Skip to main content

Multifunctionalized Particles for Biosensor Use

  • Chapter
  • First Online:
Field-Flow Fractionation in Biopolymer Analysis

Abstract

The mass sensitive sedimentation subtechnique of FFF differs from the flow analogue in two principal ways: Firstly, resolution in sdFFF varies with analyte size to the third power – compared to the first power size dependence for the flow system. Secondly, conversion of sdFFF retention data into mass or size information for the analyte requires knowledge of its density, a quantity that has to be determined separately. Since no such input parameter is required to extract size information from flow FFF data, the sedimentation analogue has obtained a reputation for being less “universal” than its flow counterpart. The present article intends to demonstrate some of the advantages offered by the high mass sensitivity of the sdFFF technique, especially in the design and optimization of bioanalytical processes involving nanoparticles.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Calvert P (1999) Nanotube composites: a recipe for strength. Nature 399:210–211

    Article  CAS  Google Scholar 

  2. Tenne R (2006) Inorganic nanotubes and fullerene-like nanoparticles. Nat Nanotechnol 1:103–111

    Article  CAS  Google Scholar 

  3. Klein J (2007) Probing the interactions of proteins and nanoparticles. PNAS 104(7):2029–2030

    Article  CAS  Google Scholar 

  4. Gaumet M, Vargas A, Gurny R, Delie F (2008) Nanoparticles for drug delivery: the need for precision in reporting particle size parameters. Eur J Pharm Biopharm 69(1):1–9

    Article  CAS  Google Scholar 

  5. Baptista P, Pereira E, Eaton P, Doria G, Miranda A, Gomes I, Quaresma P, Franco R (2008) Gold nanoparticles for the development of clinical diagnosis methods. Anal Bioanal Chem 391:943–950

    Article  CAS  Google Scholar 

  6. Ratanathanawongs Williams SK, Runyon JR, Ashames AA (2011) Field-flow fractionation: addressing the nano challenge. Anal Chem 83(3):634–642

    Article  Google Scholar 

  7. Schure MR, Schimpf ME, Schettler PD (2000) Retention – normal mode. In: Schimpf M, Caldwell K, Giddings JC (eds) Field-flow fractionation handbook. Wiley, New York, pp 31–48

    Google Scholar 

  8. Caldwell KD, Li J-M, Li J-T, Dalgleish D (1992) Adsorption behavior of milk proteins on polystyrene latex: a study based on sedimentation field-flow fractionation and dynamic light scattering. J Chromatogr 604:63–71

    Article  CAS  Google Scholar 

  9. Li J-T, Caldwell KD (1991) Sedimentation field-flow fractionation in the determination of surface concentration of adsorbed materials. Langmuir 7:2034–2039

    Article  CAS  Google Scholar 

  10. Beckett R, Ho J, Yang J, Giddings JC (1991) Measurement of mass and thickness of adsorbed films on colloidal particles by sedimentation field-flow fractionation. Langmuir 7:2040–2047

    Article  CAS  Google Scholar 

  11. Langwost B, Caldwell KD (1992) Solid phase immune reactions as monitored by sedimentation field-flow fractionation. Chromatographia 34:317–324

    Article  CAS  Google Scholar 

  12. Lee J, Martic PA, Tan JS (1989) Protein adsorption on pluronic copolymer-coated polystyrene particles. J Colloid Interface Sci 131:252–266

    Article  CAS  Google Scholar 

  13. Lee JH, Kopecek J, Andrade JD (1989) Protein resistant surfaces prepared by PEO-containing block copolymer surfactants. J Biomed Mater Res 23(3):351–368

    Article  Google Scholar 

  14. Jeon SI, Andrade JD (1992) The steric repulsion properties of polyethylene oxide. Bull Korean Chem Soc 13(3):245–248

    CAS  Google Scholar 

  15. Carlsson J, Drevin H, Axén R (1978) Protein thiolation and reversible protein-protein conjugation. N-Succinimidyl 3-(2-pyridyl dithio) propionate, a new heterobifunctional reagent. Biochem J 173(3):723–737

    CAS  Google Scholar 

  16. Ho C-H, Limberis L, Caldwell KD, Stewart RJ (1998) A metal-chelating pluronic for immobilization of histidin-tagged proteins at interfaces: immobilization of firefly luciferase on polystyrene beads. Langmuir 14:3889–3894

    Article  CAS  Google Scholar 

  17. Andersson M, Elihn K, Fromell K, Caldwell KD (2004) Surface attachment of nanoparticles using oligonucleotides. Colloids Surf B Biointerfaces 34:165–171

    Article  CAS  Google Scholar 

  18. Fromell K, Andersson M, Elihn K, Caldwell KD (2005) Nanoparticle decorated surfaces with potential use in glycosylation analysis. Colloids Surf B Biointerfaces 46:84–91

    Article  CAS  Google Scholar 

  19. Fromell K (2007) Nanoscale reaction systems. Dissertation, nr. 350 from the Faculty of Science and Technology, Acta Universitatis Upsaliensis, p 11

    Google Scholar 

  20. Tegler LT, Nonglaton G, Buettner F, Caldwell K, Christopeit T, Danielson UH, Fromell K, Gossas T, Larsson A, Longati P, Norberg T, Rampanicker R, Rydberg J, Baltzer L (2011) Powerful protein binders from designed polypeptides and small organic molecules – a general concept for protein recognition. Angew Chemie – int’l ed 50(8):1823–1827

    Article  CAS  Google Scholar 

  21. Borchars K, Weber A, Brunner H, Tovar GEM (2005) Microstructured layers of spherical biofunctional core-shell nanoparticles provide enlarged reactive surfaces for protein microarrays. Anal Bioanal Chem 383:738–746

    Article  Google Scholar 

  22. Sanchez-Martin RM, Alexander L, Bradley M (2008) Multifunctionalized biocompatible microspheres for sensing. Ann N Y Acad Sci 1130:207–217

    Article  CAS  Google Scholar 

  23. Graham D, Faulds K, Thompson D, McKenzie F, Stokes R, Dalton C, Stevenson R, Alexander J, Garside P, McFarlane E (2009) Functionalized nanoparticles for bioanalysis by SERRS. Biochem Soc Trans 37:697–701

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karin D. Caldwell .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag/Wien

About this chapter

Cite this chapter

Caldwell, K.D., Fromell, K. (2012). Multifunctionalized Particles for Biosensor Use. In: Williams, S., Caldwell, K. (eds) Field-Flow Fractionation in Biopolymer Analysis. Springer, Vienna. https://doi.org/10.1007/978-3-7091-0154-4_11

Download citation

Publish with us

Policies and ethics