Skip to main content

Hollow-Fiber Flow Field-Flow Fractionation: A Pipeline to Scale Down Separation and Enhance Detection of Proteins and Cells

  • Chapter
  • First Online:
Field-Flow Fractionation in Biopolymer Analysis

Abstract

Commercial flow field-flow fractionation (FlFFF) employs macro-scale, flat-type channels. The idea of hollow-fiber (HF) membranes as tubular, micro-column channels for FlFFF (HF FlFFF or, more shortly, HF5) dates back to 1974, with fundamentals on HF5 given in the late 1980s, and outstanding applications reported only over the last 15 years. Compared to flat-channel FlFFF, the key aspect of HF5 lies in the downscaling of the fractionation channel. This implies low-cost, possible disposable usage, and low volume of the channel that allows on-line coupling with highly sensitive detection and characterization techniques. The use of coupled techniques enhances the analysis of macromolecules and micron-sized particles such as intact proteins and whole cells. In this chapter we first report a few basics on HF5 theory and instrumentation. We then focus on technical and methodological developments that have made HF5 reach a performance normally achieved by flat-channel FlFFF. We finally focus on the enhancements obtained by coupling HF5 with powerful methods for detection and characterization of intact proteins and whole cells such as multi-angle light scattering (MALS), time-of-flight (TOF) mass spectrometry (MS), chemiluminescence (CL), and UV/Vis turbidity diode-array detection (DAD).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lee HL, Reis JFG, Dohner J, Lightfoot EN (1974) Single-phase chromatography: solute retardation by ultrafiltration and electrophoresis. AIChE J 20:776–784

    Article  CAS  Google Scholar 

  2. Jonsson JA, Carlshaf A (1989) Flow field-flow fractionation in hollow cylindrical fibers. Anal Chem 61:11–18

    Article  Google Scholar 

  3. Lee WJ, Min BR, Moon MH (1999) Improvement in particle separation by hollow fiber flow field-flow fractionation and the potential use in obtaining particle site distribution. Anal Chem 71:3446–3452

    Article  CAS  Google Scholar 

  4. Wijnhoven J, Koorn JP, Poppe H, Kok WT (1995) Hollow-fiber flow field-flow fractionation of polystyrene sulfonates. J Chromatogr A 699:119–129

    Article  CAS  Google Scholar 

  5. van Bruijnsvoort M, Kok WT, Tijssen R (2001) Hollow-fiber flow field-flow fractionation of synthetic polymers in organic solvents. Anal Chem 73:4736–4742

    Article  Google Scholar 

  6. Caldwell KD, Brimhall SL, Gao Y, Giddings JC (1988) Sample overloading effects in polymer characterization by field-flow fractionation. J Appl Polym Sci 36:703–719

    Article  CAS  Google Scholar 

  7. Kang D, Moon MH (2005) Hollow fiber flow field-flow fractionation of proteins using a microbore channel. Anal Chem 77:4207–4212

    Article  CAS  Google Scholar 

  8. Giddings JC (1983) Hyperlayer field-flow fractionation. Sep Sci Technol 18:765–773

    Article  CAS  Google Scholar 

  9. Moon MH, Lee KH, Min BR (1999) Effect of temperature on particle separation in hollow fiber flow field-flow fractionation. J Microcol Sep 11:676–681

    Article  CAS  Google Scholar 

  10. Min BR, Kim SJ, Ahn KH, Moon MH (2002) Hyperlayer separation in hollow fiber flow field-flow fractionation: effect of membrane materials on resolution and selectivity. J Chromatogr A 950:175–182

    Article  CAS  Google Scholar 

  11. Wahlund KG, Zattoni A (2002) Size separation of supermicrometer particles in asymmetrical flow field-flow fractionation. Flow conditions for rapid elution. Anal Chem 74:5621–5628

    Article  CAS  Google Scholar 

  12. Reschiglian P, Roda B, Zattoni A et al (2002) High performance, disposable hollow fiber flow field-flow fractionation for bacteria and cells. First application to deactivated Vibrio cholerae. J Sep Sci 25:490–498

    Article  CAS  Google Scholar 

  13. Park I, Paeng K-J, Kang D, Moon MH (2005) Performance of hollow-fiber flow field-flow fractionation in protein separation. J Sep Sci 28:2043–2049

    Article  CAS  Google Scholar 

  14. Reschiglian P, Zattoni A, Roda B et al (2005) On-line hollow-fiber flow field-flow fractionation-electrospray ionization/time-of-flight mass spectrometry of intact proteins. Anal Chem 77:47–56

    Article  CAS  Google Scholar 

  15. Roda A, Parisi D, Guardigli M et al (2006) Combined approach to the analysis of recombinant protein drugs using hollow-fiber flow field-flow fractionation, mass spectrometry, and chemiluminescence detection. Anal Chem 78:1085–1092

    Article  CAS  Google Scholar 

  16. van Bruijnsvoort M, Tijssen R, Kok WT (2001) Assessment of the diffusional behavior of polystyrene sulfonates in the dilute regime by hollow-fiber flow field-flow fractionation. J Polym Sci B 39:1756–1765

    Article  Google Scholar 

  17. Zhu RH, Frankema W, Huo YL, Kok WT (2005) Studying protein aggregation by programmed flow field-flow fractionation using ceramic hollow fibers. Anal Chem 77:4581–4586

    Article  CAS  Google Scholar 

  18. Roda B, Cioffi N, Ditaranto N et al (2005) Biocompatible channels for field-flow fractionation of biological samples: correlation between surface composition and operating performance. Anal Bioanal Chem 381:639–646

    Article  CAS  Google Scholar 

  19. Shin SJ, Chung HJ, Min BR et al (2003) Improvement of separation of polystyrene particles with PAN membranes in hollow fiber flow field-flow fractionation. Bull Kor Chem Soc 24:1333–1338

    Article  CAS  Google Scholar 

  20. Kim HJ, Oh S, Moon MH (2006) Hollow-fiber flow/hyperlayer field-f low fractionation for the size characterization of airborne particle fractions obtained by SPLITT fractionation. J Sep Sci 29:423–428

    Article  CAS  Google Scholar 

  21. Wijnhoven J, Koorn JP, Poppe H, Kok WT (1996) Influence of injected mass and ionic strength on retention of water-soluble polymers and proteins in hollow-fibre flow field-flow fractionation. J Chromatogr A 732:307–315

    Article  CAS  Google Scholar 

  22. Rambaldi DC, Zattoni A, Casolari S et al (2007) An analytical method for size and shape characterization of blood lipoproteins. Clin Chem 53:2026–2029

    Article  CAS  Google Scholar 

  23. Morishima I, Kurono M, Shiro Y (1986) Presence of endogenous calcium-ion in horseradish-peroxidase - elucidation of metal-binding site by substitutions of divalent and lanthanide ions for calcium and use of metal-induced NMR (H-1 and Cd-113) resonances. J Biol Chem 261:9391–9399

    CAS  Google Scholar 

  24. Dunford HB (1986) Horseradish peroxidase: structure and kinetic properties. In: Everse JE, Everse KE, Grisham MB (eds) Peroxidases in chemistry and biology. CRC Press, Boca Raton

    Google Scholar 

  25. Yang BY, Gray JSS, Montgomery R (1996) The glycans of horseradish peroxidase. Carbohydr Res 287:203–212

    Article  CAS  Google Scholar 

  26. Campbell AK (1998) Chemiluminescence. Principles and applications in biology and medicine. Ellis Horwood, Chichester

    Google Scholar 

  27. Roda A, Pasini P, Guardigli M et al (2000) Bio- and chemiluminescence in bioanalysis. Fresen J Anal Chem 366:752–759

    Article  CAS  Google Scholar 

  28. Roda A, Pasini P, Musiani M et al (1996) Chemiluminescent low-light imaging of biospecific reactions on macro- and microsamples using a videocamera-based luminograph. Anal Chem 68:1073–1080

    Article  CAS  Google Scholar 

  29. Caldwell KD, Cheng ZQ, Hradecky P, Giddings JC (1984) Separation of human and animal-cells by steric field-flow fractionation. Cell Biophys 6:233–251

    CAS  Google Scholar 

  30. Lucas A, Lepage F, Cardot PJP (2000) Cell separations. In: Schimpf ME, Caldwell K, Giddings JC (eds) Field-flow fractionation handbook. Wiley, New York

    Google Scholar 

  31. Metreau JM, Gallet S, Cardot PJP et al (1997) Sedimentation field-flow fractionation of cellular species. Anal Biochem 251:178–186

    Article  CAS  Google Scholar 

  32. Rasouli S, Assidjo E, Chianea T, Cardot PJP (2001) Experimental design methodology applied to the study of channel dimensions on the elution of red blood cells in gravitational field-flow fractionation. J Chromatogr B 754:11–21

    Article  CAS  Google Scholar 

  33. Battu S, Roux A, Delebasee S et al (2001) Sedimentation field-flow fractionation device cleaning, decontamination and sterilization procedures for cellular analysis. J Chromatogr B 751:131–141

    Article  CAS  Google Scholar 

  34. Reschiglian P, Zattoni A, Roda B et al (2003) Hyperlayer hollow-fiber flow field-flow fractionation of cells. J Chromatogr A 985:519–529

    Article  CAS  Google Scholar 

  35. Anhalt JP, Fenselau C (1975) Identification of bacteria using mass spectrometry. Anal Chem 47:219–225

    Article  CAS  Google Scholar 

  36. Fenselau C, Demirev PA (2001) Characterization of intact microorganisms by MALDI mass spectrometry. Mass Spectrom Rev 20:157–171

    Article  CAS  Google Scholar 

  37. Jarman KH, Cebula ST, Saenz AJ et al (2000) An algorithm for automated bacterial identification using matrix-assisted laser desorption/ionization mass spectrometry. Anal Chem 72:1217–1223

    Article  CAS  Google Scholar 

  38. Lee H, Williams SKR, Wahl KL, Valentine NB (2003) Analysis of whole bacterial cells by flow field-flow fractionation and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Anal Chem 75:2746–2752

    Article  CAS  Google Scholar 

  39. Reschiglian P, Zattoni A, Cinque L et al (2004) Hollow-fiber flow field-flow fractionation for whole bacteria analysis by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Anal Chem 76:2103–2111

    Article  CAS  Google Scholar 

  40. Reschiglian P, Zattoni A, Torsi G, Melucci D (2001) Quantitative analysis by UV-Vis detection in flow-assisted separation techniques for dispersed samples. Rev Anal Chem 20:239–269

    Article  CAS  Google Scholar 

  41. Zattoni A, Piccolomini EL, Torsi G, Reschiglian P (2003) Turbidimetric detection method in flow-assisted separation of dispersed samples. Anal Chem 75:6469–6477

    Article  CAS  Google Scholar 

  42. van de Hulst HC (1981) Light scattering by small particles. Dover Publications, New York

    Google Scholar 

  43. Weinstein RS (1974) In: Surgenor DN (ed) The red blood cell. Academic, New York

    Google Scholar 

  44. Assidjo NE, Chianea T, Clarot I et al (1999) Osmolarity effects on red blood cell elution in sedimentation field-flow fractionation. J Chromatogr Sci 37:229–236

    CAS  Google Scholar 

  45. Barth HG (1984) Modern methods of particle size analysis. Wiley, New York

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pierluigi Reschiglian .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag/Wien

About this chapter

Cite this chapter

Reschiglian, P., Zattoni, A., Roda, B., Rambaldi, D.C., Moon, M.H. (2012). Hollow-Fiber Flow Field-Flow Fractionation: A Pipeline to Scale Down Separation and Enhance Detection of Proteins and Cells. In: Williams, S., Caldwell, K. (eds) Field-Flow Fractionation in Biopolymer Analysis. Springer, Vienna. https://doi.org/10.1007/978-3-7091-0154-4_3

Download citation

Publish with us

Policies and ethics