Skip to main content

Demands of Transport Modeling in Advanced MOSFETs

  • Chapter
  • First Online:
Strain-Induced Effects in Advanced MOSFETs

Part of the book series: Computational Microelectronics ((COMPUTATIONAL))

  • 968 Accesses

Abstract

Integrated circuits (IC) play a key role in modern digital information society. Superior computational performance is achieved by making transistor faster and assembling more and more elements on a chip, This is achieved by scaling the MOSFET size down. In the past decade the minimum feature size of transistor has been successfully reduced which allowed to double the number of transistors on a chip every second year. This trend is expected to continue in the next decade, as predicted and institutionalized by the International Technology Roadmap for Semiconductors(1) and supported by demonstration of MOSFETs with the gate length as short as 6nm(28).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. International Technology Roadmap for Semiconductors: 2005 Edition (2005). http://www.itrs.net/Links/2009ITRS/Home2009.htm

  2. Online Simulations and More (2010). http://www.nanohub.org

  3. Ancona, M.G.: Macroscopic description of quantum-mechanical tunneling. Phys. Rev. B 42(2), 1222–1233 (1990)

    Article  MathSciNet  Google Scholar 

  4. Ancona, M.G., Tiersten, H.F.: Quantum correction to the equation of state of an electron gas in a semiconductor. Phys. Rev. B 39(13), 9536–9540 (1989)

    Article  Google Scholar 

  5. Ancona, M.G., Yu, Z., Dutton, R.W., Voorde, P.J.V., Cao, M., Vook, D.: Density-gradient analysis of tunneling in MOS structures with ultra-thin oxides. In: Proc. Intl. Conf. Simulation of Semiconductor Processes and Devices, pp. 235–238 (1999)

    Google Scholar 

  6. Ancona, M.G., Yu, Z., Dutton, R.W., Voorde, P.J.V., Cao, M., Vook, D.: Density-gradient analysis of MOS tunneling. IEEE Trans. Electron Devices 47(12), 2310–2319 (2000)

    Article  Google Scholar 

  7. Ando, T., Fowler, A.B., Stern, F.: Electronic properties of two-dimensional systems. Rev. Mod. Phys. 54(2), 437–672 (1982)

    Article  Google Scholar 

  8. Asenov, A., Brown, A.R., Watling, J.R.: Quantum corrections in the simulation of decanano MOSFETs. Solid State Electron. 47(7), 1141–1145 (2003)

    Article  Google Scholar 

  9. Balestra, F., Cristoloveanu, S., Benachir, M., Brini, J., Elewa, T.: Double-gate silicon-on-insulator transistor with volume inversion: a new device with greatly enhanced performance. IEEE Electron Device Lett. 8(9), 410–412 (1987)

    Article  Google Scholar 

  10. Balslev, I.: Influence of uniaxial stress on the indirect absorption edge in silicon and germanium. Phys. Rev. 143, 636–647 (1966)

    Article  Google Scholar 

  11. Blotekjaer, K.: Transport equations for electrons in two-valley semiconductors. IEEE Trans. Electron Devices 17(1), 38–47 (1970)

    Article  Google Scholar 

  12. Bosi, S., Jacoboni, C.: Monte Carlo high field transport in degenerate GaAs. J. Phys. C: Solid State Phys. 9, 315–319 (1976)

    Article  Google Scholar 

  13. Bourgade, J.P., Degond, P., Mehats, F., Ringhofer, C.: On quantum extensions to classical spherical harmonics expansion/Fokker-Planck models. J. Math. Phys. 47(4), 043302 (2006)

    Article  MathSciNet  Google Scholar 

  14. Boykin, T.B., Luisier, M., Salmani-Jelodar, M., Klimeck, G.: Strain-induced, off-diagonal, same-atom parameters in empirical tight-binding theory suitable for [110] uniaxial strain applied to a silicon parametrization. Phys. Rev. B 81(12), 125,202 (2010)

    Google Scholar 

  15. Bufler, F.M., Hudé, R., Erlebach, A.: On a simple and accurate quantum correction for Monte Carlo simulations. In: Intl. Workshop Comput. Electroncis, pp. 101–102. Wien (2006)

    Google Scholar 

  16. Buot, F., Jensen, K.: Lattice Weyl-Wigner formulation of exact many-body quantum-transport theory and applications to novel solid-state quantum-based devices. Phys. Rev. B 42(15), 9429–9457 (1990)

    Article  Google Scholar 

  17. Canali, C., Jacoboni, C., Nava, F., Ottaviani, G., Quaranta, A.: Electron drift velocity in silicon. Phys. Rev. B 12(4), 2265–2284 (1975)

    Article  Google Scholar 

  18. Caymax, M., Eneman, G., Bellenger, F., Merckling, C., Delabie, A., Wang, G., Loo, R., Simoen, E., Mitard, J., DeJaeger, B., Hellings, G., DeMeyer, K., Meuris, M., Heyns, M.: Germanium for advanced CMOS anno 2009: A SWOT analysis. In: Intl. Electron Devices Meeting, pp.1–4 (2009)

    Google Scholar 

  19. Colman, D., Bate, R.T., Mize, J.P.: Mobility anisotropy and piezoresistance in silicon p-type inversion layers. J. Appl. Phys. 39(4), 1923–1931 (1968)

    Article  Google Scholar 

  20. Curatola, G., Fiori, G., Iannaccone, G.: Modeling and simulation challenges for nanoscale mosfets in the ballistic limit. Solid State Electron. 48(4), 581–587 (2004)

    Article  Google Scholar 

  21. Datta, S.: Electronic Transport In Mesoscopic Systems. Cambridge University Press, Cambridge (1995)

    Google Scholar 

  22. Datta, S.: Quantum Transport: Atom To Transistor. Cambridge University Press, Cambridge (2005)

    Book  MATH  Google Scholar 

  23. Degond, P., Ringhofer, C.: Quantum moment hydrodynamics and entropy principle. J. Stat. Phys. 112(3), 587–628 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  24. DeMari, A.: An accurate numerical steady-state one-dimensional solution of the p-n junction. Solid State Electron. 11, 33–58 (1968)

    Article  Google Scholar 

  25. Dhar, S., Kosina, H., Palankovski, V., Ungersboeck, E., Selberherr, S.: Electron mobility model for strained-Si devices. IEEE Trans. Electron Devices 52(4), 527–533 (2005)

    Article  Google Scholar 

  26. Dhar, S., Ungersboeck, E., Kosina, H., Grasser, T., Selberherr, S.: Electron mobility model for ⟨110⟩ stressed silicon including strain-dependent masses. IEEE Trans. Nanotechnol. 6(1), 97–100 (2007)

    Article  Google Scholar 

  27. Donetti, L., Gámiz, F., Rodriguez, N., Jamenez, F., Sampedro, C.: Influence of acoustic phonon confinement on electron mobility in ultrathin silicon on insulator layers. Appl. Phys. Lett. 88(1), 122108(1–3) (2006)

    Google Scholar 

  28. Doris, B., Ieong, M., Kanarsky, T., Zhang, Y., Roy, R.A., Documaci, O., Ren, Z., Jamin, F.F., Shi, L., Natzle, W., Huang, H.J., Mezzapelle, J., Mocuta, A., Womack, S., Gribelyuk, M., Jones, E.C., Miller, R.J., Wong, H.S.P., Haensch, W.: Extreme scaling with ultra-thin si channel MOSFETs. In: Intl. Electron Devices Meeting, pp. 267–270 (2002)

    Google Scholar 

  29. van Dort, M.J., Woerlee, P.H., Walker, A.J.: A simple model for quantization effects in heavily-doped silicon MOSFETs at inversion conditions. Solid State Electron. 37(3), 411–414 (1994)

    Article  Google Scholar 

  30. Egley, J., Chidambarao, D.: Strain effects on devide characteristics: Implementation in drift-difusion simulators. Solid State Electron. 36(12), 1653–1664 (1993)

    Article  Google Scholar 

  31. Esseni, D.: On the modeling of surface roughness limited mobility in SOI MOSFETs and its correlation to the transistor effective field. IEEE Trans. Electron Devices 51(3), 394–401 (2004)

    Article  Google Scholar 

  32. Esseni, D., Abramo, A.: Mobility modelling of SOI MOSFETs. Semicond. Sci. Technol. 19, S67–S70 (2004)

    Article  Google Scholar 

  33. Esseni, D., Mastrapasqua, M., Celler, G., Fiegna, C., Selmi, L., Sangiorgi, E.: An experimental study of mobility enhancement in ultrathin SOI transistors operated in double-gate mode. IEEE Trans. Electron Devices 50(3), 802–808 (2003)

    Article  Google Scholar 

  34. Fan, X.F., Register, L.F., Winstead, B., Foisy, M.C., Chen, W.Q., Zheng, X., Ghosh, B., Banerjee, S.K.: Hole mobility and thermal velocity enhancement for uniaxial stress in Si up to 4GPa. IEEE Trans. Electron Devices 54(2), 291–296 (2007)

    Article  Google Scholar 

  35. Fawcett, W., Boardman, A., Swain, S.: Monte Carlo determination of electron transport properties in gallium arsenide. J. Phys. Chem. Solids 31, 1963–1990 (1970)

    Article  Google Scholar 

  36. Fawcett, W., Paige, E.: Negative differential mobility of electrons in germanium: A Monte Carlo calculation of the distribution function, drift velocity and carrier population in the<111>and<100>minima. J. Phys. C: Solid State Phys. 4, 1801–1821 (1971)

    Article  Google Scholar 

  37. Ferry, D., Akis, R., Vasileska, D.: Quantum effects in MOSFETs: Use of an effective potential in 3D Monte Carlo simulations in ultra-short channel devices. In: Intl. Electron Devices Meeting, pp. 287–290 (2000)

    Google Scholar 

  38. Fischetti, M., Laux, S.: Monte Carlo simulation of electron transport in Si: The first 20 years. In: Baccarani, G., Rudan, M. (eds.) 26th European Solid State Device Research Conference, pp. 813–820. Editions Frontiers, Bologna, Italy (1996)

    Google Scholar 

  39. Fischetti, M.V.: Theory of electron transport in small semiconductor devices using the Pauli master equation. J. Appl. Phys. 83(1), 270–291 (1998)

    Article  Google Scholar 

  40. Fischetti, M.V.: Master-equation approach to the study of electronic transport in small semiconductor devices. Phys. Rev. B 59(7), 4901–4917 (1999)

    Article  Google Scholar 

  41. Fischetti, M.V., Gámiz, F., Hänsch, W.: On the enhanced electron mobility in strained-silicon inversion layers. J. Appl. Phys. 92(12), 7320–7324 (2002)

    Article  Google Scholar 

  42. Fischetti, M.V., Laux, S.E.: Monte Carlo analysis of electron transport in small semiconductor devices including band-structure and space-charge effects. Phys. Rev. B 38(14), 9721–9745 (1988)

    Article  Google Scholar 

  43. Fischetti, M.V., Ren, Z., Solomon, P.M., Yang, M., Rim, K.: Six-band k⋅p calculation of the hole mobility in silicon inversion layers: Dependence on surface orientation, strain, and silicon thickness. J. Appl. Phys. 94(2), 1079–1095 (2003)

    Article  Google Scholar 

  44. Frensley, W.: Quantum transport simulation of the resonant tunneling diode. In: Intl. Electron Devices Meeting, Los Angeles, pp. 571–574 (1986)

    Google Scholar 

  45. Frensley, W.: Transient response of a tunneling device obtained from the Wigner function. Phys. Rev. Lett. 57(22), 2853–2856 (1986)

    Article  Google Scholar 

  46. Frensley, W.: Wigner-function model of a resonant-tunneling semiconductor device. Phys. Rev. B 36(3), 1570–1580 (1987)

    Article  Google Scholar 

  47. Frensley, W.: Effect of inelastic processes on the self-consistent potential in the resonant-tunneling diode. Solid State Electron. 32(12), 1235–1239 (1989)

    Article  Google Scholar 

  48. Frensley, W.: Boundary conditions for open quantum systems driven far from equilibrium. Rev. Mod. Phys. 62(3), 745–791 (1990)

    Article  Google Scholar 

  49. Frensley, W.: Numerical evaluation of resonant states. Superlattices Microstructures 11(3), 347–350 (1992)

    Article  Google Scholar 

  50. Gebauer, R., Car, R.: Current in open quantum qystems. Phys. Rev. Lett. 93(16), 160,404 (2004)

    Google Scholar 

  51. Gebauer, R., Car, R.: Kinetic theory of quantum transport at the nanoscale. Phys. Rev. B 70(12), 125,324 (2004)

    Google Scholar 

  52. Gehring, A., Grasser, T., Kosina, H., Selberherr, S.: Simulation of hot-electron oxide tunneling current based on a non-Maxwellian electron energy distribution function. J. Appl. Phys. 92(10), 6019–6027 (2002)

    Article  Google Scholar 

  53. Gehring, A., Kosina, H.: Wigner-function based simulation of quantum transport in scaled DG-MOSFETs using the Monte Carlo method. J. Comput. Electron. 4(1–2), 67–70 (2005)

