. Dev Biol 316:538–547

    PubMed  CAS  Google Scholar 

  • Lagueux M, Perrodou E, Levashina EA, Capovilla M, Hoffmann JA (2000) Constitutive expression of a complement-like protein in toll and JAK gain-of-function mutants of Drosophila. Proc Natl Acad Sci USA 97:11427–11432

    PubMed  CAS  Google Scholar 

  • Lanot R, Zachary D, Holder F, Meister M (2001) Postembryonic hematopoiesis in Drosophila. Dev Biol 230:243–257

    PubMed  CAS  Google Scholar 

  • Lebestky T, Jung SH, Banerjee U (2003) A Serrate-expressing signaling center controls Drosophila hematopoiesis. Genes Dev 17:348–353

    PubMed  CAS  Google Scholar 

  • Lee WC, Beebe K, Sudmeier L, Micchelli CA (2009) Adenomatous polyposis coli regulates Drosophila intestinal stem cell proliferation. Development 136:2255–2264

    PubMed  CAS  Google Scholar 

  • Levashina EA, Moita LF, Blandin S, Vriend G, Lagueux M, Kafatos FC (2001) Conserved role of a complement-like protein in phagocytosis revealed by dsRNA knockout in cultured cells of the mosquito, Anopheles gambiae. Cell 104:709–718

    PubMed  CAS  Google Scholar 

  • Liehl P, Blight M, Vodovar N, Boccard F, Lemaitre B (2006) Prevalence of local immune response against oral infection in a Drosophila/Pseudomonas infection model. PLoS Pathog 2:e56

    PubMed  Google Scholar 

  • Luo H, Hanratty WP, Dearolf CR (1995) An amino acid substitution in the Drosophila hopTum-l Jak kinase causes leukemia-like hematopoietic defects. EMBO J 14:1412–1420

    PubMed  CAS  Google Scholar 

  • Luo H, Rose P, Barber D, Hanratty WP, Lee S, Roberts TM, D’Andrea AD, Dearolf CR (1997) Mutation in the Jak kinase JH2 domain hyperactivates Drosophila and mammalian Jak-Stat pathways. Mol Cell Biol 17:1562–1571

    PubMed  CAS  Google Scholar 

  • Makki R, Meister M, Pennetier D, Ubeda JM, Braun A, Daburon V, Krzemien J, Bourbon HM, Zhou R, Vincent A et al (2010) A short receptor downregulates JAK/STAT signalling to control the Drosophila cellular immune response. PLoS Biol 8:e1000441

    PubMed  Google Scholar 

  • Mandal L, Martinez-Agosto JA, Evans CJ, Hartenstein V, Banerjee U (2007) A Hedgehog- and Antennapedia-dependent niche maintains Drosophila haematopoietic precursors. Nature 446:320–324

    PubMed  CAS  Google Scholar 

  • Markus R, Laurinyecz B, Kurucz E, Honti V, Bajusz I, Sipos B, Somogyi K, Kronhamn J, Hultmark D, Ando I (2009) Sessile hemocytes as a hematopoietic compartment in Drosophila melanogaster. Proc Natl Acad Sci USA 106:4805–4809

    PubMed  CAS  Google Scholar 

  • Meng X, Khanuja BS, Ip YT (1999) Toll receptor-mediated Drosophila immune response requires Dif, an NF-kappaB factor. Genes Dev 13:792–797

    PubMed  CAS  Google Scholar 

  • Micchelli CA, Perrimon N (2006) Evidence that stem cells reside in the adult Drosophila midgut epithelium. Nature 439:475–479

    PubMed  CAS  Google Scholar 

  • Muller P, Kuttenkeuler D, Gesellchen V, Zeidler MP, Boutros M (2005) Identification of JAK/STAT signalling components by genome-wide RNA interference. Nature 436:871–875

    PubMed  Google Scholar 

  • Nappi AJ (1975) Inhibition by parasites of melanotic tumour formation in Drosophila melanogaster. Nature 255:402–404

    PubMed  CAS  Google Scholar 

  • Nappi AJ, Ottaviani E (2000) Cytotoxicity and cytotoxic molecules in invertebrates. Bioessays 22:469–480

