Skip to main content

Synthetic Oligosaccharide Bacterial Antigens to Produce Monoclonal Antibodies for Diagnosis and Treatment of Disease Using Bacillus anthracis as a Case Study

  • Chapter
  • First Online:
Anticarbohydrate Antibodies

Abstract

Bacillus anthracis is a Gram-positive, spore-forming soil bacterium that is closely related to Bacillus cereus and Bacillus thuringiensis. Infections with Bacillus anthracis result in a disease called anthrax (Mock and Fouet 2001; Sylvestre et al. 2002). Anthrax is primarily an infection of grazing cattle. Ingested spores germinate within the host to the vegetative form. Vegetative cells multiply, disseminate in the host organism, and kill the host by their virulence factors. Upon contact with air and depending on other environmental factors, the vegetative cells start to sporulate to form the dormant, durable spores again. B. anthracis spores are remarkably resistant to physical stress such as extreme temperatures, radiation, harsh chemicals, desiccation, and physical damage. These properties allow them to persist in the soil for decades (Nicholson et al. 2000). Human anthrax infections are very rare and only occur when humans are closely exposed to infected animals, tissue from infected animals or when they are directly exposed to B. anthracis spores (Quinn and Turnbull 1998). Depending on the route of infection, anthrax can occur in three forms: cutaneous, gastrointestinal or inhalation anthrax.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adamo R, Saksena R, Kováč P (2005) Synthesis of the beta anomer of the spacer-equipped tetrasaccharide side chain of the major glycoprotein of the Bacillus anthracis exosporium. Carbohydr Res 340:2579–2582

    Article  PubMed  CAS  Google Scholar 

  • Beatty ME, Ashford DA, Griffin PM, Tuxe RV, Sobel J (2003) Gastrointestinal anthrax: review of the literature. Arch Intern Med 163:2527–2531

    Article  PubMed  Google Scholar 

  • Brachman PS, Gold H, Plotkin SA, Fekety FR, Werrin M, Ingraham NR (1962) Field evaluation of a human anthrax vaccine. Am J Public Health Nations Health 52:632–645

    Article  PubMed  CAS  Google Scholar 

  • Carpino LA, El-Faham A (1995) Efficiency in peptide coupling: 1-hydroxy-7-azabenzotriazole vs 3,4-dihydro-3-hydroxy-4-oxo-1,2,3-benzotriazine. J Org Chem 60:3561–3564

    Article  CAS  Google Scholar 

  • Choudhury B, Leoff C, Saile E, Wilkins P, Quinn CP, Kannenberg EL, Carlson RW (2006) The structure of the major cell wall polysaccharide of Bacillus anthracis is species-specific. J Biol Chem 281:27932–27941

    Article  PubMed  CAS  Google Scholar 

  • Crich D, Vinogradova O (2007) Synthesis of the antigenic tetrasaccharide side chain from the major glycoprotein of Bacillus anthracis exosporium. J Org Chem 72:6513–6520

    Article  PubMed  CAS  Google Scholar 

  • Daubenspeck JM, Zeng H, Chen P, Dong S, Steichen CT, Krishna NR, Pritchard DG, Turnbough CL Jr (2004) Novel oligosaccharide side chains of the collagen-like region of BclA, the major glycoprotein of the Bacillus anthracis exosporium. J Biol Chem 279:30945–30953

    Article  PubMed  CAS  Google Scholar 

  • Dong S, McPherson SA, Tan L, Chesnokova ON, Turnbough CL Jr, Pritchard DG (2008) Anthrose biosynthetic operon of Bacillus anthracis. J Bacteriol 190:2350–2359

    Article  PubMed  CAS  Google Scholar 

  • Food and Drug Administration (2005) 21 CFR Parts 201 and 610. Biological products; bacterial vaccines and toxoids; implementation of efficacy review; anthrax vaccine adsorbed; final order. Federal Register 70:75180–75198

    Google Scholar 

  • Fürstner A, Müller T (1999) Efficient total synthesis of resin glycosides and analogues by ring-closing olefin methathesis. J Am Chem Soc 121:7814–7821

    Article  Google Scholar 

  • Golik J, Wong H, Krishnan B, Vyas DM, Doyle TW (1991) Stereochemical studies on esperamicins: determination of the absolute configuration of hydroxyamino sugar fragment. Tetrahedron Lett 32:1851–1854

    Article  CAS  Google Scholar 

  • Guo H, O’Doherty GA (2007a) De Novo asymmetric synthesis of the anthrax tetrasaccharide by a palladium-catalyzed glycosylation reaction. Angew Chem Int Ed 46:5206–5208

    Article  CAS  Google Scholar 

  • Guo H, O’Doherty GA (2007b) De Novo asymmetric synthesis of anthrax tetrrasaccharide and related tetrasaccharide. J Org Chem 73:5211–5220

    Article  Google Scholar 

  • Kuehn A, Kováč P, Saksena R, Bannert N, Klee SR, Ranisch H, Grunow R (2009) Development of antibodies against anthrose tetrasaccharide for specific detection of Bacillus anthracis spores. Clin Vaccine Immunol 16:1728–1737

    Article  PubMed  CAS  Google Scholar 

  • Lucez D (2005) Bacillus anthracis (anthrax). In: Mandell G, Bennett J, Dolin R (eds) Mandell, Douglas, and Bennett’s principles and practice of infectious disease. Churchill Livingstone, Philadelphia, pp 2485–2491

    Google Scholar 

  • Mehta AS, Saile E, Zhong W, Buskas T, Carlson R, Kannenberg E, Reed Y, Quinn CP, Boons GJ (2006) Synthesis and antigenic analysis of the BclA glycoprotein oligosaccharide from the Bacillus anthracis exosporium. Chem Eur J 12:9136–9149

    Article  PubMed  CAS  Google Scholar 

  • Meyer M, Meyer B (1999) Characterization of ligand binding by saturation transfer difference NMR spectroscopy. Angew Chem Int Ed 38:1784–1788

    Article  Google Scholar 

  • Meyer B, Peters T (2003) NMR spectroscopy techniques for screening and identifying ligand binding to protein receptors. Angew Chem Int Ed 42:864–890

    Article  CAS  Google Scholar 

  • Moayeri M, Leppla SH (2004) The roles of anthrax toxin in pathogenesis. Curr Opin Microbiol 7:19–24

    Article  PubMed  CAS  Google Scholar 

  • Mock M, Fouet A (2001) Anthrax. Annu Rev Microbiol 55:647–671

    Article  PubMed  CAS  Google Scholar 

  • Nicholson WL, Munakata N, Horneck G, Melosh HJ, Setlow P (2000) Resistance of Bacillus endospores to extrem terrestrial and extraterrestrial environments. Microbiol Mol Biol Rev 64:548–572

    Article  PubMed  CAS  Google Scholar 

  • Oberli MA, Bindschädler P, Werz DB, Seeberger PH (2008) Synthesis of a hexasaccharide repeating unit from Bacillus anthracis vegetative cell walls. Org Lett 10:905–908

    Article  PubMed  CAS  Google Scholar 

  • Oberli MA, Tamorrini M, Tsai YH, Werz DB, Horlacher T, Adibekian A, Gauss D, Möller HM, Pluschke G, Seeberger PH (2010) Molecular analysis of carbohydrate-antibody interactions: a case study using a B. anthracis tetrasaccharide. J Am Chem Soc 132:10239–10241

    Article  PubMed  CAS  Google Scholar 

  • Pasteur L (1881) De l’attenuation des virus et de leur retour à la virulence. Acad Sci Agric Bulg 92:429–435

    Google Scholar 

  • Quinn C, Turnbull P (1998) Anthrax. In: Collier L, Balows A, Sussman M (eds) Topley & Wilson’s microbiology and microbial infections, 9th edn. Arnold/Oxford University Press, London/New York, pp 799–818

    Google Scholar 

  • Raguputhi G, Koganty RR, Qiu D, Lloyd KO, Livingston PO (1998) A novel and efficient method for synthetic carbohydrate conjugation vaccine prepapation: synthesis of sialyl Tn-KLH conjugate using a 4-(4-N-maleimidomethyl)-cyclohexane-1-carboxyl hydrazide (MMCCH) linker arm. Glycoconj J 15:217–221

    Article  Google Scholar 

  • Rotz LD, Khan AS, Lillibridge SR, Ostroff SM, Hughes JM (2002) Public health assessment of potential biological terrorism agents. Emerg Infect Dis 8:225–230

    Article  PubMed  Google Scholar 

  • Saksena R, Adamo R, Kováč P (2005) Studies toward a conjugate vaccine for anthrax. Synthesis and characterization of anthrose [4,6-dideoxy-4-(3-hydroxy-3-methylbutanamido)-2-O-methyl-d-glucopyranose] and its methyl glycosides. Carbohydr Res 340:1591–1600

    Article  PubMed  CAS  Google Scholar 

  • Saksena R, Adamo R, Kováč P (2006) Synthesis of the tetrasaccharide side chain of the major glycoprotein of the Bacillus anthracis exosporium. Bioorg Med Chem Lett 16:615–617

    Article  PubMed  CAS  Google Scholar 

  • Saksena R, Adamo R, Kováč P (2007) Immunogens related to the synthetic tetrasaccharide side chain of the Bacillus anthracis exosporium. Bioorg Med Chem 15:4283–4310

    Article  PubMed  CAS  Google Scholar 

  • Sarkar K, Mukherjee I, Roy N (2003) Synthesis of the trisaccharide repeating unit of the O-antigen related to the enterohemorrhagic Escherichia coli type O26:H. J Carbohydr Chem 22:95–107

    Article  CAS  Google Scholar 

  • Seeberger PH, Werz DB (2007) Synthesis and medical application of oligosaccharides. Nature 446:1046–1051

    Article  PubMed  CAS  Google Scholar 

  • Sterne M (1939) The use of anthrax vaccines prepared from avirulent (uncapsulated) variants of Bacillus anthracis. J Vet Sci Anim Ind 13:307–312

    Google Scholar 

  • Sylvestre P, Couture-Tosi E, Mock M (2002) A collagen-like surface glycoprotein is a structural component of the Bacillus anthracis exosporium. Mol Microbiol 45:169–178

    Article  PubMed  CAS  Google Scholar 

  • Tamborrini M, Werz DB, Frey J, Pluschke G, Seeberger PH (2006) Anti-carbohydrate antibodies for detection of anthrax spores. Angew Chem Int Ed 45:6581–6582

    Article  CAS  Google Scholar 

  • Tamborrini M, Oberli MA, Werz DB, Schürch N, Frey J, Seeberger PH, Pluschke G (2009) Immuno-detection of anthrose containing tetrasaccharide in the exosporium of Bacillus anthracis and Bacillus cereus strains. JAMA 106:1618–1628

    CAS  Google Scholar 

  • Tigertt WD (1980) William Smith Greenfield, M.D., F.R.C.P, Professor Superintendent, the Brown Animal Sanatory Institution (1878–81) Concerning the priority due to him for the production of the first vaccine against anthrax. J Hyg London:415–420

    Google Scholar 

  • Vasan M, Rauvolfova J, Wolfert MA, Leoff C, Kannenberg EL, Quinn CP, Carlson RW, Boons GJ (2008) Chemical synthesis and immunological properties of oligosaccharides derived from the vegetative cell wall of Bacillus anthracis. Chembiochem 9:1716–1720

    Article  PubMed  CAS  Google Scholar 

  • Wang ZG, Williams LJ, Zhang XF, Zatorski A, Kudryashov V, Ragupathi G, Spassova M, Bornmann W, Slovin SF, Scher HI, Livingston PO, Lloyd KO, Danishefsky SJ (2000) Polyclonal antibodies from patients immunized with a globo H-keyhole limpet hemocyanin vaccine: isolation, quantification, and characterization of immune responses by using totally synthetic immobilized tumor antigens. Proc Natl Acad Sci USA 97:2719–2724

    Article  PubMed  CAS  Google Scholar 

  • Werz DB, Seeberger PH (2005) Total synthesis of antigen Bacillus anthracis tetrasaccharide-creation of an anthrax vaccine candidate. Angew Chem Int Ed 44:6315–6318

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter H. Seeberger .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag/Wien

About this chapter

Cite this chapter

Oberli, M.A., Horlacher, T., Werz, D.B., Seeberger, P.H. (2012). Synthetic Oligosaccharide Bacterial Antigens to Produce Monoclonal Antibodies for Diagnosis and Treatment of Disease Using Bacillus anthracis as a Case Study. In: Kosma, P., Müller-Loennies, S. (eds) Anticarbohydrate Antibodies. Springer, Vienna. https://doi.org/10.1007/978-3-7091-0870-3_2

Download citation

Publish with us

Policies and ethics