    Article  Google Scholar 

  54. Gilbert, M., Akis, R., Ferry, D.: Phonon-assisted ballistic to diffusive crossover in silicon nanowire transistors. J. Appl. Phys. 98(9), 094,303–1–8 (2005)

    Google Scholar 

  55. Grasser, T., Jungemann, C., Kosina, H., Meinerzhagen, B., Selberherr, S.: Advanced transport models for sub-micrometer devices. In: Proc. Intl. Conf. Simulation of Semiconductor Processes and Devices, pp. 1–8 (2004)

    Google Scholar 

  56. Grasser, T., Kosik, R., Jungemann, C., Kosina, H., Selberherr, S.: Nonparabolic macroscopic transport models for device simulation based on bulk Monte Carlo data. J. Appl. Phys. 97(9), 0937,101–09371,012 (2005)

    Google Scholar 

  57. Grasser, T., Kosina, H., Gritsch, M., Selberherr, S.: Using six moments of Boltzmann’s transport equation for device simulation. J. Appl. Phys. 90(5), 2389–2396 (2001)

    Article  Google Scholar 

  58. Grasser, T., Kosina, H., Heitzinger, C., Selberherr, S.: Characterization of the hot electron distribution function using six moments. J. Appl. Phys. 91(6), 3869–3879 (2002)

    Article  Google Scholar 

  59. Grasser, T., Kosina, H., Selberherr, S.: An impact ionization model including non-maxwellian and non-parabolicity effects. In: Proc. Intl. Conf. Simulation of Semiconductor Processes and Devices, pp. 46–49 (2001)

    Google Scholar 

  60. Grasser, T., Kosina, H., Selberherr, S.: Hot carrier effects within macroscopic transport models. Intl. J. High Speed Electron. 13(3), 873–901 (2003)

    Article  Google Scholar 

  61. Gritsch, M.: Numerical modeling of SOI MOSFETs. Dissertation, Technische Universität Wien (2002). http://www.iue.tuwien.ac.at/phd/gritsch

  62. Gritsch, M., Kosina, H., Grasser, T., Selberherr, S.: Influence of generation/recombination effects in simulations of partially depleted SOI MOSFETs. Solid State Electron. 45(4), 621–627 (2001)

    Article  Google Scholar 

  63. Gritsch, M., Kosina, H., Grasser, T., Selberherr, S.: Revision of the standard hydrodynamic transport model for SOI simulation. IEEE Trans. Electron Devices 49(10), 1814–1820 (2002)

    Article  Google Scholar 

  64. Gummel, H.: A self-consistent iterative scheme for one-dimensional steady state transistor calculations. IEEE Trans. Electron Devices 11, 455–465 (1964)

    Article  Google Scholar 

  65. Hänsch, W., Vogelsang, T., Kircher, R., Orlowski, M.: Carrier transport near the Si/SiO2 interface of a MOSFET. Solid State Electron. 32(10), 839–849 (1989)

    Article  Google Scholar 

  66. Heinz, F., Schenk, A., Scholze, A., Fichtner, W.: Full quantum simulation of silicon-on-insulator single-electron devices. J. Comput. Electron. 1(1), 161–164 (2002)

    Article  Google Scholar 

  67. Herring, C., Vogt, E.: Transport and deformation-potential theory for many-valley semiconductors with anisotropic scattering. Phys. Rev. 101(3), 944–961 (1956)

    Article  MATH  Google Scholar 

  68. Hockney, R., Eastwood, J.W.: Computer Simulation Using Particles. Adam Hilger, Bristol and Philadelphia (1988)

    Book  MATH  Google Scholar 

  69. Iafrate, G.J., Grubin, H.L., Ferry, D.K.: Utilization of quantum-distribution function for ultra-submicron device transport. J. Phys. 42, 307–312 (1981)

    Article  Google Scholar 

  70. Institut für Mikroelektronik: MINIMOS-NT 2.1 User’s Guide. Technische Universität Wien, Austria (2010)

    Google Scholar 

  71. Irie, H., Kita, K., Kyuno, K., Toriumi, A.: In-plane mobility anisotropy and universality under uni-axial strains in nand p-MOS inversion layers on (100), [110], and (111) Si. In: Intl. Electron Devices Meeting, pp. 225–228 (2004)

    Google Scholar 

  72. Jackson, J.: Classical Electrodynamics, Third Edition. Academic Press, New York (1998)

    Google Scholar 

  73. Jacoboni, C.: A new approach to Monte Carlo simulation. In: Intl. Electron Devices Meeting, pp. 469–472. IEEE Electron Devices Society, Washington, D.C. (1989)

    Google Scholar 

  74. Jacoboni, C., Minder, R., Majni, G.: Effects of band non-parabolicity on electron drift velocity in silicon above room temperature. J. Phys. Chem. Solids 36, 1129–1133 (1975)

    Article  Google Scholar 

  75. Jacoboni, C., Poli, P., Rota, L.: A new Monte Carlo technique for the solution of the Boltzmann transport equation. Solid State Electron. 31(3/4), 523–526 (1988)

    Article  Google Scholar 

  76. Jacoboni, C., Reggiani, L.: The Monte Carlo method for the solution of charge transport in semiconductors with applications to covalent materials. Rev. Mod. Phys. 55(3), 645–705 (1983)

    Article  Google Scholar 

  77. John, D.L., Castro, L.C., Pereira, P.J.S., Pulfrey, D.L.: A Schrödinger-Poisson solver for modeling carbon nanotube FETs. In: Proc. of Nanotech 2004 (2004)

    Google Scholar 

  78. Jungel, A.: Quasi-hydrodynamic semiconductor equations, In: Progress in Nonlinear Differential Equations and Their Applications, vol.41. A Birkhauser book, Switzerland (2001)

    Book  Google Scholar 

  79. Jungemann, C., Meinerzhagen, B.: Hierarchical Device Simulation. The Monte Carlo Perspective. Springer, New york (2003)

    Book  MATH  Google Scholar 

  80. Jungemann, C., Nguyen, C.D., Neinhüs, B., Decker, S., Meinerzhagen, B.: Improved modified local density approximation for modeling of size quantization in nMOSFETs. In: Proc. Intl. Conf. Modeling and Simulation of Microsystems, pp. 458–461 (2001)

    Google Scholar 

  81. Jungemann, C., Pham, A.T., Meinerzhagen, B.: A linear response Monte Carlo algorithm for inversion layers and magnetotransport. In: Proc. Intl. Workshop Comput. Electronics, pp.13–14 (May, 2006)

    Google Scholar 

  82. Kadanoff, L.P., Baym, G.: Quantum Statistical Mechanics. Benjamin, New York (1962)

    MATH  Google Scholar 

  83. Kathawala, G., Winstead, B., Ravaioli, U.: Monte Carlo simulations of double-gate MOSFETs. IEEE Trans. Electron Devices 50(12), 2467–2473 (2003)

    Article  Google Scholar 

  84. Kennedy, D.: On the ambipolar diffusion of impurities into silicon. Proc. IEEE 54(6), 1202–1203 (1969)

    Article  Google Scholar 

  85. Klimeck, G., Luisier, M.: From nemo1d and nemo3d to omen: Moving towards atomistic 3-d quantum transport in nano-scale semiconductors. In: Intl. Electron Devices Meeting, pp. 1–4 (2008)

    Google Scholar 

  86. Kluksdahl, N., Kriman, A., Ferry, D., Ringhofer, C.: Self-consistent study of the resonant-tunneling diode. Phys. Rev. B 39(11), 7720–7735 (1989)

    Article  Google Scholar 

  87. Kluksdahl, N., Pötz, W., Ravaioli, U., Ferry, D.: Wigner function study of a double quantum barrier resonant tunneling diode. Superlattices Microstructures 3(1), 41–45 (1987)

    Article  Google Scholar 

  88. Kobayashi, M., Irisawa, T., Magyari-Kope, B., Saraswat, K., Wong, H.S., Nishi, Y.: Uniaxial stress engineering for high-performance Ge NMOSFETs. IEEE Trans. Electron Devices 57(5), 1037 –1046 (2010)

    Article  Google Scholar 

  89. Kosina, H., Nedjalkov, M.: Handbook Of Theoretical And Computational Nanotechnology, vol.10, chap. Wigner function based device modeling, pp. 731–763. American Scientific, Los Angeles (2006)

    Google Scholar 

  90. Kosina, H., Nedjalkov, M., Selberherr, S.: Theory of the Monte Carlo method for semiconductor device simulation. IEEE Trans. Electron Devices 47(10), 1899–1908 (2000)

    Article  Google Scholar 

  91. Kosina, H., Nedjalkov, M., Selberherr, S.: A Monte Carlo method seamlessly linking quantum and classical transport calculations. J. Comput. Electron. 2(2–4), 147–151 (2002)

    Google Scholar 

  92. Kosina, H., Nedjalkov, M., Selberherr, S.: A Monte Carlo method seamlessly linking classical and quantum transport calculations. J. Comp. Electron. 2(2–4), 147–151 (2003)

    Article  Google Scholar 

  93. Kosina, H., Nedjalkov, M., Selberherr, S.: Quantum Monte Carlo Simulation Of A Resonant Tunneling Diode Including Phonon Scattering. In: Laudon, M., Romanowicz, B. (eds.) Nanotech, Computational Publications, San Francisco, pp. 190–193 (2003)

    Google Scholar 

  94. Kosina, H., Nedjalkov, M., Selberherr, S.: A stable backward Monte Carlo method for the solution of the Boltzmann equation. In: Lecture Notes in Computer Science 2907: Large-Scale Scientific Computing, Springer, Berlin, pp. 170–177 (2003)

    Google Scholar 

  95. Kosina, H., Selberherr, S.: Device simulation demands of upcoming microelectronics devices. Intl. J. High Speed Electron. 16(1), 115–136 (2006)

    Article  Google Scholar 

  96. Kosina, H., Sverdlov, V., Grasser, T.: Wigner Monte Carlo simulation: Particle annihilation and device applications. In: Proc. Intl. Conf. on Simulation of Semiconductor Processes and Devices, pp. 357–360 (2006)

    Google Scholar 

  97. Kotlyar, R., Giles, M., Cea, S., Linton, T., Shifren, L., Weber, C., Stettler, M.: Modeling the effects of applied stress and wafer orientation in silicon devices: From long channel mobility physics to short channel performance. J. Comput. Electron. 8(2), 110–123 (2009)

    Article  Google Scholar 

  98. Kotlyar, R., Weber, C., Shifren, L., Cea, S., Giles, M., Stettler, M.: Effect of band warping and wafer orientation on NMOS mobility under arbitrary applied stress. J. Comput. Electron. 7(3), 95–98 (2007)

    Google Scholar 

  99. Krishnamohan, T., Jungemann, C., Kim, D., Ungersboeck, E., Selberherr, S., Wong, P., Nishi, Y., Saraswat, K.: Theoretical investigation of performance in uniaxially- and biaxially-strained Si, SiGe and Ge double-gate p-MOSFETs. In: Intl. Electron Devices Meeting, pp. 937–940 (2006)

    Google Scholar 

  100. Kunikiyo, T., Takenaka, M., Kamakura, Y., Yamaji, M., Mizuno, H., Morifuji, M., Taniguchi, K., Hamaguchi, C.: A Monte Carlo simulation of anisotropic electron transport in silicon including full band structure and anisotropic impact-ionization model. J. Appl. Phys. 75(1), 297–312 (1994)

    Article  Google Scholar 

  101. Kurosawa, T.: Monte Carlo calculation of hot electron problems. In: Proc. Intl. Conf. on Physics of Semiconductors, pp. 424–426 (1966)

    Google Scholar 

  102. Lake, R., Datta, S.: Nonequilibrium Green’s-function method applied to double-barrier resonant-tunneling diodes. Phys. Rev. B 45(12), 6670–6685 (1992)

    Article  Google Scholar 

  103. Lake, R., Klimeck, G., Bowen, R.C., Jovanovic, D.: Single and multiband modeling of quantum electron transport through layered semiconductor devices. J. Appl. Phys. 81(12), 7845–7869 (1997)

    Article  Google Scholar 

  104. Laux, S., Kumar, A., Fischetti, M.: Ballistic FET modeling using QDAME: Quantum device analysis by modal evaluation. IEEE Trans. Nanotechnol. 1(4), 255–259 (2002)

    Article  Google Scholar 

  105. Lent, C., Kirkner, D.: The quantum transmitting boundary method. J. Appl. Phys. 67(10), 6353–6359 (1990)

    Article  Google Scholar 

  106. Likharev, K.K.: Sub-20-nm electron devices. In: Morkoc, H. (ed.) Advanced Semiconductor and Organic Nano-Techniques, Academic Press, New York, pp. 239–302 (2003)

    Chapter  Google Scholar 

  107. Lindblad, G.: On the generators of quantum dynamical semigroups. Comm. Math. Phys. 48, 119–130 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  108. Loeb, H., Andrew, R., Love, W.: Application of 2-dimensional solutions of the Shockley-Poisson equation to inversion-layer M.O.S.T. devices. Electron. Lett. 4, 352–354 (1968)