    PubMed  CAS  Google Scholar 

  • Ohlstein B, Spradling A (2006) The adult Drosophila posterior midgut is maintained by pluripotent stem cells. Nature 439:470–474

    PubMed  CAS  Google Scholar 

  • Ohlstein B, Spradling A (2007) Multipotent Drosophila intestinal stem cells specify daughter cell fates by differential Notch signaling. Science 315:988–992

    PubMed  CAS  Google Scholar 

  • Onfelt Tingvall T, Roos E, Engstrom Y (2001) The imd gene is required for local Cecropin expression in Drosophila barrier epithelia. EMBO Rep 2:239–243

    PubMed  CAS  Google Scholar 

  • Pastor-Pareja JC, Wu M, Xu T (2008) An innate immune response of blood cells to tumors and tissue damage in Drosophila. Dis Model Mech 1:144–154, discussion 153

    PubMed  Google Scholar 

  • Perrimon N, Mahowald AP (1986) l(1)hopscotch, a larval-pupal zygotic lethal with a specific maternal effect on segmentation in Drosophila. Dev Biol 118:28–41

    PubMed  CAS  Google Scholar 

  • Rawlings JS, Rennebeck G, Harrison SM, Xi R, Harrison DA (2004) Two Drosophila suppressors of cytokine signaling (SOCS) differentially regulate JAK and EGFR pathway activities. BMC Cell Biol 5:38

    PubMed  Google Scholar 

  • Rizki TM (1978) The circulatory system and associated cells and tissues. In: Ashburner M, Wright TRF (eds) The genetics and biology of Drosophila. Academic, New York

    Google Scholar 

  • Rizki TM, Rizki RM (1980) Properties of the larval hemocytes of Drosophila melanogaster. Experientia 36:1223–1226

    Google Scholar 

  • Rizki TM, Rizki RM (1992) Lamellocyte differentiation in Drosophila larvae parasitized by Leptopilina. Dev Comp Immunol 16:103–110

    PubMed  CAS  Google Scholar 

  • Robertson CW (1936) The metamorphosis of Drosophila melanogaster, including an accurately timed account of the principal morphological changes. J Morphol 59:351–399

    Google Scholar 

  • Rugendorff AE, Younossi-Hartenstein A, Hartenstein V (1994) Embryonic origin and differentiation of the Drosophila heart. Roux’s Arch Dev Biol 203:266–280

    Google Scholar 

  • Russo J, Dupas S, Frey F, Carton Y, Brehelin M (1996) Insect immunity: early events in the encapsulation process of parasitoid (Leptopilina boulardi) eggs in resistant and susceptible strains of Drosophila. Parasitology 112(Pt 1):135–142

    PubMed  Google Scholar 

  • Rutschmann S, Jung AC, Hetru C, Reichhart JM, Hoffmann JA, Ferrandon D (2000) The Rel protein DIF mediates the antifungal but not the antibacterial host defense in Drosophila. Immunity 12:569–580

    PubMed  CAS  Google Scholar 

  • Ryu JH, Nam KB, Oh CT, Nam HJ, Kim SH, Yoon JH, Seong JK, Yoo MA, Jang IH, Brey PT et al (2004) The homeobox gene Caudal regulates constitutive local expression of antimicrobial peptide genes in Drosophila epithelia. Mol Cell Biol 24:172–185

    PubMed  CAS  Google Scholar 

  • Ryu JH, Ha EM, Oh CT, Seol JH, Brey PT, Jin I, Lee DG, Kim J, Lee D, Lee WJ (2006) An essential complementary role of NF-kappaB pathway to microbicidal oxidants in Drosophila gut immunity. EMBO J 25:3693–3701

    PubMed  CAS  Google Scholar 

  • Sorrentino RP, Carton Y, Govind S (2002) Cellular immune response to parasite infection in the Drosophila lymph gland is developmentally regulated. Dev Biol 243:65–80

    PubMed  CAS  Google Scholar 

  • Sorrentino RP, Melk JP, Govind S (2004) Genetic analysis of contributions of dorsal group and JAK-Stat92E pathway genes to larval hemocyte concentration and the egg encapsulation response in Drosophila. Genetics 166:1343–1356

    PubMed  CAS  Google Scholar 

  • Souza-Neto JA, Sim S, Dimopoulos G (2009) An evolutionary conserved function of the JAK-STAT pathway in anti-dengue defense. Proc Natl Acad Sci USA 106:17841–17846

    PubMed  CAS  Google Scholar 

  • Stark MB, Marshall AK (1930) The blood-forming organ of the larva of Drosophila melanogaster. Bell Telephone Syst Tech Pub Monogr 1931:1204–1206

    Google Scholar 

  • Tang H (2009) Regulation and function of the melanization reaction in Drosophila. Fly 3:105–111 (Austin)

    PubMed  CAS  Google Scholar 

  • Tepass U, Fessler LI, Aziz A, Hartenstein V (1994) Embryonic origin of hemocytes and their relationship to cell death in Drosophila. Development 120:1829–1837

    PubMed  CAS  Google Scholar 

  • Tzou P, Ohresser S, Ferrandon D, Capovilla M, Reichhart JM, Lemaitre B, Hoffmann JA, Imler JL (2000) Tissue-specific inducible expression of antimicrobial peptide genes in Drosophila surface epithelia. Immunity 13:737–748

    PubMed  CAS  Google Scholar 

  • van Rij RP, Saleh MC, Berry B, Foo C, Houk A, Antoniewski C, Andino R (2006) The RNA silencing endonuclease Argonaute 2 mediates specific antiviral immunity in Drosophila melanogaster. Genes Dev 20:2985–2995

    PubMed  Google Scholar 

  • Vodovar N, Vinals M, Liehl P, Basset A, Degrouard J, Spellman P, Boccard F, Lemaitre B (2005) Drosophila host defense after oral infection by an entomopathogenic Pseudomonas species. Proc Natl Acad Sci USA 102:11414–11419

    PubMed  CAS  Google Scholar 

  • Wang Y, Levy DE (2006) C. elegans STAT: evolution of a regulatory switch. FASEB J 20:1641–1652

    PubMed  Google Scholar 

  • Wang XH, Aliyari R, Li WX, Li HW, Kim K, Carthew R, Atkinson P, Ding SW (2006) RNA interference directs innate immunity against viruses in adult Drosophila. Science 312:452–454

    PubMed  CAS  Google Scholar 

  • Waterhouse RM, Kriventseva EV, Meister S, Xi Z, Alvarez KS, Bartholomay LC, Barillas-Mury C, Bian G, Blandin S, Christensen BM et al (2007) Evolutionary dynamics of immune-related genes and pathways in disease-vector mosquitoes. Science 316:1738–1743

    PubMed  CAS  Google Scholar 

  • Yan R, Small S, Desplan C, Dearolf CR, Darnell JE Jr (1996) Identification of a Stat gene that functions in Drosophila development. Cell 84:421–430

    PubMed  CAS  Google Scholar 

  • Yano T, Kurata S (2008) Induction of autophagy via innate bacterial recognition. Autophagy 4:958–960

    PubMed  CAS  Google Scholar 

  • Zambon RA, Vakharia VN, Wu LP (2006) RNAi is an antiviral immune response against a dsRNA virus in Drosophila melanogaster. Cell Microbiol 8:880–889

    PubMed  CAS  Google Scholar 

  • Zeidler MP, Perrimon N, Strutt DI (1999) Polarity determination in the Drosophila eye: a novel role for Unpaired and JAK/STAT signaling. Genes Dev 13:1342–1353

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We would like to thank Shaeri Mukherjee for her generous help in drawing the figures.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hervé Agaisse .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Wien

About this chapter

Cite this chapter

Zhou, F., Agaisse, H. (2012). JAK/STAT Signaling and Invertebrate Immune Responses. In: Decker, T., MĂĽller, M. (eds) Jak-Stat Signaling : From Basics to Disease. Springer, Vienna. https://doi.org/10.1007/978-3-7091-0891-8_9

Download citation

Publish with us

Policies and ethics