Skip to main content

Activation and Inhibition of JAK-STAT Signal Transduction by RNA Viruses

  • Chapter
  • First Online:
Jak-Stat Signaling : From Basics to Disease
  • 1811 Accesses

Abstract

The investigation of interferon (IFN)-stimulated signal transduction leading to antiviral gene expression revealed the first members of the JAK and STAT protein families. The importance of IFN signaling in the innate cellular response to virus infection is highlighted by the evolution of numerous virus-encoded IFN evasion strategies that can prevent IFN production or antagonize downstream responses. Some RNA viruses in the family Paramyxoviridae have evolved the ability to target STAT proteins directly to eliminate antiviral signaling, preventing IFN-stimulated gene expression and innate antiviral responses. The virus-encoded STAT inhibitors are highly homologous to each other, and target STATs through protein interactions. However, in-depth investigations of the biochemical and cellular mechanisms have revealed that individual paramyxovirus genera have evolved distinct mechanisms to mediate STAT destruction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Akira S, Uematsu S, Takeuchi O (2006) Pathogen recognition and innate immunity. Cell 124:783–801

    Article  PubMed  CAS  Google Scholar 

  • Andrejeva J, Poole E, Young DF, Goodbourn S, Randall RE (2002) The p127 subunit (DDB1) of the UV-DNA damage repair binding protein is essential for the targeted degradation of STAT1 by the V protein of the paramyxovirus simian virus 5. J Virol 76:11379–11386

    Article  PubMed  CAS  Google Scholar 

  • Ashour J, Laurent-Rolle M, Shi PY, Garcia-Sastre A (2009) NS5 of dengue virus mediates STAT2 binding and degradation. J Virol 83:5408–5418

    Article  PubMed  CAS  Google Scholar 

  • Ashour J, Morrison J, Laurent-Rolle M, Belicha-Villanueva A, Plumlee CR, Bernal-Rubio D, Williams KL, Harris E, Fernandez-Sesma A, Schindler C et al (2010) Mouse STAT2 restricts early dengue virus replication. Cell Host Microbe 8:410–421

    Article  PubMed  CAS  Google Scholar 

  • Au WC, Moore PA, Lowther W, Juang YT, Pitha PM (1995) Identification of a member of the interferon regulatory factor family that binds to the interferon-stimulated response element and activates expression of interferon-induced genes. Proc Natl Acad Sci USA 92:11657–11661

    Article  PubMed  CAS  Google Scholar 

  • Caignard G, Guerbois M, Labernardiere JL, Jacob Y, Jones LM, Wild F, Tangy F, Vidalain PO (2007) Measles virus V protein blocks Jak1-mediated phosphorylation of STAT1 to escape IFN-alpha/beta signaling. Virology 368:351–362

    Article  PubMed  CAS  Google Scholar 

  • Caignard G, Bourai M, Jacob Y, Tangy F, Vidalain PO (2009) Inhibition of IFN-alpha/beta signaling by two discrete peptides within measles virus V protein that specifically bind STAT1 and STAT2. Virology 383:112–120

    Article  PubMed  CAS  Google Scholar 

  • Caldenhoven E, Buitenhuis M, van Dijk TB, Raaijmakers JA, Lammers JW, Koenderman L, de Groot RP (1999) Lineage-specific activation of STAT3 by interferon-gamma in human neutrophils. J Leukoc Biol 65:391–396

    PubMed  CAS  Google Scholar 

  • Carlos TS, Fearns R, Randall RE (2005) Interferon-induced alterations in the pattern of parainfluenza virus 5 transcription and protein synthesis and the induction of virus inclusion bodies. J Virol 79:14112–14121

    Article  PubMed  CAS  Google Scholar 

  • Chua KB, Bellini WJ, Rota PA, Harcourt BH, Tamin A, Lam SK, Ksiazek TG, Rollin PE, Zaki SR, Shieh W et al (2000) Nipah virus: a recently emergent deadly paramyxovirus. Science 288:1432–1435

    Article  PubMed  CAS  Google Scholar 

  • Ciancanelli MJ, Volchkova VA, Shaw ML, Volchkov VE, Basler CF (2009) Nipah virus sequesters inactive STAT1 in the nucleus via a P gene-encoded mechanism. J Virol 83:7828–7841

    Article  PubMed  CAS  Google Scholar 

  • Combredet C, Labrousse V, Mollet L, Lorin C, Delebecque F, Hurtrel B, McClure H, Feinberg MB, Brahic M, Tangy F (2003) A molecularly cloned Schwarz strain of measles virus vaccine induces strong immune responses in macaques and transgenic mice. J Virol 77:11546–11554

    Article  PubMed  CAS  Google Scholar 

  • Devaux P, von Messling V, Songsungthong W, Springfeld C, Cattaneo R (2007) Tyrosine 110 in the measles virus phosphoprotein is required to block STAT1 phosphorylation. Virology 360:72–83

    Article  PubMed  CAS  Google Scholar 

  • Didcock L, Young DF, Goodbourn S, Randall RE (1999) The V protein of simian virus 5 inhibits interferon signalling by targeting STAT1 for proteasome-mediated degradation. J Virol 73:9928–9933

    PubMed  CAS  Google Scholar 

  • Fitzgerald KA, McWhirter SM, Faia KL, Rowe DC, Latz E, Golenbock DT, Coyle AJ, Liao SM, Maniatis T (2003) IKKepsilon and TBK1 are essential components of the IRF3 signaling pathway. Nat Immunol 4:491–496

    Article  PubMed  CAS  Google Scholar 

  • Fontana JM, Bankamp B, Bellini WJ, Rota PA (2008) Regulation of interferon signaling by the C and V proteins from attenuated and wild-type strains of measles virus. Virology 374:71–81

    Article  PubMed  CAS  Google Scholar 

  • Fu X-Y, Kessler DS, Veals SA, Levy DA, Darnell JE Jr (1990) ISGF3, the transcriptional activator induced by interferon-alpha consists of multiple interacting polypeptide chains. Proc Natl Acad Sci USA 87:8555–8559

    Article  PubMed  CAS  Google Scholar 

  • Gale M Jr, Sen GC (2009) Viral evasion of the interferon system. J Interferon Cytokine Res 29:475–476

    Article  PubMed  CAS  Google Scholar 

  • Goodbourn S, Didcock L, Randall RE (2000) Interferons: cell signalling, immune modulation, antiviral response and virus countermeasures. J Gen Virol 81(10):2341–2364

    PubMed  CAS  Google Scholar 

  • Gotoh B, Komatsu T, Takeuchi K, Yokoo J (2002) Paramyxovirus strategies for evading the interferon response. Rev Med Virol 12:337–357

    Article  PubMed  CAS  Google Scholar 

  • Grandvaux N, ten Oever BR, Servant MJ, Hiscott J (2002) The interferon antiviral response: from viral invasion to evasion. Curr Opin Infect Dis 15:259–267

    Article  PubMed  CAS  Google Scholar 

  • Hagmaier K, Stock N, Precious B, Childs K, Wang LF, Goodbourn S, Randall RE (2007) Mapuera virus, a rubulavirus that inhibits interferon signalling in a wide variety of mammalian cells without degrading STATs. J Gen Virol 88:956–966

    Article  PubMed  CAS  Google Scholar 

  • Harcourt BH, Tamin A, Ksiazek TG, Rollin PE, Anderson LJ, Bellini WJ, Rota PA (2000) Molecular characterization of Nipah virus, a newly emergent paramyxovirus. Virology 271:334–349

    Article  PubMed  CAS  Google Scholar 

  • He B, Paterson RG, Stock N, Durbin JE, Durbin RK, Goodbourn S, Randall RE, Lamb RA (2002) Recovery of paramyxovirus simian virus 5 with a V protein lacking the conserved cysteine-rich domain: the multifunctional V protein blocks both interferon-beta induction and interferon signaling. Virology 303:15–32

    Article  PubMed  CAS  Google Scholar 

  • Hiscott J, Lin R, Nakhaei P, Paz S (2006) MasterCARD: a priceless link to innate immunity. Trends Mol Med 12:53–56

    Article  PubMed  CAS  Google Scholar 

  • Horvath CM (2004a) Silencing STATs: lessons from paramyxovirus interferon evasion. Cytokine Growth Factor Rev 15:117–127

    Article  PubMed  CAS  Google Scholar 

  • Horvath CM (2004b) Weapons of STAT destruction. Interferon evasion by paramyxovirus V protein. Eur J Biochem 271:4621–4628

    Article  PubMed  CAS  Google Scholar 

  • Johnson CL, Gale M Jr (2006) CARD games between virus and host get a new player. Trends Immunol 27:1–4

    Article  PubMed  CAS  Google Scholar 

  • Kang DC, Gopalkrishnan RV, Wu Q, Jankowsky E, Pyle AM, Fisher PB (2002) mda-5: an interferon-inducible putative RNA helicase with double-stranded RNA-dependent ATPase activity and melanoma growth-suppressive properties. Proc Natl Acad Sci USA 99:637–642

    Article  PubMed  CAS  Google Scholar 

  • Katze MG, He Y, Gale M Jr (2002) Viruses and interferon: a fight for supremacy. Nat Rev Immunol 2:675–687

    Article  PubMed  CAS  Google Scholar 

  • Kawai T, Takahashi K, Sato S, Coban C, Kumar H, Kato H, Ishii KJ, Takeuchi O, Akira S (2005) IPS-1, an adaptor triggering RIG-I- and Mda5-mediated type I interferon induction. Nat Immunol 6:981–988

    Article  PubMed  CAS  Google Scholar 

  • Kessler DS, Veals SA, Fu X-Y, Levy DE (1990) Interferon-α regulates nuclear translocation and DNA-binding affinity of ISGF-3, a multimeric transcriptional activator. Genes Dev 4:1753–1765

    Article  PubMed  CAS  Google Scholar 

  • Kraus TA, Garza L, Horvath CM (2008) Enabled interferon signaling evasion in an immune-competent transgenic mouse model of parainfluenza virus 5 infection. Virology 371:196–205

    Article  PubMed  CAS  Google Scholar 

  • Kubota T, Yokosawa N, Yokota S, Fujii N (2001) C terminal CYS-RICH region of mumps virus structural V protein correlates with block of interferon alpha and gamma signal transduction pathway through decrease of STAT 1-alpha. Biochem Biophys Res Commun 283:255–259

    Article  PubMed  CAS  Google Scholar 

  • Lamb RA, Parks GD (2006) Paramyxoviridae: the viruses and their replication. In: Knipe DM, Howley PM (eds) Fields virology. Lippincott Williams and Wilkins, Philadelphia, pp 1449–1496

    Google Scholar 

  • Lamb RA, Parks GD (2007) Paramyxoviridae: the viruses and their replication, 5th edn. Wolters Kluwer/Lippincott Williams and Wilkins, Philadelphia

    Google Scholar 

  • Levy DE, Garcia-Sastre A (2001) The virus battles: IFN induction of the antiviral state and mechanisms of viral evasion. Cytokine Growth Factor Rev 12:143–156

    Article  PubMed  CAS  Google Scholar 

  • Levy DE, Kessler DS, Pine R, Reich N, Darnell JE Jr (1988) Interferon-induced nuclear factors that bind a shared promoter element correlate with positive and negative control. Genes Dev 2:383–393

    Article  PubMed  CAS  Google Scholar 

  • Li T, Chen X, Garbutt KC, Zhou P, Zheng N (2006) Structure of DDB1 in complex with a paramyxovirus V protein: viral hijack of a propeller cluster in ubiquitin ligase. Cell 124:105–117

    Article  PubMed  CAS  Google Scholar 

  • Lin GY, Lamb RA (2000) The paramyxovirus simian virus 5 V protein slows progression of the cell cycle. J Virol 74:9152–9166

    Article  PubMed  CAS  Google Scholar 

  • Lin GY, Paterson RG, Richardson CD, Lamb RA (1998) The V protein of the paramyxovirus SV5 interacts with damage-specific DNA binding protein. Virology 249:189–200

    Article  PubMed  CAS  Google Scholar 

  • Liston P, Briedis DJ (1994) Measles virus V protein binds zinc. Virology 198:399–404

    Article  PubMed  CAS  Google Scholar 

  • Lo MK, Harcourt BH, Mungall BA, Tamin A, Peeples ME, Bellini WJ, Rota PA (2009) Determination of the henipavirus phosphoprotein gene mRNA editing frequencies and detection of the C, V and W proteins of Nipah virus in virus-infected cells. J Gen Virol 90:398–404

    Article  PubMed  CAS  Google Scholar 

  • Ludlow LE, Lo MK, Rodriguez JJ, Rota PA, Horvath CM (2008) Henipavirus V protein association with polo-like kinase reveals functional overlap with STAT1 binding and interferon evasion. J Virol 82:6259–6271

    Article  PubMed  CAS  Google Scholar 

  • Meylan E, Curran J, Hofmann K, Moradpour D, Binder M, Bartenschlager R, Tschopp J (2005) Cardif is an adaptor protein in the RIG-I antiviral pathway and is targeted by hepatitis C virus. Nature 437:1167–1172

    Article  PubMed  CAS  Google Scholar 

  • Nishio M, Tsurudome M, Ito M, Garcin D, Kolakofsky D, Ito Y (2005) Identification of paramyxovirus V protein residues essential for STAT protein degradation and promotion of virus replication. J Virol 79:8591–8601

    Article  PubMed  CAS  Google Scholar 

  • Ohno S, Ono N, Takeda M, Takeuchi K, Yanagi Y (2004) Dissection of measles virus V protein in relation to its ability to block alpha/beta interferon signal transduction. J Gen Virol 85:2991–2999

    Article  PubMed  CAS  Google Scholar 

  • Palosaari H, Parisien JP, Rodriguez JJ, Ulane CM, Horvath CM (2003) STAT protein interference and suppression of cytokine signal transduction by measles virus V protein. J Virol 77:7635–7644

    Article  PubMed  CAS  Google Scholar 

  • Parisien J-P, Lau JF, Rodriguez JJ, Sullivan BM, Moscona A, Parks GD, Lamb RA, Horvath CM (2001) The V protein of human parainfluenza virus 2 antagonizes type I interferon responses by destabilizing signal transducer and activator of transcription 2. Virology 283:230–239

    Article  PubMed  CAS  Google Scholar 

  • Parisien JP, Lau JF, Horvath CM (2002a) STAT2 acts as a host range determinant for species-specific paramyxovirus interferon antagonism and simian virus 5 replication. J Virol 76:6435–6441

    Article  PubMed  CAS  Google Scholar 

  • Parisien JP, Lau JF, Rodriguez JJ, Ulane CM, Horvath CM (2002b) Selective STAT protein degradation induced by paramyxoviruses requires both STAT1 and STAT2 but is independent of alpha/beta interferon signal transduction. J Virol 76:4190–4198

    Article  PubMed  CAS  Google Scholar 

  • Paterson RG, Leser GP, Shaughnessy MA, Lamb RA (1995) The paramyxovirus SV5 V protein binds two atoms of zinc and is a structural component of virions. Virology 208:121–131

    Article  PubMed  CAS  Google Scholar 

  • Patterson JB, Thomas D, Lewicki H, Billeter MA, Oldstone MB (2000) V and C proteins of measles virus function as virulence factors in vivo. Virology 267:80–89

    Article  PubMed  CAS  Google Scholar 

  • Poole E, He B, Lamb RA, Randall RE, Goodbourn S (2002) The V proteins of simian virus 5 and other paramyxoviruses inhibit induction of interferon-beta. Virology 303:33–46

    Article  PubMed  CAS  Google Scholar 

  • Precious B, Childs K, Fitzpatrick-Swallow V, Goodbourn S, Randall RE (2005) Simian virus 5 V protein acts as an adaptor, linking DDB1 to STAT2, to facilitate the ubiquitination of STAT1. J Virol 79:13434–13441

    Article  PubMed  CAS  Google Scholar 

  • Precious BL, Carlos TS, Goodbourn S, Randall RE (2007) Catalytic turnover of STAT1 allows PIV5 to dismantle the interferon-induced anti-viral state of cells. Virology 368:114–121

    Article  PubMed  CAS  Google Scholar 

  • Ramachandran A, Parisien JP, Horvath CM (2008) STAT2 is a primary target for measles virus V protein-mediated alpha/beta interferon signaling inhibition. J Virol 82:8330–8338

    Article  PubMed  CAS  Google Scholar 

  • Reich N, Evans B, Levy DE, Fahey D, Knight E Jr, Darnell JE Jr (1987) Interferon-induced transcription of a gene encoding a 15 kDa protein depends on an upstream enhancer element. Proc Natl Acad Sci USA 84:6394–6398

    Article  PubMed  CAS  Google Scholar 

  • Rodriguez JJ, Horvath CM (2004) Host evasion by emerging paramyxoviruses: Hendra virus and Nipah virus V proteins inhibit interferon signaling. Viral Immunol 17:210–219

    Article  PubMed  CAS  Google Scholar 

  • Rodriguez JJ, Parisien JP, Horvath CM (2002) Nipah virus V protein evades alpha and gamma interferons by preventing STAT1 and STAT2 activation and nuclear accumulation. J Virol 76:11476–11483

    Article  PubMed  CAS  Google Scholar 

  • Rodriguez JJ, Wang LF, Horvath CM (2003) Hendra virus V protein inhibits interferon signaling by preventing STAT1 and STAT2 nuclear accumulation. J Virol 77:11842–11845

    Article  PubMed  CAS  Google Scholar 

  • Rodriguez JJ, Cruz CD, Horvath CM (2004) Identification of the nuclear export signal and STAT-binding domains of the Nipah virus V protein reveals mechanisms underlying interferon evasion. J Virol 78:5358–5367

    Article  PubMed  CAS  Google Scholar 

  • Sato M, Tanaka N, Hata N, Oda E, Taniguchi T (1998) Involvement of the IRF family transcription factor IRF-3 in virus-induced activation of the IFN-beta gene. FEBS Lett 425:112–116

    Article  PubMed  CAS  Google Scholar 

  • Selvey LA, Wells RM, McCormack JG, Ansford AJ, Murray K, Rogers RJ, Lavercombe PS, Selleck P, Sheridan JW (1995) Infection of humans and horses by a newly described morbillivirus. Med J Aust 162:642–645

    PubMed  CAS  Google Scholar 

  • Servant MJ, ten Oever B, LePage C, Conti L, Gessani S, Julkunen I, Lin R, Hiscott J (2001) Identification of distinct signaling pathways leading to the phosphorylation of interferon regulatory factor 3. J Biol Chem 276:355–363

    Article  PubMed  CAS  Google Scholar 

  • Servant MJ, Grandvaux N, Hiscott J (2002) Multiple signaling pathways leading to the activation of interferon regulatory factor 3. Biochem Pharmacol 64:985–992

    Article  PubMed  CAS  Google Scholar 

  • Seth RB, Sun L, Ea CK, Chen ZJ (2005) Identification and characterization of MAVS, a mitochondrial antiviral signaling protein that activates NF-kappaB and IRF 3. Cell 122:669–682

    Article  PubMed  CAS  Google Scholar 

  • Shaw ML, Garcia-Sastre A, Palese P, Basler CF (2004) Nipah virus V and W proteins have a common STAT1-binding domain yet inhibit STAT1 activation from the cytoplasmic and nuclear compartments, respectively. J Virol 78:5633–5641

    Article  PubMed  CAS  Google Scholar 

  • Shaw ML, Cardenas WB, Zamarin D, Palese P, Basler CF (2005) Nuclear localization of the Nipah virus W protein allows for inhibition of both virus- and toll-like receptor 3-triggered signaling pathways. J Virol 79:6078–6088

    Article  PubMed  CAS  Google Scholar 

  • Sun D, Luthra P, Li Z, He B (2009) PLK1 down-regulates parainfluenza virus 5 gene expression. PLoS Pathog 5:e1000525

    Article  PubMed  Google Scholar 

  • Takeuchi O, Akira S (2008) MDA5/RIG-I and virus recognition. Curr Opin Immunol 20:17–22

    Article  PubMed  CAS  Google Scholar 

  • Takeuchi K, Kadota SI, Takeda M, Miyajima N, Nagata K (2003) Measles virus V protein blocks interferon (IFN)-alpha/beta but not IFN-gamma signaling by inhibiting STAT1 and STAT2 phosphorylation. FEBS Lett 545:177–182

    Article  PubMed  CAS  Google Scholar 

  • Taylor DR, Shi ST, Romano PR, Barber GN, Lai MM (1999) Inhibition of the interferon-inducible protein kinase PKR by HCV E2 protein (see comments). Science 285:107–110

    Article  PubMed  CAS  Google Scholar 

  • Thomas SM, Lamb RA, Paterson RG (1988) Two mRNAs that differ by two nontemplated nucleotides encode the amino coterminal proteins P and V of the paramyxovirus SV5. Cell 54:891–902

    Article  PubMed  CAS  Google Scholar 

  • Ulane CM, Horvath CM (2002) Paramyxoviruses SV5 and HPIV2 assemble STAT protein ubiquitin ligase complexes from cellular components. Virology 304:160–166

    Article  PubMed  CAS  Google Scholar 

  • Ulane CM, Rodriguez JJ, Parisien JP, Horvath CM (2003) STAT3 ubiquitylation and degradation by mumps virus suppress cytokine and oncogene signaling. J Virol 77:6385–6393

    Article  PubMed  CAS  Google Scholar 

  • Ulane CM, Kentsis A, Cruz CD, Parisien JP, Schneider KL, Horvath CM (2005) Composition and assembly of STAT-targeting ubiquitin ligase complexes: paramyxovirus V protein carboxyl terminus is an oligomerization domain. J Virol 79:10180–10189

    Article  PubMed  CAS  Google Scholar 

  • Velichko S, Wagner TC, Turkson J, Jove R, Croze E (2002) STAT3 activation by type I interferons is dependent on specific tyrosines located in the cytoplasmic domain of interferon receptor chain 2c. Activation of multiple STATS proceeds through the redundant usage of two tyrosine residues. J Biol Chem 277:35635–35641

    Article  PubMed  CAS  Google Scholar 

  • Wansley EK, Parks GD (2002) Naturally occurring substitutions in the P/V gene convert the noncytopathic paramyxovirus simian virus 5 into a virus that induces alpha/beta interferon synthesis and cell death. J Virol 76:10109–10121

    Article  PubMed  CAS  Google Scholar 

  • Weaver BK, Kumar KP, Reich NC (1998) Interferon regulatory factor 3 and CREB-binding protein/p300 are subunits of double-stranded RNA-activated transcription factor DRAF1. Mol Cell Biol 18:1359–1368

    PubMed  CAS  Google Scholar 

  • Xu LG, Wang YY, Han KJ, Li LY, Zhai Z, Shu HB (2005) VISA is an adapter protein required for virus-triggered IFN-beta signaling. Mol Cell 19:727–740

    Article  PubMed  CAS  Google Scholar 

  • Yokosawa N, Yokota S, Kubota T, Fujii N (2002) C-terminal region of STAT-1alpha is not necessary for its ubiquitination and degradation caused by mumps virus V protein. J Virol 76:12683–12690

    Article  PubMed  CAS  Google Scholar 

  • Yoneyama M, Kikuchi M, Natsukawa T, Shinobu N, Imaizumi T, Miyagishi M, Taira K, Akira S, Fujita T (2004) The RNA helicase RIG-I has an essential function in double-stranded RNA-induced innate antiviral responses. Nat Immunol 5:730–737

    Article  PubMed  CAS  Google Scholar 

  • Yoneyama M, Kikuchi M, Matsumoto K, Imaizumi T, Miyagishi M, Taira K, Foy E, Loo YM, Gale M Jr, Akira S et al (2005) Shared and unique functions of the DExD/H-box helicases RIG-I, MDA5, and LGP2 in antiviral innate immunity. J Immunol 175:2851–2858

    PubMed  CAS  Google Scholar 

  • Young DF, Didcock L, Goodbourn S, Randall RE (2000) Paramyxoviridae use distinct virus-specific mechanisms to circumvent the interferon response. Virology 269:383–390

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Curt M. Horvath .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Wien

About this chapter

Cite this chapter

Horvath, C.M. (2012). Activation and Inhibition of JAK-STAT Signal Transduction by RNA Viruses. In: Decker, T., Müller, M. (eds) Jak-Stat Signaling : From Basics to Disease. Springer, Vienna. https://doi.org/10.1007/978-3-7091-0891-8_20

Download citation

Publish with us

Policies and ethics