    Google Scholar 

  109. Louisell, W.H.: Quantum Statistical Properties Of Radiation. Willey, New York (1973)

    Google Scholar 

  110. Lucci, L., Palestri, P., D.Esseni, Selmi, L.: Multi-subband Monte-Carlo modeling of nano-MOSFETs with strong vertical quantization and electron gas degeneration. In: Intl. Electron Devices Meeting, pp. 531–534 (2005)

    Google Scholar 

  111. Lugli, P., Ferry, D.K.: Degeneracy in the ensemble Monte Carlo method for high field transport in semiconductors. IEEE Trans. Electron Devices 32(11), 2431–2437 (1985)

    Article  Google Scholar 

  112. Luisier, M., Schenk, A., Fichtner, W., Klimeck, G.: Atomistic simulations of nanowires in the sp 3 d 5 s ∗ tight-binding formalism: From boundary conditions to strain calculations. Phys. Rev. B 74, 205323(1–12) (2006)

    Google Scholar 

  113. Lundstrom, M.: Fundamentals Of Carrier Transport. Cambridge University Press, Cambridge (2000)

    Book  Google Scholar 

  114. Mahan, G.: Many-Particle Physics. Premium Press, New York (1990)

    Book  Google Scholar 

  115. Mains, R.K., Haddad, G.I.: Time-dependent modeling of resonant-tunneling diodes from direct solution of the Schrödinger equation. J. Appl. Phys. 64(7), 3564–3569 (1988)

    Article  Google Scholar 

  116. Manku, T., Nathan, A.: Electron drift mobility model for devices based on unstrained and coherently strained Si1−x Ge x grown on<001>silicon substrate. IEEE Trans. Electron Devices 39(9), 2082–2089 (1992)

    Article  Google Scholar 

  117. Martinez, A., Barker, J.R., Anantram, M.P., Svizhenko, A., Asenov, A.: Developing a full 3D NEGf simulator with random dopant and interface roughness. In: Intl. Workshop Comput. Electroncis, Wien, pp. 275–276 (2006)

    Google Scholar 

  118. Martinez, A., Svizhenko, A., Anantram, M.P., Barker, J.R., Brown, A.R., Asenov, A.: A study of the effect of the interface roughness on a DG-MOSFET using a full 2D NEGF technique. In: Intl. Electron Devices Meeting, pp. 627–630 (2005)

    Google Scholar 

  119. Mistry, K., Allen, C., Auth, C., Beattie, B., Bergstrom, D., Bost, M., Brazier, M., Buehler, M., Cappellani, A., Chau, R., Choi, C.H., Ding, G., Fischer, K., Ghani, T., Grover, R., Han, W., Hanken, D., Hattendorf, M., He, J., Hicks, J., Huessner, R., Ingerly, D., Jain, P., James, R., Jong, L., Joshi, S., Kenyon, C., Kuhn, K., Lee, K., Liu, H., Maiz, J., Mclntyre, B., Moon, P., Neirynck, J., Pae, S., Parker, C., Parsons, D., Prasad, C., Pipes, L., Prince, M., Ranade, P., Reynolds, T., Sandford, J., Shifren, L., Sebastian, J., Seiple, J., Simon, D., Sivakumar, S., Smith, P., Thomas, C., Troeger, T., Vandervoorn, P., Williams, S., Zawadzki, K.: A 45nm logic technology with high-k+metal gate transistors, strained silicon, 9 Cu interconnect layers, 193nm dry patterning, and 100% Pb-free packaging. In: Intl. Electron Devices Meeting, pp. 247–250 (2007)

    Google Scholar 

  120. Moglestue, C.: Monte Carlo particle modelling of small semiconductor devices. Comput. Methods Appl. Mech. Eng. 30, 173–208 (1982)

    Article  MATH  Google Scholar 

  121. Nainani, A., Raghunathan, S., Witte, D., Kobayashi, M., Irisawa, T., Krishnamohan, T., Saraswat, K., Bennett, B., Ancona, M., Boos, J.: Engineering of strained III-V heterostructures for high hole mobility. In: Intl. Electron Devices Meeting, pp. 1 –4 (2009)

    Google Scholar 

  122. Natarajan, S., Armstrong, K., Bost, M., Brain, R., Brazier, M., Chang, C.H., Chikarmane, V., Childs, M., Deshpande, H., Dev, K., Ding, G., Ghani, T., Golonzka, O., Han, W., He, J., Heussner, R., James, R., Jin, I., Kenyon, C., Klopcic, S., Lee, S.H., Liu, M., Lodha, S., McFadden, B., Murthy, A., Neiberg, L., Neirynck, J., Packan, P., Pae, S., Parker, C., Pelto, C., Pipes, L., Sebastian, J., Seiple, J., Sell, B., Sivakumar, S., Song, B., Tone, K., Troeger, T., Weber, C., Yang, M., Yeoh, A., Zhang, K.: A 32nm logic technology featuring 2nd-generation high-k + metal-gate transistors, enhanced channel strain and 0.171μm2 SRAM cell size in a 291Mb array. In: Intl. Electron Devices Meeting, pp. 941–943 (2008)

    Google Scholar 

  123. Natori, K.: Ballistic metal-oxide-semiconductor field-effect transistor. J. Appl. Phys. 78(8), 4879–4890 (1994)

    Article  Google Scholar 

  124. Naveh, Y., Likharev, K.K.: Modeling of 10nm-scale ballistic MOSFETs. IEEE Electron Device Lett. 21(5), 242–244 (2000)

    Article  Google Scholar 

  125. Nedjalkov, M., Kosik, R., Kosina, H., Selberherr, S.: Wigner transport through tunneling structures - scattering interpretation of the potential operator. In: Simulation of Semiconductor Processes and Devices, Publication Office Business Center for Academic Societies Japan, Kobe, Japan, pp. 187–190 (2002)

    Google Scholar 

  126. Nedjalkov, M., Kosina, H., Selberherr, S., Ringhofer, C., Ferry, D.K.: Unified particle approach to wigner-boltzmann transport in small semiconductor devices. Phys. Rev. B 70(11), 115,319 (2004). DOI 10.1103/PhysRevB.70.115319

    Google Scholar 

  127. Nedjalkov, M., Vasileska, D., Ferry, D.K., Jacoboni, C., Ringhofer, C., Dimov, I., Palankovski, V.: Wigner transport models of the electron-phonon kinetics in quantum wires. Phys. Rev. B 74(3), 035,311 (2006). DOI 10.1103/PhysRevB.74.035311

