Skip to main content

Perturbative Methods for Band Structure Calculations in Silicon

  • Chapter
  • First Online:
Strain-Induced Effects in Advanced MOSFETs

Part of the book series: Computational Microelectronics ((COMPUTATIONAL))

  • 939 Accesses

Abstract

The methods of computing the band structure considered in the previous chapter are intrinsically numerical. In some cases the analytical expressions for the band structure close to the extremum points are needed. The k⋅p method is based on the perturbative approach and allows to obtain the analytical band structure close to a chosen point provided the eigenenergies and eigenfunctions at this point are known.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Baldereschi, A., Lipari, N.O.: Spherical model of shallow acceptor states in semiconductors. Phys. Rev. B 8(6), 2697–2709 (1973)

    Article  Google Scholar 

  2. Bir, G.L., Pikus, G.E.: Symmetry and Strain-Induced Effects in Semiconductors. Willey, New York - Toronto (1974)

    Google Scholar 

  3. Boykin, T.B., Klimeck, G., Oyafuso, F.: Valence band effective-mass expressions in the sp 3 d 5 s empirical tight-binding model applied to a Si and Ge parametrization. Phys. Rev. B 69(11), 115201 (2004)

    Article  Google Scholar 

  4. Broido, D.A., Sham, L.J.: Effective masses of holes at gaas-algaas heterojunctions. Phys. Rev. B 31(2), 888–892 (1985)

    Article  Google Scholar 

  5. Chao, C.Y.P., Chuang, S.L.: Resonant tunneling of holes in the multiband effective-mass approximation. Phys. Rev. B 43(9), 7027–7039 (1991)

    Article  Google Scholar 

  6. Chao, C.Y.P., Chuang, S.L.: Spin-orbit-coupling effects on the valence-band structure of strained semiconductor quantum wells. Phys. Rev. B 46(7), 4110–4122 (1992). DOI 10.1103/PhysRevB.46.4110

    Article  Google Scholar 

  7. El Kurdi, M., Fishman, G., Sauvage, S., Boucaud, P.: Comparison between 6-band and 14-band kp formalisms in SiGe/Si heterostructures. Phys. Rev. B 68(16), 165, 333 (2003)

    Google Scholar 

  8. Hensel, J.C., Hasegawa, H., Nakayama, M.: Cyclotron resonance in uniaxially stressed silicon. II. Nature of the covalent bond. Phys. Rev. 138(1A), A225–A238 (1965)

    Google Scholar 

  9. Jacoboni, C., Reggiani, L.: The Monte Carlo method for the solution of charge transport in semiconductors with applications to covalent materials. Rev. Mod. Phys. 55(3), 645–705 (1983)

    Article  Google Scholar 

  10. Luttinger, J.M.: Quantum theory of cyclotron resonance in semiconductors: General theory. Phys. Rev. 102(4), 1030–1041 (1956)

    Article  MATH  Google Scholar 

  11. Luttinger, J.M., Kohn, W.: Motion of electrons and holes in perturbed periodic fields. Phys. Rev. 97(4), 869–883 (1955)

    Article  MATH  Google Scholar 

  12. Manku, T., McGregor, J.M., Nathan, A., Roulston, D.J., Noel, J.P., Houghton, D.C.: Drift hole mobility in strained and unstrained doped Si1 − x Ge x alloys. IEEE Trans. Electron Devices 40(11), 1990–1996 (1993)

    Article  Google Scholar 

  13. Mayer, H., Rössler, U.: Nonparabolicity in the conduction band of II-VI semiconductors. Solid State Commun. 87(2), 81–84 (1993)

    Article  Google Scholar 

  14. Rideau, D., Feraille, M., Ciampolini, L., Minondo, M., Tavernier, C., Jaouen, H., Ghetti, A.: Strained Si, Ge, and Si1 − x Ge x alloys modeled with a first-principles-optimized full-zone kp method. Phys. Rev. B 74(19), 195,208 (2006)

    Google Scholar 

  15. Rodríguez, S., López-Villanueva, J.A., Melchor, I., Carceller, J.E.: Hole confinement and energy subbands in a silicon inversion layer using the effective mass theory. J. Appl. Phys. 86(1), 438–444 (1999)

    Article  Google Scholar 

  16. Tinkham, M.: Group Theory and Quantum Mechanics. McGraw-Hill, New York (1964)

    MATH  Google Scholar 

  17. Uchida, K., Kinoshita, A., Saitoh, M.: Carrier transport in (110) nMOSFETs: Subband structure, non-parabolicity, mobility characteristics, and uniaxial stress engineering. In: Intl. Electron Devices Meeting, pp. 1019–1021 (2006)

    Google Scholar 

  18. Ungersboeck, E., Dhar, S., Karlowatz, G., Sverdlov, V., Kosina, H., Selberherr, S.: The effect of general strain on band structure and electron mobility of silicon. IEEE Trans. Electron Devices 54(9), 2183–2190 (2007)

    Article  Google Scholar 

  19. VASP: Vienna Ab-initio Simulation Program. Kresse, G., Hafner, J.: Phys. Rev. B 47, 558 (1993); ibid. B 49, 14251 (1994); Kresse, G., Fertmueller, J.: Phys. Rev. B 54, 11169 (1996); Comput. Mat. Sci. 6, 15 (1996)

    Google Scholar 

  20. Yu, P., Cardona, M.: Fundamentals of Semiconductors. Springer, Berlin (2003)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Viktor Sverdlov .

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag/Wien

About this chapter

Cite this chapter

Sverdlov, V. (2011). Perturbative Methods for Band Structure Calculations in Silicon. In: Strain-Induced Effects in Advanced MOSFETs. Computational Microelectronics. Springer, Vienna. https://doi.org/10.1007/978-3-7091-0382-1_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-0382-1_6

  • Published:

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-7091-0381-4

  • Online ISBN: 978-3-7091-0382-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics