Skip to main content

Dopamine in the Immune System: Dopamine Receptors in Immune Cells, Potent Effects, Endogenous Production and Involvement in Immune and Neuropsychiatric Diseases

  • Chapter
  • First Online:
Nerve-Driven Immunity

Abstract

Dopamine is undoubtedly produced in many, if not all, types of immune cells, and under certain conditions can be released to the extracellular milieu by these cells, resulting in autocrine and paracrine effects. The multiple evidences supporting these conclusions were discovered and published by several groups (Bergquist et al. 1994, 1997; Josefsson et al. 1996; Musso et al. 1996; Musso et al. 1997; Bergquist and Silberring 1998; Tsao et al. 1998; Ferrari et al. 2004; Cosentino et al. 2007; Flierl et al. 2007, 2009; Nakano et al. 2009a). The key reports on these studies are cited below in a chronological order. Among these publications, the sixth paper cited below (Bergquist et al. 1998) is the most relevant and comprehensive study done so far on this topic, and contains a very informative data, reconstituted herein in Table 1.1.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ali RA, Qureshi MA et al (1994) Profile of chicken macrophage functions after exposure to catecholamines in vitro. Immunopharmacol Immunotoxicol 16(4):611–625

    Article  PubMed  CAS  Google Scholar 

  • Aloisi F (2001) Immune function of microglia. Glia 36(2):165–179

    Article  PubMed  CAS  Google Scholar 

  • Ballok DA, Earls AM et al (2004a) Autoimmune-induced damage of the midbrain dopaminergic system in lupus-prone mice. J Neuroimmunol 152(1–2):83–97

    Article  PubMed  CAS  Google Scholar 

  • Ballok DA, Woulfe J et al (2004b) Hippocampal damage in mouse and human forms of systemic autoimmune disease. Hippocampus 14(5):649–661

    Article  PubMed  Google Scholar 

  • Barbanti P, Bronzetti E et al (1996) Increased density of dopamine D5 receptor in peripheral blood lymphocytes of migraineurs: a marker for migraine? Neurosci Lett 207(2):73–76

    Article  PubMed  CAS  Google Scholar 

  • Barbanti P, Fabbrini G et al (1999) Increased expression of dopamine receptors on lymphocytes in Parkinson’s disease. Mov Disord 14(5):764–771

    Article  PubMed  CAS  Google Scholar 

  • Barbanti P, Fabbrini G et al (2000a) Reduced density of dopamine D2-like receptors on peripheral blood lymphocytes in Alzheimer’s disease. Mech Ageing Dev 120(1–3):65–75

    Article  PubMed  CAS  Google Scholar 

  • Barbanti P, Fabbrini G et al (2000b) Migraine patients show an increased density of dopamine D3 and D4 receptors on lymphocytes. Cephalalgia 20(1):15–19

    Article  PubMed  CAS  Google Scholar 

  • Bas J, Calopa M et al (2001) Lymphocyte populations in Parkinson’s disease and in rat models of Parkinsonism. J Neuroimmunol 113(1):146–152

    Article  PubMed  CAS  Google Scholar 

  • Basu B, Sarkar C et al (2010) D1 and D2 dopamine receptor-mediated inhibition of activated normal T cell proliferation is lost in jurkat T leukemic cells. J Biol Chem 285(35):27026–27032

    Article  PubMed  CAS  Google Scholar 

  • Berger JR, Kumar M et al (1994) Cerebrospinal fluid dopamine in HIV-1 infection. AIDS 8(1):67–71

    Article  PubMed  CAS  Google Scholar 

  • Bergquist J, Silberring J (1998) Identification of catecholamines in the immune system by electrospray ionization mass spectrometry. Rapid Commun Mass Spectrom 12(11):683–688

    Article  PubMed  CAS  Google Scholar 

  • Bergquist J, Tarkowski A et al (1994) Discovery of endogenous catecholamines in lymphocytes and evidence for catecholamine regulation of lymphocyte function via an autocrine loop. Proc Natl Acad Sci USA 91(26):12912–12916

    Article  PubMed  CAS  Google Scholar 

  • Bergquist J, Josefsson E et al (1997) Measurements of catecholamine-mediated apoptosis of immunocompetent cells by capillary electrophoresis. Electrophoresis 18(10):1760–1766

    Article  PubMed  CAS  Google Scholar 

  • Bergquist J, Tarkowski A et al (1998) Catecholaminergic suppression of immunocompetent cells. Immunol Today 19(12):562–567

    Article  PubMed  CAS  Google Scholar 

  • Bergquist J, Ohlsson B et al (2000) Nuclear factor-kappa B is involved in the catecholaminergic suppression of immunocompetent cells. Ann N Y Acad Sci 917:281–289

    Article  PubMed  CAS  Google Scholar 

  • Besser MJ, Ganor Y et al (2005) Dopamine by itself activates either D2, D3 or D1/D5 dopaminergic receptors in normal human T-cells and triggers the selective secretion of either IL-10, TNFalpha or both. J Neuroimmunol 169(1–2):161–171

    Article  PubMed  CAS  Google Scholar 

  • Boneberg EM, von Seydlitz E et al (2006) D3 dopamine receptor mRNA is elevated in T cells of schizophrenic patients whereas D4 dopamine receptor mRNA is reduced in CD4+ -T cells. J Neuroimmunol 173(1–2):180–187

    Article  PubMed  CAS  Google Scholar 

  • Cardoso A, el Ghamrawy C et al (1998) Somatostatin increases mitogen-induced IL-2 secretion and proliferation of human Jurkat T cells via sst3 receptor isotype. J Cell Biochem 68(1):62–73

    Article  PubMed  CAS  Google Scholar 

  • Carr L, Tucker A et al (2003) In vivo administration of L-dopa or dopamine decreases the number of splenic IFN gamma-producing cells. J Neuroimmunol 137(1–2):87–93

    Article  PubMed  CAS  Google Scholar 

  • Carvalho-Freitas MI, Rodrigues-Costa EC et al (2008) In vitro macrophage activity: biphasic effect of prolactin and indirect evidence of dopaminergic modulation. Neuroimmunomodulation 15(2):131–139

    PubMed  CAS  Google Scholar 

  • Chang JY, Liu LZ (2000) Catecholamines inhibit microglial nitric oxide production. Brain Res Bull 52(6):525–530

    Article  PubMed  CAS  Google Scholar 

  • Chun S, McEvilly R et al (2008) Proclivity to self-injurious behavior in MRL-lpr mice: implications for autoimmunity-induced damage in the dopaminergic system. Mol Psychiatry 13(11):1043–1053

    Article  PubMed  CAS  Google Scholar 

  • Cook-Mills JM, Cohen RL et al (1995) Inhibition of lymphocyte activation by catecholamines: evidence for a non-classical mechanism of catecholamine action. Immunology 85(4):544–549

    PubMed  CAS  Google Scholar 

  • Cosentino M, Rasini E et al (2004) Dopaminergic modulation of oxidative stress and apoptosis in human peripheral blood lymphocytes: evidence for a D1-like receptor-dependent protective effect. Free Radic Biol Med 36(10):1233–1240

    Article  PubMed  CAS  Google Scholar 

  • Cosentino M, Fietta AM et al (2007) Human CD4+ CD25+ regulatory T cells selectively express tyrosine hydroxylase and contain endogenous catecholamines subserving an autocrine/paracrine inhibitory functional loop. Blood 109(2):632–642

    Article  PubMed  CAS  Google Scholar 

  • Di Chiara G, Bassareo V et al (2004) Dopamine and drug addiction: the nucleus accumbens shell connection. Neuropharmacology 47(Suppl 1):227–241

    Article  PubMed  CAS  Google Scholar 

  • Dijkstra CD, van der Voort ER et al (1994) Therapeutic effect of the D2-dopamine agonist bromocriptine on acute and relapsing experimental allergic encephalomyelitis. Psychoneuroendocrinology 19(2):135–142

    Article  PubMed  CAS  Google Scholar 

  • Faraone SV, Khan SA (2006) Candidate gene studies of attention-deficit/hyperactivity disorder. J Clin Psychiatry 67(Suppl 8):13–20

    PubMed  CAS  Google Scholar 

  • Farber K, Pannasch U et al (2005) Dopamine and noradrenaline control distinct functions in rodent microglial cells. Mol Cell Neurosci 29(1):128–138

    Article  PubMed  CAS  Google Scholar 

  • Ferrari M, Cosentino M et al (2004) Dopaminergic D1-like receptor-dependent inhibition of tyrosine hydroxylase mRNA expression and catecholamine production in human lymphocytes. Biochem Pharmacol 67(5):865–873

    Article  PubMed  CAS  Google Scholar 

  • Fiszer U (2001) Does Parkinson’s disease have an immunological basis? The evidence and its therapeutic implications. BioDrugs 15(6):351–355

    Article  PubMed  CAS  Google Scholar 

  • Fiszer U (2004) Selected aspects of immunological disorders in Parkinson disease. Neurol Neurochir Pol 38(1 Suppl 1):S63–S66

    PubMed  Google Scholar 

  • Fiszer U, Mix E et al (1994) Parkinson’s disease and immunological abnormalities: increase of HLA-DR expression on monocytes in cerebrospinal fluid and of CD45RO+ T cells in peripheral blood. Acta Neurol Scand 90(3):160–166

    Article  PubMed  CAS  Google Scholar 

  • Flierl MA, Rittirsch D et al (2007) Phagocyte-derived catecholamines enhance acute inflammatory injury. Nature 449(7163):721–725

    Article  PubMed  CAS  Google Scholar 

  • Flierl MA, Rittirsch D et al (2009) Upregulation of phagocyte-derived catecholamines augments the acute inflammatory response. PLoS One 4(2):e4414

    Article  PubMed  CAS  Google Scholar 

  • Fuxe K, Manger P et al (2006) The nigrostriatal DA pathway and Parkinson’s disease. J Neural Transm Suppl 70:71–83

    Article  PubMed  CAS  Google Scholar 

  • Ganor Y, Besser M et al (2003) Human T cells express a functional ionotropic glutamate receptor GluR3, and glutamate by itself triggers integrin-mediated adhesion to laminin and fibronectin and chemotactic migration. J Immunol 170(8):4362–4372

    PubMed  CAS  Google Scholar 

  • Gaskill PJ, Calderon TM et al (2009) Human immunodeficiency virus (HIV) infection of human macrophages is increased by dopamine: a bridge between HIV-associated neurologic disorders and drug abuse. Am J Pathol 175(3):1148–1159

    Article  PubMed  CAS  Google Scholar 

  • Gehrmann J (1996) Microglia: a sensor to threats in the nervous system? Res Virol 147(2–3):79–88

    Article  PubMed  CAS  Google Scholar 

  • Gehrmann J, Matsumoto Y et al (1995) Microglia: intrinsic immuneffector cell of the brain. Brain Res Brain Res Rev 20(3):269–287

    Article  PubMed  CAS  Google Scholar 

  • Ghosh MC, Mondal AC et al (2003) Dopamine inhibits cytokine release and expression of tyrosine kinases, Lck and Fyn in activated T cells. Int Immunopharmacol 3(7):1019–1026

    Article  PubMed  CAS  Google Scholar 

  • Giorelli M, Livrea P et al (2005) Dopamine fails to regulate activation of peripheral blood lymphocytes from multiple sclerosis patients: effects of IFN-beta. J Interferon Cytokine Res 25(7):395–406

    Article  PubMed  CAS  Google Scholar 

  • Gomez F, Ruiz P et al (1999) Macrophage Fcgamma receptors expression is altered by treatment with dopaminergic drugs. Clin Immunol 90(3):375–387

    Article  PubMed  CAS  Google Scholar 

  • Hashimoto K, Inoue T et al (2009) Dopamine D1-like receptor antagonist, SCH23390, exhibits a preventive effect on diabetes mellitus that occurs naturally in NOD mice. Biochem Biophys Res Commun 383(4):460–463

    Article  PubMed  CAS  Google Scholar 

  • Hasko G, Szabo C et al (1996) Modulation of lipopolysaccharide-induced tumor necrosis factor-alpha and nitric oxide production by dopamine receptor agonists and antagonists in mice. Immunol Lett 49(3):143–147

    Article  PubMed  CAS  Google Scholar 

  • Hasko G, Szabo C et al (2002) Dopamine suppresses IL-12 p40 production by lipopolysaccharide-stimulated macrophages via a beta-adrenoceptor-mediated mechanism. J Neuroimmunol 122(1–2):34–39

    Article  PubMed  CAS  Google Scholar 

  • Hisanaga K, Asagi M et al (2001) Increase in peripheral CD4 bright+ CD8 dull+ T cells in Parkinson disease. Arch Neurol 58(10):1580–1583

    Article  PubMed  CAS  Google Scholar 

  • Huang Y, Qiu AW et al (2010) Roles of dopamine receptor subtypes in mediating modulation of T lymphocyte function. Neuro Endocrinol Lett 31(6):782–791

    PubMed  CAS  Google Scholar 

  • Hussain T, Lokhandwala MF (2003) Renal dopamine receptors and hypertension. Exp Biol Med (Maywood) 228(2):134–142

    CAS  Google Scholar 

  • Ilani T, Ben-Shachar D et al (2001) A peripheral marker for schizophrenia: Increased levels of D3 dopamine receptor mRNA in blood lymphocytes. Proc Natl Acad Sci USA 98(2):625–628

    Article  PubMed  CAS  Google Scholar 

  • Ilani T, Strous RD et al (2004) Dopaminergic regulation of immune cells via D3 dopamine receptor: a pathway mediated by activated T cells. FASEB J 18(13):1600–1602

    PubMed  CAS  Google Scholar 

  • Iversen SD, Iversen LL (2007) Dopamine: 50 years in perspective. Trends Neurosci 30(5):188–193

    Article  PubMed  CAS  Google Scholar 

  • Josefsson E, Bergquist J et al (1996) Catecholamines are synthesized by mouse lymphocytes and regulate function of these cells by induction of apoptosis. Immunology 88(1):140–146

    Article  PubMed  CAS  Google Scholar 

  • Kienast T, Heinz A (2006) Dopamine and the diseased brain. CNS Neurol Disord Drug Targets 5(1):109–131

    Article  PubMed  CAS  Google Scholar 

  • Kipnis J, Cardon M et al (2004) Dopamine, through the extracellular signal-regulated kinase pathway, downregulates CD4+ CD25+ regulatory T-cell activity: implications for neurodegeneration. J Neurosci 24(27):6133–6143

    Article  PubMed  CAS  Google Scholar 

  • Kirillova GP, Hrutkay RJ et al (2008) Dopamine receptors in human lymphocytes: radioligand binding and quantitative RT-PCR assays. J Neurosci Methods 174(2):272–280

    Article  PubMed  CAS  Google Scholar 

  • Kreutzberg GW (1995) Microglia, the first line of defence in brain pathologies. Arzneimittelforschung 45(3A):357–360

    PubMed  CAS  Google Scholar 

  • Kumar AM, Ownby RL et al (2011) Human immunodeficiency virus infection in the CNS and decreased dopamine availability: relationship with neuropsychological performance. J Neurovirol 17(1):26–40

    Article  PubMed  CAS  Google Scholar 

  • Kwak YT, Koo MS et al (2001) Change of dopamine receptor mRNA expression in lymphocyte of schizophrenic patients. BMC Med Genet 2:3

    Article  PubMed  CAS  Google Scholar 

  • Levite M (1998) Neuropeptides, by direct interaction with T cells, induce cytokine secretion and break the commitment to a distinct T helper phenotype. Proc Natl Acad Sci USA 95(21):12544–12549

    Article  PubMed  CAS  Google Scholar 

  • Levite M (2008) Neurotransmitters activate T-cells and elicit crucial functions via neurotransmitter receptors. Curr Opin Pharmacol 8(4):460–471

    Article  PubMed  CAS  Google Scholar 

  • Levite M, Cahalon L et al (1998) Neuropeptides, via specific receptors, regulate T cell adhesion to fibronectin. J Immunol 160(2):993–1000

    PubMed  CAS  Google Scholar 

  • Levite M, Chowers Y et al (2001) Dopamine interacts directly with its D3 and D2 receptors on normal human T cells, and activates beta1 integrin function. Eur J Immunol 31(12):3504–3512

    Article  PubMed  CAS  Google Scholar 

  • Mastroeni D, Grover A et al (2009) Microglial responses to dopamine in a cell culture model of Parkinson’s disease. Neurobiol Aging 30(11):1805–1817

    Article  PubMed  CAS  Google Scholar 

  • McKenna F, McLaughlin PJ et al (2002) Dopamine receptor expression on human T- and B-lymphocytes, monocytes, neutrophils, eosinophils and NK cells: a flow cytometric study. J Neuroimmunol 132(1–2):34–40

    Article  PubMed  CAS  Google Scholar 

  • Meredith EJ, Holder MJ et al (2006) Dopamine targets cycling B cells independent of receptors/transporter for oxidative attack: Implications for non-Hodgkin’s lymphoma. Proc Natl Acad Sci USA 103(36):13485–13490

    Article  PubMed  CAS  Google Scholar 

  • Mignini F, Streccioni V et al (2003) Autonomic innervation of immune organs and neuroimmune modulation. Auton Autacoid Pharmacol 23(1):1–25

    Article  PubMed  CAS  Google Scholar 

  • Mihara K, Kondo T et al (2003) Relationship between functional dopamine D2 and D3 receptors gene polymorphisms and neuroleptic malignant syndrome. Am J Med Genet B Neuropsychiatr Genet 117B(1):57–60

    Article  PubMed  Google Scholar 

  • Missale C, Fiorentini C et al (2010) The neurobiology of dopamine receptors: evolution from the dual concept to heterodimer complexes. J Recept Signal Transduct Res 30(5):347–354

    Article  PubMed  CAS  Google Scholar 

  • Musso NR, Brenci S et al (1996) Catecholamine content and in vitro catecholamine synthesis in peripheral human lymphocytes. J Clin Endocrinol Metab 81(10):3553–3557

    Article  PubMed  CAS  Google Scholar 

  • Musso NR, Brenci S et al (1997) L-tyrosine and nicotine induce synthesis of L-Dopa and norepinephrine in human lymphocytes. J Neuroimmunol 74(1–2):117–120

    Article  PubMed  CAS  Google Scholar 

  • Nagai Y, Ueno S et al (1996) Decrease of the D3 dopamine receptor mRNA expression in lymphocytes from patients with Parkinson’s disease. Neurology 46(3):791–795

    PubMed  CAS  Google Scholar 

  • Nakagome K, Imamura M et al (2011) Dopamine D1-like receptor antagonist attenuates Th17-mediated immune response and ovalbumin antigen-induced neutrophilic airway inflammation. J Immunol 186(10):5975–5982

    Article  PubMed  CAS  Google Scholar 

  • Nakano K, Matsushita S (2007) The immunomodulatory effect of dopamine. Arerugi 56(7):679–684

    PubMed  CAS  Google Scholar 

  • Nakano K, Higashi T et al (2008) Antagonizing dopamine D1-like receptor inhibits Th17 cell differentiation: preventive and therapeutic effects on experimental autoimmune encephalomyelitis. Biochem Biophys Res Commun 373(2):286–291

    Article  PubMed  CAS  Google Scholar 

  • Nakano K, Higashi T et al (2009a) Dopamine released by dendritic cells polarizes Th2 differentiation. Int Immunol 21(6):645–654

    Article  PubMed  CAS  Google Scholar 

  • Nakano K, Matsushita S et al (2009b) Dopamine as an immune-modulator between dendritic cells and T cells and the role of dopamine in the pathogenesis of rheumatoid arthritis. Nihon Rinsho Meneki Gakkai Kaishi 32(1):1–6

    Article  PubMed  CAS  Google Scholar 

  • Nakano K, Yamaoka K et al (2011) Dopamine induces IL-6-dependent IL-17 production via D1-like receptor on CD4 naive T cells and D1-like receptor antagonist SCH-23390 inhibits cartilage destruction in a human rheumatoid arthritis/SCID mouse chimera model. J Immunol 186(6):3745–3752

    Article  PubMed  CAS  Google Scholar 

  • Nakashioya H, Nakano K et al (2010) Therapeutic effect of D1-like dopamine receptor antagonist on collagen-induced arthritis of mice. Mod Rheumatol 21(3):260–266

    Article  PubMed  CAS  Google Scholar 

  • Orr CF, Rowe DB et al (2005) A possible role for humoral immunity in the pathogenesis of Parkinson’s disease. Brain 128(Pt 11):2665–2674

    Article  PubMed  Google Scholar 

  • Pacheco R, Prado CE et al (2009) Role of dopamine in the physiology of T-cells and dendritic cells. J Neuroimmunol 216(1–2):8–19

    Article  PubMed  CAS  Google Scholar 

  • Rajda C, Dibo G et al (2005) Increased dopamine content in lymphocytes from high-dose L-Dopa-treated Parkinson’s disease patients. Neuroimmunomodulation 12(2):81–84

    Article  PubMed  CAS  Google Scholar 

  • Ricci A, Bronzetti E et al (1998) Labeling of dopamine D3 and D4 receptor subtypes in human peripheral blood lymphocytes with [3 H]7-OH-DPAT: a combined radioligand binding assay and immunochemical study. J Neuroimmunol 92(1–2):191–195

    Article  PubMed  CAS  Google Scholar 

  • Ricci A, Bronzetti E et al (1999) Dopamine D1-like receptor subtypes in human peripheral blood lymphocytes. J Neuroimmunol 96(2):234–240

    Article  PubMed  CAS  Google Scholar 

  • Rocc P, De Leo C et al (2002) Decrease of the D4 dopamine receptor messenger RNA expression in lymphocytes from patients with major depression. Prog Neuropsychopharmacol Biol Psychiatry 26(6):1155–1160

    Article  PubMed  Google Scholar 

  • Rubi B, Maechler P (2010) Minireview: new roles for peripheral dopamine on metabolic control and tumor growth: let’s seek the balance. Endocrinology 151(12):5570–5581

    Article  PubMed  CAS  Google Scholar 

  • Saha B, Mondal AC et al (2001a) Circulating dopamine level, in lung carcinoma patients, inhibits proliferation and cytotoxicity of CD4+ and CD8+ T cells by D1 dopamine receptors: an in vitro analysis. Int Immunopharmacol 1(7):1363–1374

    Article  PubMed  CAS  Google Scholar 

  • Saha B, Mondal AC et al (2001b) Physiological concentrations of dopamine inhibit the proliferation and cytotoxicity of human CD4+ and CD8+ T cells in vitro: a receptor-mediated mechanism. Neuroimmunomodulation 9(1):23–33

    Article  PubMed  CAS  Google Scholar 

  • Sakic B, Lacosta S et al (2002) Altered neurotransmission in brains of autoimmune mice: pharmacological and neurochemical evidence. J Neuroimmunol 129(1–2):84–96

    Article  PubMed  CAS  Google Scholar 

  • Santambrogio L, Lipartiti M et al (1993) Dopamine receptors on human T- and B-lymphocytes. J Neuroimmunol 45(1–2):113–119

    Article  PubMed  CAS  Google Scholar 

  • Sarkar C, Das S et al (2006) Cutting Edge: Stimulation of dopamine D4 receptors induce T cell quiescence by up-regulating Kruppel-like factor-2 expression through inhibition of ERK1/ERK2 phosphorylation. J Immunol 177(11):7525–7529

    PubMed  CAS  Google Scholar 

  • Sarkar C, Basu B et al (2010) The immunoregulatory role of dopamine: an update. Brain Behav Immun 24(4):525–528

    Article  PubMed  CAS  Google Scholar 

  • Schneier FR, Liebowitz MR et al (2000) Low dopamine D(2) receptor binding potential in social phobia. Am J Psychiatry 157(3):457–459

    Article  PubMed  CAS  Google Scholar 

  • Schneier FR, Martinez D et al (2008) Striatal dopamine D(2) receptor availability in OCD with and without comorbid social anxiety disorder: preliminary findings. Depress Anxiety 25(1):1–7

    Article  PubMed  Google Scholar 

  • Sternberg EM, Wedner HJ et al (1987) Effect of serotonin (5-HT) and other monoamines on murine macrophages: modulation of interferon-gamma induced phagocytosis. J Immunol 138(12):4360–4365

    PubMed  CAS  Google Scholar 

  • Strell C, Sievers A et al (2009) Divergent effects of norepinephrine, dopamine and substance P on the activation, differentiation and effector functions of human cytotoxic T lymphocytes. BMC Immunol 10:62

    Article  PubMed  CAS  Google Scholar 

  • ten Bokum AM, Hofland LJ et al (2000) Somatostatin and somatostatin receptors in the immune system: a review. Eur Cytokine Netw 11(2):161–176

    PubMed  Google Scholar 

  • Tsao CW, Lin YS et al (1997) Effect of dopamine on immune cell proliferation in mice. Life Sci 61(24):361–371

    Article  Google Scholar 

  • Tsao CW, Lin YS et al (1998) Inhibition of immune cell proliferation with haloperidol and relationship of tyrosine hydroxylase expression to immune cell growth. Life Sci 62(21):PL 335–PL 344

    Article  CAS  Google Scholar 

  • Wandinger KP, Hagenah JM et al (1999) Effects of amantadine treatment on in vitro production of interleukin-2 in de-novo patients with idiopathic Parkinson’s disease. J Neuroimmunol 98(2):214–220

    Article  PubMed  CAS  Google Scholar 

  • Watanabe Y, Nakayama T et al (2006) Dopamine selectively induces migration and homing of naive CD8+ T cells via dopamine receptor D3. J Immunol 176(2):848–856

    PubMed  CAS  Google Scholar 

  • Wick MM (1981) Levodopa and dopamine analogs: dihydroxy and trihydroxybenzylamines as novel quinol antitumor agents in experimental leukemia in vivo. Cancer Treat Rep 65(9–10):861–867

    PubMed  CAS  Google Scholar 

  • Wikipedia (2011) Dopamine receptor subtypes. vol. doi: http://en.wikipedia.org/wiki/Dopamine_receptor#Dopamine_receptor_subtypes

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mia Levite .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag/Wien

About this chapter

Cite this chapter

Levite, M. (2012). Dopamine in the Immune System: Dopamine Receptors in Immune Cells, Potent Effects, Endogenous Production and Involvement in Immune and Neuropsychiatric Diseases. In: Levite, M. (eds) Nerve-Driven Immunity. Springer, Vienna. https://doi.org/10.1007/978-3-7091-0888-8_1

Download citation

Publish with us

Policies and ethics