    Google Scholar 

  128. Nedjalkov, M., Vitanov, P.: Iteration approach for solving the Boltzmann equation with the Monte Carlo method. Solid State Electron. 32(10), 893–896 (1989)

    Article  Google Scholar 

  129. Nguyen, B.Y., Mazure, C., Delprat, D., Aulnette, C., Daval, N., Andrieu, F., Faynot, O.: Overview of FDSOI technology from substrate to device. In: Semiconductor Device Research Symposium, 2009. ISDRS ’09. Intl., pp. 1 –2 (2009)

    Google Scholar 

  130. Nguyen, C.D., Jungemann, C., Meinerzhagen, B.: Modeling of size quantization in strained Si-nMOSFETs with the improved modified local density approximation. In: Proc. Nanotech 2005 Vol. 3, pp. 33–36 (2005)

    Google Scholar 

  131. Paasch, G., Übensee, H.: Carrier density near the semiconductor-insulator interface - local density approximation for non-isotropic effective mass. Phys. Stat. Sol. (b) 118(1), 255–266 (1983)

    Google Scholar 

  132. Packan, P., Akbar, S., Armstrong, M., Bergstrom, D., Brazier, M., Deshpande, H., Dev, K., Ding, G., Ghani, T., Golonzka, O., Han, W., He, J., Heussner, R., James, R., Jopling, J., Kenyon, C., Lee, S.H., Liu, M., Lodha, S., Mattis, B., Murthy, A., Neiberg, L., Neirynck, J., Pae, S., Parker, C., Pipes, L., Sebastian, J., Seiple, J., Sell, B., Sharma, A., Sivakumar, S., Song, B., St.Amour, A., Tone, K., Troeger, T., Weber, C., Zhang, K., Luo, Y., Natarajan, S.: High performance 32nm logic technology featuring 2nd generation high-k + metal gate transistors. IEDM Proc. pp. 1–4 (2009)

    Google Scholar 

  133. Palestri, P., Eminente, S., Esseni, D., Fiegna, C., Sangiorgi, E., Selmi, L.: An improved semi-classical Monte-Carlo approach for nano-scale MOSFET simulation. Solid State Electron. 49, 727–732 (2005)

    Article  Google Scholar 

  134. Palestri, P., Esseni, D., Eminente, S., Fiegna, C., Sangiorgi, E., Selmi, L.: Understanding quasi-ballistic transport in nano-MOSFETs: Part I - scattering in the channel, and in the drain. IEEE Trans. Electron Devices 52(12), 2727–2735 (2005)

    Article  Google Scholar 

  135. Pham, A., Jungemann, C., Meinerzhagen, B.: Deterministic multisubband device simulations for strained double gate PMOSFETs including magnetotransport. In: Intl. Electron Devices Meeting, pp. 895–898 (2008)

    Google Scholar 

  136. Pourfath, M., Kosina, H.: Fast convergent Schrödinger-Poisson solver for the static and dynamic analysis of carbon nanotube field effect transistors. Lecture Notes in Computer Science 3743, 578–585, (2006)

    Article  Google Scholar 

  137. Prange, R.E., Nee, T.W.: Quantum spectroscopy of the low-field oscillations in the surface impedance. Phys. Rev. 168(3), 779–786 (1968)

    Article  Google Scholar 

  138. Price, P.J.: Monte Carlo calculation of electron transport in solids. Semiconductors Semimetals 14, 249–308 (1979)

    Article  Google Scholar 

  139. Price, P.J.: Resonant tunneling via an accumulation layer. Ann. Phys. 133, 217 (1981)

    Article  Google Scholar 

  140. Querlioz, D., Dollfus, P.: The Wigner Monte Carlo Method For Nanoelectronic Devices - A Particle Description Of Quantum Transport And Decoherence. Wiley, New York (2010)

    MATH  Google Scholar 

  141. Querlioz, D., Saint-Martin, J., Do, V.N.: A study of quantum transport in end-of-Roadmap DG-MOSFETs using a fully self-consistent Wigner Monte Carlo approach. IEEE Trans. Nanotechnol. 5(6), 737–744 (2006)

    Article  Google Scholar 

  142. Radosavljevic, M., Ashley, T., Andreev, A., Coomber, S., Dewey, G., Emeny, M., Fearn, M., Hayes, D., Hilton, K., Hudait, M., Jefferies, R., Martin, T., Pillarisetty, R., Rachmady, W., Rakshit, T., Smith, S., Uren, M., Wallis, D., Wilding, P., Chau, R.: High-performance 40nm gate length insb p-channel compressively strained quantum well field effect transistors for low-power (v CC =0.5V) logic applications. In: Intl. Electron Devices Meeting, pp. 1–4 (2008)

    Google Scholar 

  143. Radosavljevic, M., Chu-Kung, B., Corcoran, S., Dewey, G., Hudait, M., Fastenau, J., Kavalieros, J., Liu, W., Lubyshev, D., Metz, M., Millard, K., Mukherjee, N., Rachmady, W., Shah, U., Chau, R.: Advanced high-k gate dielectric for high-performance short-channel in0.7ga0.3as quantum well field effect transistors on silicon substrate for low power logic applications. In: Intl. Electron Devices Meeting, pp. 1–4 (2009)

    Google Scholar 

  144. Ravaioli, U., Osman, M., Pötz, W., Kluksdahl, N., Ferry, D.: Investigation of ballistic transport through resonant-tunneling quantum wells using Wigner function approach. Physica B 134, 36–40 (1985)

    Article  Google Scholar 

  145. Reggiani, L., Lugli, P., Gantsevich, S., Gurevich, V., Katilius, R.: Diffusion and fluctuations in a nonequilibrium electron gas with electron-electron collisions. Phys. Rev. B 40(18), 12,209–12,214 (1989). DOI 10.1103/PhysRevB.40.12209

    Google Scholar 

  146. Risch, L.: Pushing CMOS beyond the roadmap. In: Proc. European Solid-State Device Research Conf., pp. 63–68 (2005)

    Google Scholar 

  147. Sabathil, M., Hackenbuchner, S., Majewski, J.A., Zandler, G., Vogl, P.: Towards fully quantum mechanical 3D device simulations. J. Comput. Electron. 1, 81–85 (2002)

    Article  Google Scholar 

  148. Scharfetter, D., Gummel, H.: Large-signal analysis of a silicon read diode oscillator. IEEE Trans. Electron Devices 16(1), 64–77 (1969)

    Article  Google Scholar 

  149. Schroeder, J., Muller, R.: IGFET analysis through numerical solution of Poisson’s equation. IEEE Trans. Electron Devices 15(12), 954–961 (1968)

    Article  Google Scholar 

  150. Selberherr, S.: Analysis and Simulation of Semiconductor Devices. Springer, Heidelberg (1984)

    Book  Google Scholar 

  151. Serra, N., Esseni, D.: Mobility enhancement in strained n-FinFETs: Basic insight and stress engineering. IEEE Trans. Electron Devices 57(2), 482 –490 (2010)

    Article  Google Scholar 

  152. Shichijo, H., Hess, K.: Band-structure-dependent transport and impact ionization in GaAs. Phys. Rev. B 23(8), 4197–4207 (1981)

    Article  Google Scholar 

  153. Shifren, L., Ferry, D.K.: A Wigner function based ensemble Monte Carlo approach for accurate incorporation of quantum effects in device simulation. J. Comput. Electron. 1, 55–58 (2002)

    Article  Google Scholar 

  154. Shifren, L., Ringhofer, C., Ferry, D.: Inclusion of nonlocal scattering in quantum transport. Phys. Lett. A 306, 332–336 (2003)

    Article  MATH  Google Scholar 

  155. Shifren, L., Ringhofer, C., Ferry, D.: A Wigner function-based quantum ensemble Monte Carlo study of a resonant tunneling diode. IEEE Trans. Electron Devices 50(3), 769–773 (2003)

    Article  Google Scholar 

  156. Shimizu, K., Saraya, T., Hiramoto, T.: Suppression of electron mobility degradation in (100)-oriented double-gate ultrathin body nMOSFETs. IEEE Electron Device Lett. 31(4), 284–286 (2010)

    Article  Google Scholar 

  157. Shoji, M., Horiguchi, S.: Electronic structure and phonon-limited electron mobility of double-gate silicon-on-insulator si inversion layers. J. Appl. Phys. 85(5), 2722–2731 (1999)

    Article  Google Scholar 

  158. Silvaco, Santa Clara, CA: ATLAS user’s manual (2010)

    Google Scholar 

  159. Slotboom, J.: Iterative scheme for 1- and 2-dimensional d.c.-transistor simulation. Electron. Lett. 5, 677–678 (1969)

    Google Scholar 

  160. Smirnov, S., Kosina, H., Nedjalkov, M., Selberherr, S.: Monte Carlo method for modeling of small signal response including the Pauli exclusion principle. J. Appl. Phys. 94(9), 5791–5799 (2003)

    Article  Google Scholar 

  161. Smith, C.S.: Piezoresistance effect in germanium and silicon. Phys. Rev. 94(1), 42–49 (1954)

    Article  Google Scholar 

  162. Sonoda, K.I., Yamaji, M., Taniguchi, K., Hamaguchi, C., Dunham, S.T.: Moment expansion approach to calculate impact ionization rate in submicron silicon devices. J. Appl. Phys. 80(9), 5444–5448 (1996)

    Article  Google Scholar 

  163. Stern, F., Howard, W.E.: Properties of semiconductor surface inversion layers in the electric quantum limit. Phys. Rev. 163(3), 816–835 (1967)

    Article  Google Scholar 

  164. Stratton, R.: Diffusion of hot and cold electrons in semiconductor barriers. Phys. Rev. 126(6), 2002–2014 (1962)

    Article  Google Scholar 

  165. Sun, G., Sun, Y., Nishida, T., Thompson, S.E.: Hole mobility in silicon inversion layers: Stress and surface orientation. J. Appl. Phys. 102(8), 084501 (2007)

    Article  Google Scholar 

  166. Sverdlov, V., Gehring, A., Kosina, H., Selberherr, S.: Quantum transport in ultra-scaled double-gate MOSFETs: A Wigner function-based Monte Carlo approach. Solid State Electron. 49(9), 1510–1515 (2005)

    Article  Google Scholar 

  167. Sverdlov, V., Ungersboeck, E., Kosina, H., Selberherr, S.: Volume inversion mobility in SOI MOSFETs for different thin body orientations. Solid State Electron. 51, 299–305 (2007)

    Article  Google Scholar 

  168. Sverdlov, V., Ungersboeck, E., Kosina, H., Selberherr, S.: Influence of uniaxial [110] stress on silicon band structure and electron low-field mobility in ultra-thin body SOI FETs. In: Proc. EUROSOI 2007, pp. 39–40 (January, 2007)

    Google Scholar 

  169. Sverdlov, V.A., Selberherr, S.: Electron subband structure and controlled valley splitting in silicon thin-body SOI FETs: Two-band k⋅p theory and beyond. Solid State Electron. 52(12), 1861–1866 (2008)

    Article  Google Scholar 

  170. Sverdlov, V.A., Walls, T.J., Likharev, K.K.: Nanoscale silicon MOSFETs: A theoretical study. IEEE Trans. Electron Devices 50(9), 1926–1933 (2003)

    Article  Google Scholar 

  171. Svizhenko, A., Anantram, M.: Effect of Scattering and Contacts on Current and Electrostatics in Carbon Nanotubes. Phys. Rev. B 72, 085,430–085,440 (2005)

    Google Scholar 

  172. Svizhenko, A., Anantram, M.P.: Role of scattering in nanotransistors. IEEE Trans. Electron Devices 50, 1459–1466 (2003)

    Article  Google Scholar 

  173. Svizhenko, A., Anantram, M.P., Govindan, T.R., Biegel, B., Venugopal, R.: Two-dimensional quantum mechanical modeling of nanotransistors. J. Appl. Phys. 91, 2343–2354 (2002)

    Article  Google Scholar 

  174. Synopsys, Mountain View, CA: Sentaurus device user’s manual (2010)

    Google Scholar 

  175. Takagi, S.I., Toriumi, A., Iwase, M., Tango, H.: On the universality of inversion layer mobility in Si MOSFETs: Part I - effects of substrate impurity concentration. IEEE Trans. Electron Devices 41(12), 2357–2362 (1994)

    Article  Google Scholar 

  176. Thompson, S.E., Armstrong, M., Auth, C., Alavi, M., Buehler, M., Chau, R., Cea, S., Ghani, T., Glass, G., Hoffmann, T., Jan, C.T., Kenyon, C., Klaus, J., Kuhn, K., Ma, Z., McIntyre, B., Mistry, K., Murthy, A., Obradovic, B., Nagisetty, R., Nguyen, P., Sivakumar, S., Shaheed, R., Shifren, L., Tufts, B., Tyagi, S., Bohr, M., El-Mansy, Y.: A 90-nm logic nanotechnology featuring strained-silicon. IEEE Trans. Electron Devices 51(11), 1790–1797 (2004)

    Google Scholar 

  177. Thompson, S.E., Armstrong, M., Auth, C., Cea, S., Chau, R., Glass, G., Hoffmann, T., Klaus, J., Ma, Z., McIntyre, B., Murthy, A., Obradovic, B., Shifren, L., Sivakumar, S., Tyagi, S., Ghani, T., Mistry, K., Bohr, M., El-Mansy, Y.: A logic nanotechnology featuring strained-silicon. IEEE Electron Device Lett. 25(4), 191–193 (2004)

    Article  Google Scholar 

  178. Thompson, S.E., Suthram, S., Sun, Y., Sun, G., Pathasarathy, S., Chu, M., Nishida, T.: Future of strained Si/semiconductors in nanoscale MOSFETs. In: Intl. Electron Devices Meeting, pp. 681–684 (2006)

    Google Scholar 

  179. Trellakis, A., Zibold, T., Andalauer, T., Smith, S.B.A.K., Morschal, R., Vogl, P.: The 3D nanometer device project nextnano3: Concepts, methods, results. In: Intl. Workshop Comput. Electroncis, Wien, pp. 173–174 (2006)

    Google Scholar 

  180. Tsutsui, G., Saitoh, M., Saraya, T., Nagumo, T., Hiramoto, T.: Mobility enhancement due to volume inversion in (110)-oriented ultra-thin body double-gate nMOSFETs with body thickness less than 5nm. In: Intl. Electron Devices Meeting, pp. 747–750 (2005)

    Google Scholar 

  181. Uchida, K., Koga, J., Takagi, S.: Experimental study on carrier transport mechanisms in double- and single-gate ultrathin-body MOSFETs - Coulomb scattering, volume inversion, and δt SOI -induced scattering. In: Intl. Electron Devices Meeting, pp. 805–808 (2003)

    Google Scholar 

  182. Uchida, K., Krishnamohan, T., Saraswat, K.C., Nishi, Y.: Physical mechanisms of electron mobility enhancement in uniaxial stressed MOSFETs and impact of uniaxial stress engineering in ballistic regime. In: Intl. Electron Devices Meeting, pp. 129–132 (2005)

    Google Scholar 

  183. Ungersboeck, E., Dhar, S., Karlowatz, G., Sverdlov, V., Kosina, H., Selberherr, S.: The effect of general strain on band structure and electron mobility of silicon. IEEE Trans. Electron Devices 54(9), 2183–2190 (2007)

    Article  Google Scholar 

  184. Aubry-Fortuna, V., Dollfus,P., Galdin-Retailleau, S.: Electron effective mobility in strained-Si/Si1−x Ge x MOS devices using Monte Carlo simulation. Solid State Electron. 49(8), 1320–1329 (2005)

    Article  Google Scholar 

  185. Vasileska, D., Ferry, D., Goodnick, S.: Handbook Of Theoretical And Computational Nanotechnology, vol.10, chap. Computational Nanoelectronics, American Scientific, Los Angeles, pp. 1–135 (2006)

    Google Scholar 

  186. Venugopal, R., Ren, Z., Datta, S., Lundstrom, M.S., Jovanovic, D.: Simulation of quantum transport in nanoscale transistors: Real versus mode-space approach. J. Appl. Phys. 92(7), 3730–3739 (2002)

    Article  Google Scholar 

  187. VMC2.0: Vienna Monte Carlo 2.0 user’s guide. Institut für Mikroelektronik, http://www.iue.tuwien.ac.at/software, Technische Universität Wien, Austria (2006)

  188. VSP1.0: Vienna Schrödinger-Poisson solver 1.0 user’s guide. Institut für Mikroelektronik, http://www.iue.tuwien.ac.at/software, Technische Universität Wien, Austria (2007)

  189. Wagner, M., Karner, M., Grasser, T.: Quantum correction model for modern semiconductor devices. In: Proc. of the XIII Intl. Workshop Semiconductor Devices, pp. 458–459 (2005)

    Google Scholar 

  190. Walls, T.J., Sverdlov, V.A., Likharev, K.K.: Nanoscale SOI MOSFETs: A comparison of two options. Solid State Electron. 48, 857–865 (2004)

    Article  Google Scholar 

  191. Wang, E., Matagne, P., Shifren, L., Obradovic, B., Kotlyar, R., Cea, S., Stettler, M., Giles, M.D.: Physics of hole transport in strained silicon MOSFET inversion layers. IEEE Trans. Electron Devices 53(8), 1840–1851 (2006)

    Article  Google Scholar 

  192. Wang, J., Polizzi, E., Ghosh, A., Datta, S., Lundstrom, M.: Theoretical investigation of surface roughness scattering in silicon nanowire transistor. J. Appl. Phys. 87, 0431,011–0431,013 (2005)

    Google Scholar 

  193. Wang, J., Polizzi, E., Lundstrom, M.: A three-dimensional quantum simulation of silicon nanowire transistors with the effective-mass approximation. J. Appl. Phys. 96(4), 2192–2203 (2004)

    Article  Google Scholar 

  194. Wang, J., Rahman, A., Ghosh, A., Klimeck, G., Lundstrom, M.: On the validity of the parabolic effective-mass approximation for the i−v calculation of silicon nanowire transistors. IEEE Trans. Electron Devices 52(7), 1589–1595 (2005)

    Article  Google Scholar 

  195. Welser, J., Hoyt, J., Gibbons, J.: NMOS and PMOS transistors fabricated in strained silicon/relaxed silicon-germanium structures. In: Intl. Electron Devices Meeting, pp. 1000–1002 (1992)

    Google Scholar 

  196. Wigner, E.: On the Quantum Correction for Thermodynamic Equilibrium. Phys. Rev. 40, 749–759 (1932)

    Article  Google Scholar 

  197. Yoder, P., Higman, J., Bude, J., Hess, K.: Monte Carlo simulation of hot electron transport in Si using a unified pseudopotential description of the crystal. Semicond. Sci. Technol. 7(3B), 357–359 (1992)

    Google Scholar 

  198. Zahid, F., Ghosh, A., Paulsson, M., Polizzi, E., Datta, S.: Charging-induced asymmetry in molecular conductors. Phys. Rev. B 70, 245,317 (2004)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Viktor Sverdlov .

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag/Wien

About this chapter

Cite this chapter

Sverdlov, V. (2011). Demands of Transport Modeling in Advanced MOSFETs. In: Strain-Induced Effects in Advanced MOSFETs. Computational Microelectronics. Springer, Vienna. https://doi.org/10.1007/978-3-7091-0382-1_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-0382-1_12

  • Published:

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-7091-0381-4

  • Online ISBN: 978-3-7091-0382-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics