Skip to main content

Strain Effects on the Conduction Band of Silicon

  • Chapter
  • First Online:
Strain-Induced Effects in Advanced MOSFETs

Part of the book series: Computational Microelectronics ((COMPUTATIONAL))

  • 1030 Accesses

Abstract

The conduction band in silicon consists of six equivalent valleys with their energy minima located close to the corresponding X-points of the first Brillouin zone. Within the usually used parabolic approximation (.1) each valley is characterized by two transversal and one longitudinal effective mass(7). At higher energy a non-parabolic isotropic correction must be included to reproduce the density of states correctly(76).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ando, T., Fowler, A.B., Stern, F.: Electronic properties of two-dimensional systems. Rev. Mod. Phys. 54(2), 437–672 (1982)

    Article  Google Scholar 

  2. Balslev, I.: Influence of uniaxial stress on the indirect absorption edge in silicon and germanium. Phys. Rev. 143, 636–647 (1966)

    Article  Google Scholar 

  3. Bir, G.L., Pikus, G.E.: Symmetry and Strain-Induced Effects in Semiconductors. Wiley, New York (1974)

    Google Scholar 

  4. Boykin, T.B., Klimeck, G., Oyafuso, F.: Valence band effective-mass expressions in the sp 3 d 5 s ∗ empirical tight-binding model applied to a Si and Ge parametrization. Phys. Rev. B 69(11), 115201 (2004)

    Article  Google Scholar 

  5. Esseni, D., Palestri, P.: Linear combination of bulk bands method for investigating the low-dimensional electron gas in nanostructured devices. Phys. Rev. B 72(16), 165342 (2005)

    Article  Google Scholar 

  6. Fischetti, M.V., Gámiz, F., Hänsch, W.: On the enhanced electron mobility in strained-silicon inversion layers. J. Appl. Phys. 92(12), 7320–7324 (2002)

    Article  Google Scholar 

  7. Fischetti, M.V., Laux, S.E.: Monte Carlo simulation of electron transport in Si: The first 20 years. In: 26th European Solid State Device Research Conference, pp. 813–820 (1996)

    Google Scholar 

  8. Hensel, J.C., Hasegawa, H., Nakayama, M.: Cyclotron resonance in uniaxially stressed silicon. II. Nature of the covalent bond. Phys. Rev. 138(1A), A225–A238 (1965)

    Google Scholar 

  9. Jacoboni, C., Reggiani, L.: The Monte Carlo method for the solution of charge transport in semiconductors with applications to covalent materials. Rev. Mod. Phys. 55(3), 645–705 (1983)

    Article  Google Scholar 

  10. Niquet, Y.M., Rideau, D., Tavernier, C., Jaouen, H., Blase, X.: Onsite matrix elements of the tight-binding hamiltonian of a strained crystal: Application to silicon, germanium, and their alloys. Phys. Rev. B 79(24), 245201 (2009)

    Article  Google Scholar 

  11. Rideau, D., Feraille, M., Ciampolini, L., Minondo, M., Tavernier, C., Jaouen, H., Ghetti, A.: Strained Si, Ge, and Si1−x Ge x alloys modeled with a first-principles-optimized full-zone k⋅p method. Phys. Rev. B 74(19), 195208 (2006)

    Article  Google Scholar 

  12. Rieger, M.M., Vogl, P.: Electronic-band parameters in strained Si1−x Ge x alloys on Si1−y Ge y substrates. Phys. Rev. B 48(19), 14,276–14,287 (1993)

    Google Scholar 

  13. Shiri, D., Kong, Y., Buin, A., Anantram, M.P.: Strain induced change of bandgap and effective mass in silicon nanowires. Appl. Phys. Lett. 93(7), 073114 (2008)

    Article  Google Scholar 

  14. Sverdlov, V., Baumgartner, O., Kosina, H., Selberherr, S., Schanovsky, F., Esseni, D.: The linear combination of bulk bands-method for electron and hole subband calculations in strained silicon films and surface layers. In: International Workshop on Computational Electroncis, pp.49–52 (2009)

    Google Scholar 

  15. Sverdlov, V., Ungersboeck, E., Kosina, H., Selberherr, S.: Effects of shear strain on the conduction band in silicon: An efficient two-band k⋅p theory. In: Proc. European Solid-State Device Research Conf., pp. 386–389 (2007)

    Google Scholar 

  16. Sverdlov, V., Ungersboeck, E., Kosina, H., Selberherr, S.: Current transport models for nanoscale semiconductor devices. Mater. Sci. Eng. R 58(6–7), 228–270 (2008)

    Article  Google Scholar 

  17. Takagi, S.I., Hoyt, J.L., Welser, J.J., Gibbons, J.F.: Comparative study of phonon-limited mobility of two-dimensional electrons in strained and unstrained Si metal-oxide-semiconductor field-effect transistors. J. Appl. Phys. 80(3), 1567–1577 (1996)

    Article  Google Scholar 

  18. Uchida, K., Kinoshita, A., Saitoh, M.: Carrier transport in (110) nMOSFETs: Subband structure, non-parabolicity, mobility characteristics, and uniaxial stress engineering. In: Intl. Electron Devices Meeting, pp. 1019–1021 (2006)

    Google Scholar 

  19. Uchida, K., Krishnamohan, T., Saraswat, K.C., Nishi, Y.: Physical mechanisms of electron mobility enhancement in uniaxial stressed MOSFETs and impact of uniaxial stress engineering in ballistic regime. In: Intl. Electron Devices Meeting, pp. 129–132 (2005)

    Google Scholar 

  20. Ungersboeck, E., Dhar, S., Karlowatz, G., Sverdlov, V., Kosina, H., Selberherr, S.: The effect of general strain on band structure and electron mobility of silicon. IEEE Trans. Electron Devices 54(9), 2183–2190 (2007)

    Article  Google Scholar 

  21. VASP: Vienna Ab-initio Simulation Program. Kresse, G., Hafner, J.: Phys. Rev. B 47, 558 (1993); ibid. B 49, 14251 (1994); Kresse, G., Fertmueller, J.: Phys. Rev. B 54, 11169 (1996); Computs. Mat. Sci. 6, 15 (1996)

    Google Scholar 

  22. Yu, P., Cardona, M.: Fundamentals of Semiconductors. Springer, Berlin (2003)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Viktor Sverdlov .

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag/Wien

About this chapter

Cite this chapter

Sverdlov, V. (2011). Strain Effects on the Conduction Band of Silicon. In: Strain-Induced Effects in Advanced MOSFETs. Computational Microelectronics. Springer, Vienna. https://doi.org/10.1007/978-3-7091-0382-1_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-0382-1_9

  • Published:

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-7091-0381-4

  • Online ISBN: 978-3-7091-0382-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics