Skip to main content

Abstract

Shortly after Sertürner’s isolation of morphine in 1806, which signified the start of plant secondary products research, picrotoxin was isolated by the French scientist Boullay (1811) from the dried fruits of a liana growing in India and Southeast Asia (1). Although the plant had no value as therapeutic in Western medicine, picrotoxin was isolated even prior to such therapeutically most important plant constituents as emetine (1816) and quinine (1820). Its high toxicity and the ease of isolation by crystallization from water were responsible for the very early discovery of this first member of the picrotoxanes or tutinanolides. Picrotoxanes are a group of sesquiterpenes, sesquiterpene alkaloids, and “norditerpenes” with highly complex, mostly tetra- or pentacyclic structures and up to 12 stereogenic centers. Thus, it is not surprising that it took 70 years to learn that the crystalline substance picrotoxin is a molecular compound consisting of equal amounts of picrotoxinin (1), one of the most potent plant toxins, comparable in lethality with strychnine, and the less active hydrated derivative picrotin (2). An additional 80 years were to pass until the advent of modern spectroscopy allowed Conroy to complete his pioneering elucidation of the structure of picrotoxinin and picrotin. In the meantime more than ten new structural relatives had been isolated from very diverse plant families. In 1866, coriamyrtin (9) was isolated from the toxic berries of the tanner’s brush, the only European plant known to contain picrotoxanes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    For other unexplained occurrences of secondary metabolites in marine sponges and phylogenetically very distant species see references (282, 283).

  2. 2.

    Note that the structures of capenicin and its derivatives are incorrectly depicted in (2).

  3. 3.

    Unfortunately this name has also been given to a peptide toxin.

  4. 4.

    However, the authors depicted 65 and 66 with C(18) in the (R)-configuration in this publication (53) whereas in a later publication (55) 65 and 66 are depicted with C(18) in the (S)-configuration without comment.

Abbreviations

Ac:

Acetyl

acac:

acetyacetone

ACCN:

1,1′-Azobis(cyclohexanecarbonitrile)

AIBN:

2,2′-Azobisisobutyronitrile

aq:

aqueous

Bn:

Benzyl

BSA:

Bistrimethylsilylacetamide

brsm:

Based on recovered starting material

Bu:

n-butyl

Bz:

Benzoyl

cat:

catalytic

CD:

Circular dichroism

COLOC:

Correlation spectroscopy of long range coupling

COSMIC:

Force field calculation

COSY:

Correlation spectroscopy

Cp:

Cyclopentadienyl

CSA:

Camphorsulfonic acid

Cy:

Cyclohexyl

d:

day(s)

dba:

dibenzylidene acetone

DBU:

1,8-Diazabicyclo[5.4.0]undec-7-ene

DCC:

1,3-Dicyclohexylcarbodiimide

DDQ:

2,3-Dichloro-5,6-dicyano-1,4-benzoquinone

DEAD:

Diethylazodicarboxylate

DEPT:

Distortionless enhanced polarization transfer

DHF:

4,5-Dihydrofuran

DIBAH:

Diisobutylaluminum hydride

dicot:

dicotyledon (flowering plant with two seed leafs)

diglyme:

Bis-β-Hydroxyethyl ether

dil:

diluted

DMAP:

4-dimethylaminopyridine

DME:

1,2-Dimethoxyethane

DMF:

N,N-Dimethylformamide

DMSO:

Dimethylsulfoxide

2D-NMR:

Two-dimensional nuclear magnetic resonance

ee :

enantiomeric excess

EPC:

Enantiomerically pure compound

ESIMS:

Electron spray ionization mass spectrum

Et:

ethyl

exc:

excess

FAB:

Fast atom bombardment

FVP:

Flash vacuum pyrolysis

GABA:

γ-Aminobutyric acid

GLC:

Gas–liquid chromatography

glyme:

1,2-Dihydroxyethane

h:

hours

hν:

Irradiation with light

HMBC:

Heteronuclear multiple bond correlation

HMDS:

Hexamethyldisilazane

HMPA:

Hexamethylphosphoramide

HMQC:

Heteronuclear multiple quantum correlation

HOHAHA:

Homonuclear single quantum correlation

HPLC:

High pressure liquid chromatography

HR-TOF-MS:

High resolution time of flight-mass spectrum

HSQC:

Heteronuclear single quantum correlation

IMDA :

Intramolecular Diels–Alder reaction

iPr:

Isopropyl

IR:

infrared (spectroscopy)

LAH:

Lithium aluminum hydride

LDA:

Lithium diisopropylamide

LHMDS:

Lithium hexamethyldisilazide

MCPBA:

meta-chloroperbenzoic acid

Me:

Methyl

MOM:

Methoxymethyl

monocot:

monocotyledon (flowering plant with only one seed leaf)

Mp:

Melting point

Ms:

Methansulfonyl

MS:

Molecular sieve

MS:

Mass spectrum

MPTA Cl:

(+)-α-Methoxy-α-(trifluoromethyl)phenylacetyl chloride

NBS:

N-Bromosuccinimide

NMO:

Morpholine-N-oxide

NMR:

Nuclear magnetic resonance (spectroscopy)

NOE:

Nuclear Overhauser effect

ODS:

Octadecyl silica gel

ORD:

Optical rotation dispersion (spectroscopy)

PCC:

Pyridinium chlorochromate

PDC:

Pyridinium dichromate

Ph:

Phenyl

PhH:

Benzene

PhCH3 :

Toluene

PMB:

p-Methoxybenzyl

PMBOM:

p-Methoxybenzyloxymethyl

PP:

Diphosphate

PPTS:

Pyridinium p-toluenesulfonate

pyr:

pyridine

quant:

quantitative yield

rfl:

reflux

rt:

room temperature

s.l.:

sensu lato

t-Am:

tert-amyl = 2-methylbut-2-yl

t-Bu:

tert-butyl

TBAF:

Tetrabutylammonium fluoride

TBS:

tert-butyldimethylsilyl

TFA:

Trifluoroacetic acid

TFAA:

Trifluoroacetic anhydride

Tf (OTf):

triflate=trifluoromethanesulfonate

thexyl:

2,3-dimethyl-2-butyl

THF:

Tetrahydrofuran, tetrahydrofuranyl

TLC:

Thin-layer chromatography

TMS:

Trimethylsilyl

TosMIC:

Tosylmethylisocyanide = p-toluenesulfonylmethylisonitrile

Troc:

Trichloroethoxycarbonyl

Ts:

Tosyl = p-Toluenesulfonyl

UV:

ultraviolet (spectroscopy)

Z:

Benzyloxycarbonyl

Δ:

High temperature

′:

Minutes

″:

Seconds

[α]D :

Optical rotation at λ = 589 nm

References

  1. Boullay PFG (1811) Nouveau Principe Immediat Cristallise, auquel la Coque du Levant doit ses Qualites Veneneuses. Ann Chem Phys 80: 209

    Google Scholar 

  2. Porter LA (1967) Picrotoxinin and Related Substances. Chem Rev 67: 441, and literature cited therein

    Article  CAS  Google Scholar 

  3. Coscia CJ (1968) Picrotoxin. In: Taylor WI, Battersby AR (eds) Cyclopentanoid Terpene Derivatives, p. 147, and literature cited therein. Marcel Dekker, New York

    Google Scholar 

  4. Fischer NH, Olivier EJ, Fischer HD (1979) The Biogenesis and Chemistry of Sesquiterpene Lactones. Prog Chem Org Nat Prod 38: 270, 272

    Google Scholar 

  5. Mackay MF, Sadek M (1983) The Crystal and Molecular Structure of Picrotoxinin. Aust J Chem 36: 2111

    Article  CAS  Google Scholar 

  6. Andrews PR, Brownlee RTC, Mackay MF, Poulton DB, Sadek M, Winkler DA (1983) Conformational Analysis of Picrotoxinin by N.M.R., X-Ray Crystallography, and Molecular Orbital and Classical Potential-Energy Calculations. Aust J Chem 36: 2219

    Article  CAS  Google Scholar 

  7. Sarma NS, Rambabu M, Anjaneyulu ASR, Rao CBS (1987) Occurrence of Picrotoxins in Marine Sponge Spirastrella inconstans. Indian J Chem 26B: 189

    CAS  Google Scholar 

  8. Agarwal SK, Singh SS, Verma S, Kumar S (1999) Two Picrotoxin derivatives from Anamirta cocculus. Phytochemistry 50: 1365

    Article  CAS  Google Scholar 

  9. Perry NB, Aiyaz M, Kerr DS, Lake RJ, Leach MT (2001) NOESY on Neurotoxins: NMR and Conformational Assignment of Picrotoxins. Phytochem Anal 12: 69

    Article  CAS  Google Scholar 

  10. Blunt JW, Munro MHG, Swallow WH (1979) Carbon-13 NMR of Tutin and Related Substances: Application to the Identification of Minor Components of Toxic Honey. Aust J Chem 32: 1339

    Article  CAS  Google Scholar 

  11. Zhao WM, Ye QH, Dai JQ, Martin MT, Zhu JP (2003) allo-Aromadendrane- and Picrotoxane-type Sesquiterpenes from Dendrobium moniliforme. Planta Med 69: 1136

    Article  CAS  Google Scholar 

  12. Bi ZM, Wang ZT, Xu LS (2004) Chemical Constituents of Dendrobium moniliforme. Acta Bot Sinica 46: 124

    CAS  Google Scholar 

  13. Gawell L, Leander K (1976) The Constitution of Aduncin, a Sesquiterpene Related to Picrotoxinin, found in Dendrobium aduncum. Phytochemistry 15: 1991

    Article  CAS  Google Scholar 

  14. Bi ZM, Mai JF, Zhu L, Wang ZT, Xu LS (2006) Study on Chemical Constituents of Dendrobium aduncum. Zhongguo Yaoxue Zazhi 41: 1618

    CAS  Google Scholar 

  15. Dahmen J, Leander K (1978) Amotin and Amoenin, two Sesquiterpenes of the Picrotoxane Group from Dendrobium amoenum. Phytochemistry 17: 1949

    Article  CAS  Google Scholar 

  16. Majumder PL, Guha S, Sen S (1999) Bibenzyl Derivatives from the Orchid Dendrobium amoenum. Phytochemistry 52: 1365

    Article  CAS  Google Scholar 

  17. Morita H, Fujiwara M, Yoshida N, Kobayashi J (2000) New Picrotoxinin-type and Dendrobine-type Sesquiterpenoids from Dendrobium Snowflake “Red Star”. Tetrahedron 56: 5801

    Article  CAS  Google Scholar 

  18. a) Riban J M (1864) Sur le Principe Toxique du Redoul (Coriaria myrtifolia). Bull Soc Chim France 1: 87 b) Riban J M (1867) Sur la Coriamyrtine et ses Derives. Bull Soc Chim France 7: 79

    Google Scholar 

  19. Okuda T, Yoshida T (1965) Establishment of the Structural Correlation between Coriamyrtin and Tutin. Tetrahedron Lett 4191

    Google Scholar 

  20. Reyes QA, Martinez JR, Bartulin J (1980) Coriamyrtin and other Metabolites of Coriaria ruscifolia. J Nat Prod 43: 532

    Article  CAS  Google Scholar 

  21. Okuda T, Yoshida T, Chen XM, Xie JX, Fukushima M (1987) Corianin from Coriaria japonica A. Gray, and Sesquiterpene Lactones from Loranthus parasiticus Merr. Used for Treatment of Schizophrenia. Chem Pharm Bull 35: 182

    Article  CAS  Google Scholar 

  22. Gulbis JM, Mackay MF, Wong MG (1989) Coriamyrtin and Tutin. A Crystallographic and Conformational Study. Aust J Chem 42: 1881

    Article  CAS  Google Scholar 

  23. a) Aguirre-Galviz LE, Templeton W (1990) Toxic Sesquiterpenoid Lactones from Leaves of Coriaria microphylla. Planta Med 56: 244 b) Aguirre-Galviz LE (1987) Coriamyrtin from Coriaria microphylla. Fitoterapia 58: 50

    Article  CAS  Google Scholar 

  24. Wei H, Zeng FJ, Lu MY, Tang RJ (1998) Studies on Chemical Constituents from the Root of Coriaria nepalensis Wall. (Coriaria sinica Maxim.). Acta Pharm Sin 33: 688; CAN 130:264785

    CAS  Google Scholar 

  25. Craven BM (1963) Molecular Structure of Tutin. Nature 197: 1193

    Article  CAS  Google Scholar 

  26. Mackay MF, Mathieson AMcL (1965) The Crystal Structure of α-Bromoisotutinone. Acta Crystallogr 19: 417

    Article  CAS  Google Scholar 

  27. Okuda T, Yoshida T (1965) Absolute Configuration of Tutin. Tetrahedron Lett 2137

    Google Scholar 

  28. Kinoshita T, Itaki N, Hikita M, Aoyagi Y, Hitozuyanagi Y, Takeya K (2005) The Isolation and Structure Elucidation of a New Sesquiterpene Lactone from the Poisonous Plant Coriaria japonica (Coriariaceae). Chem Pharm Bull 53: 1040

    Article  CAS  Google Scholar 

  29. Li ML, Cui J, Qin RH, Gao JM, Zhang YB, Guo XR, Zhang W (2007) Semisynthesis and Antifeedant Activity of New Acylated Derivatives of Tutin, a Sesquiterpene Lactone from Coriaria sinica. Heterocycles 71: 1155

    Article  CAS  Google Scholar 

  30. a) Easterfield TH, Aston BC (1900) Tutu, Part I. Proc Chem Soc 16: 211; b) Easterfield TH, Aston BC (1901) Tutu, Part I. Tutin and Coriamyrtin. J Chem Soc 79: 120

    Google Scholar 

  31. Hodges R, White EP (1966) Detection and Isolation of Tutin and Hyenanchin in Toxic Honey. NZ J Sci 9: 233

    CAS  Google Scholar 

  32. Palmer-Jones T (1965) Poisonous Honey Overseas and in New Zealand. NZ Med J 64: 631

    CAS  Google Scholar 

  33. Kudo Y, Niwa H, Tanaka A, Yamada K (1984) Action of Picrotoxinin and Related Compounds on the Spinal Cord: the Role of a Hydroxyl-group at the 6-Position in Antagonizing the Actions of Amino acids and Presynaptic Inhibition. Br J Pharmacol 81: 373

    Article  CAS  Google Scholar 

  34. Lowe MD, White EP (1972) Tutin in Coriaria Species - Identification and Estimation. NZ J Sci 15: 303

    CAS  Google Scholar 

  35. Vinter JG, Davis A, Saunders MR (1987) Strategic Approaches to Drug Design. I An Integrated Software Framework for Molecular Modelling. J Comp-Aided Mol Des 1: 31

    Article  CAS  Google Scholar 

  36. Koike K, Suzuki Y, Ohmoto T (1994) Picrotoxane Terpenoids, Picrodendrins S and T, from Picrodendron baccatum. Phytochemistry 35: 701

    Article  CAS  Google Scholar 

  37. Okuda T, Yoshida T (1967) The Correlation of Coriamyrtin and Tutin and Their Absolute Configuration. Chem Pharm Bull 15: 1955

    Article  CAS  Google Scholar 

  38. Reyes A, Garcia-Quintana HG, Romero M, Morales D. Bartulin J (1998) Tutina y Otros Metabolitos de Coriaria ruscifolia L. Bol Soc Chil Quim 43: 87

    CAS  Google Scholar 

  39. Chang YS, Lin MS, Jiang RL, Huang SC, Ho LK (1996) 20-Epibryonolic Acid, Phytosterols and Ellagic acid from Coriaria intermedia. Phytochemistry 42: 559

    Article  CAS  Google Scholar 

  40. Okuda T, Yoshida T (1971) Structure of Corianin. Tetrahedron Lett 12: 4499

    Article  Google Scholar 

  41. Guo HZ, Li JS, Wu N, Lu Y, Zheng QT (2000) Study on Constituents of the Seed from Cuscuta japonica. Beijing Zhongyiyao Daxue Xuebao 23: 36

    CAS  Google Scholar 

  42. Biollaz M (1965) Über die Konstitution und Konfiguration einiger C15-Bitterstoffe aus Hyenanche globosa Lambert, PhD Thesis, Nr. 3746, ETH Zürich

    Google Scholar 

  43. Zhao WM, private communication

    Google Scholar 

  44. Jommi G, Pelizzoni G, Scolastico C (1965) Correlazione tra Tutina e Ienancina. Chim Ind (Milan) 47: 407

    CAS  Google Scholar 

  45. a) Jommi G, Pelizzoni F, Scolastico C (1965) Correlazione tra Tutina e Diidroisoienancina. Chim Ind (Milan) 47: 406 b) Jommi G, Pelizzoni F, Scolastico C (1965) Constituenti della Hyenanche globosa: Strutura della Sostanza D 47: 865 c) Corbella A, Jommi G, Rindone B, Scolastico C (1967) Constituents of Hyenanche globosa. Structure of Substance C and Correlation Between Picrotoxinin and Tutin. Ann Chim (Rome) 57: 758

    CAS  Google Scholar 

  46. Ohmoto T, Koike K, Fukuda H, Mitsunaga K, Ogata K, Kagei K (1989) Studies on the Constituents of Picrodendron baccatum Growing in Indonesia. II. Structures of Two New Sesquiterpene Lactones, Picrodendrin C and D. Chem Pharm Bull 37: 2988

    Article  CAS  Google Scholar 

  47. Jommi G, Manitto P, Pelizzoni F, Scolastico C (1964) Costituenti amari della Hyenanche globosa. Chem Ind (Milan) 46: 549

    CAS  Google Scholar 

  48. Castaneda P, Bahena A, Garcia E, Chavez D, Mata R, Gutierrez A (1993) Secondary Metabolites from the Stem Bark of Celaenodendron mexicanum. J Nat Prod 56: 1575

    Article  CAS  Google Scholar 

  49. Valencia E, Valenzuela E, Barros E, Aedo V, Gebauer MT, Garcia C, Gonzalez AG, Bermejo J (2001) Constituents of Coriaria ruscifolia Fruits. Fitoterapia 72: 555

    Article  CAS  Google Scholar 

  50. a) Saika T, Tokuyama T 41st National Meeting of the Chemical Society of Japan, Higashi-Osaka, April 1980, Abstr. No. 1S14 b) Saika T, Tokuyama T 45th National Meeting of the Chemical Society of Japan, Tokyo, April 1982, Abstr. Nr. 1E44 c) Saika T, Tokuyama T, Higuchi T, Hirotsu K 47th National Meeting of the Chemical Society of Japan, Kyoto, April 1983, Abstr. Nr. 1H30

    Google Scholar 

  51. Ref. 4 in Wakamatsu K, Kigoshi H, Niiyama K, Niwa H, Yamada K (1984) Stereocontrolled Total Synthesis of (+)-Asteromurin A, a Picrotoxane Sesquiterpene Isolated from the Scale Insect Asterococcus muratae Kuwana. Chem Lett 1763

    Google Scholar 

  52. Wakamatsu K, Kigoshi H, Niiyama K, Niwa H, Yamada K (1986) Stereocontrolled Total Synthesis of (+)-Tutin and (+)-Asteromurin A, Toxic Picrotoxane Sesquiterpenes. Tetrahedron 42: 5551

    Article  CAS  Google Scholar 

  53. Koike K, Ohmoto T, Kawai T, Sato T (1991) Picrotoxane Terpenoids from Picrodendron baccatum. Phytochemistry 30: 3353

    Article  CAS  Google Scholar 

  54. Koike K, Fukuda H, Mitsunaga K, Ohmoto T (1991) Picrodendrins B, G and J, New Picrotoxane Terpenoids from Picrodendron baccatum. Chem Pharm Bull 39: 934

    Article  CAS  Google Scholar 

  55. Suzuki Y, Koike K, Ohmoto T (1992) Eight Picrotoxane Terpenoids, Picrodendrins K-R, from Picrodendron baccatum. Phytochemistry 31: 2059

    Article  CAS  Google Scholar 

  56. Suzuki Y, Koike K, Nagahisa M, Nikaido T (2003) New Picrotoxane Terpenoids from Picrodendron baccatum. Tetrahedron 59: 6019

    Article  CAS  Google Scholar 

  57. Tang J, Liu QF, Dai JQ, Zhao WM (2004) A New Picrotoxane Type Sesquiterpene from Dendrobium densiflorum. Chin Chem Lett 15: 63

    CAS  Google Scholar 

  58. Zhao CS, Liu QF, Halaweish F, Shao BP, Ye YQ, Zhao WM (2003) Copacamphane, Picrotoxane, and Alloaromadendrane Sesquiterpene Glycosides and Phenolic Glycosides from Dendrobium moniliforme. J Nat Prod 66: 1140

    Article  CAS  Google Scholar 

  59. Shu Y, Zhang DM, Guo SX (2004) A New Sesquiterpene Glycoside from Dendrobium nobile Lindl. J Asian Nat Prod Res 6: 311

    Article  CAS  Google Scholar 

  60. Ye QH, Qin GW, Zhao WM (2002) Immunomodulatory Sesquiterpene Glycosides from Dendrobium nobile. Phytochemistry 61: 885

    Article  CAS  Google Scholar 

  61. a) Conroy H (1957) Picrotoxin: Lithium Aluminum Hydride Reductions. Chem Ind (London) 704–705; b) Conroy H (1957) Picrotoxin V. Conformational analysis and problems of structure. J Am Chem Soc 79: 5550

    Google Scholar 

  62. Pradhan P, Mamdapur VR, Sipahimalani AT (1990) Methyl Picrotoxate, a Minor Component of Berries of the Plant Anamirta cocculus and its Stereochemistry by High Resolution NMR Spectroscopy. Indian J Chem 29B: 676

    CAS  Google Scholar 

  63. Krische MJ, Trost BM (1998) Total Synthesis of Methyl Picrotoxate via the Palladium Catalyzed Enyne Cycloisomerization Reaction. Tetrahedron 54: 3693

    Article  CAS  Google Scholar 

  64. Tane P, Ayafor JF, Farrugia LJ, Connolly JD, Rycroft DS, Tillequin F (1996) Picrotoximaesin, a Novel Picrotoxane Sesquiterpenoid from Maesobotrya floribunda. Nat Prod Lett 9: 39

    Article  CAS  Google Scholar 

  65. Ayafor JF, Tane P, Ngadjui BT, Connolly JD, Rycroft DS, Tillequin F (1993) Picrotoximaesin, a New Picrotoxane Sesquiterpene from Maesa kamerunensis Mez. Planta Med 59: A 599; the investigated plant was subsequently identified as Maesobotrya floribunda, see Ref. 64

    Article  Google Scholar 

  66. Okamoto T, Natsume M, Onaka T, Uchimaro F, Shimizu M (1972) Further Studies on the Alkaloidal Constituents of Dendrobium nobile (Orchidaceae)-Structure Determination of 4-Hydroxydendroxine and Nobilomethylene. Chem Pharm Bull 20: 418

    Article  CAS  Google Scholar 

  67. Zhang X, Liu HW, Gao H, Han HY, Wang NL, Wu HM, Yao XS, Wang Z (2007) Nine New Sesquiterpenes from Dendrobium nobile. Helv Chim Acta 90: 2386

    Article  CAS  Google Scholar 

  68. Zhang X, Tu FJ, Ju HY, Wang NL, Wang Z, Yao XS (2008) Copacamphane, Picrotoxane and Cyclocopacamphane Sesquiterpenes from Dendrobium nobile. Chem Pharm Bull 56: 854

    Article  CAS  Google Scholar 

  69. Shen YH, Li SH, Li RT, Han QB, Zhao QS, Liang L, Sun HD, Lu Y, Cao P, Zheng QT (2004) Coriatone and Corianlactone, Two Novel Sesquiterpenes from Coriaria nepalensis. Org Lett 6: 1593

    Article  CAS  Google Scholar 

  70. Zhao WM, Ye QH (2002) New Alloaromadendrane, Cadinene and Cyclocopacamphane Type Sesquiterpene Derivatives and Bibenzyls from Dendrobium nobile. Planta Med 68: 723

    Article  Google Scholar 

  71. Zhao WM, Ye Q, Tan X, Jiang H, Li X, Chen K, Kinghorn AD (2001) Three New Sesquiterpene Glycosides from Dendrobium nobile with Immunomodulatory Activity. J Nat Prod 64: 1196

    Article  CAS  Google Scholar 

  72. Jommi G, Manitto P, Pelizzoni F, Scolastico (1965) Costituenti della Hyenanche globosa; Struttura della Capenicina. Chem Ind (Milan) 47, 1328

    CAS  Google Scholar 

  73. Corbella A, Jommi G, Scolastico C (1966) Structural correlation between Capenicin and Tutin. Tetrahedron Lett 4819

    Google Scholar 

  74. Seibl J (1967) Metastable Transitions in the Mass Spectra of Organic Compounds. Helv Chim Acta 50: 263

    Article  CAS  Google Scholar 

  75. Müller B (1967) Zur Kenntnis der sesquiterpenoiden Inhaltsstoffe aus Hyenanche globosa Lambert, PhD Thesis Nr. 4000, ETH Zürich

    Google Scholar 

  76. Corbella A, Jommi G, Rindone B, Scolastico C (1969) Structure of Pretoxin and Lambicin. Tetrahedron 25: 4835

    Article  CAS  Google Scholar 

  77. Ohmoto T, Koike K, Fukuda H, Mitsunaga K, Kagei K, Kawai T, Sato T (1989) Studies on the Constituents of Picrodendron baccatum Growing in Indonesia: Structure of a Norditerpene Lactone, Picrodendrin A. Chem Pharm Bull 37: 1805

    Article  CAS  Google Scholar 

  78. Nagahisa M, Koike K, Narita M, Ohmoto T (1994) Novel Picrotoxane Norditerpene Lactones from Picrodendron baccatum. Tetrahedron 50: 10859

    Article  CAS  Google Scholar 

  79. a) Behr D, Leander K (1972) Studies on Orchidaceae Alkaloids XXVIII. The Absolute Configuration of the Dendrobine Alkaloids. Acta Chem Scand 26: 3196 b) Behr D, Leander K (1976) Studies on Orchidaceae Alkaloids. 41. The Configuration at C-4 in δ-Nobilonine and Dihydroketopicrotoxininic Acid. Acta Chem Scand B 30: 279

    Article  CAS  Google Scholar 

  80. Hedman K, Leander K, Lüning B (1971) Studies on Orchidaceae Alkaloids XXV. N-Isopentenyl Derivatives of Dendroxin and 6-Hydroxydendroxine from Dendrobium friedericksianum Lindl and Dendrobium hildebrandii Rolfe. Acta Chem Scand 25: 1142

    Article  CAS  Google Scholar 

  81. Hedman K, Leander K (1972) Studies on Orchidaceae Alkaloids XXVII. Quaternary Salts of the Dendrobine Type from Dendrobium nobile Lindl. Acta Chem Scand 26: 3177

    Article  CAS  Google Scholar 

  82. Inubushi Y, Tsuda Y, Katarao E (1966) The Structure of Dendramine. Chem Pharm Bull 14: 668

    Article  CAS  Google Scholar 

  83. Granelli I.; Leander K, Lüning B (1970) Studies on Orchidaceae Alkaloids XVI. A New Alkaloid, 2-Hydroxydendrobine, from Dendrobium findlayanum Par. et Rchb. f. Acta Chem Scand 24: 1209

    Article  CAS  Google Scholar 

  84. Suzuki M, Yamada K, Hirata Y (1975) Synthesis of 2-Hydroxydendrobine and Nobiline. Chem Lett 611

    Google Scholar 

  85. Granelli I, Leander K (1970) Studies on Orchidaceae Alkaloids XIX. Synthesis and Absolute Configuration of Dendrine. Acta Chem Scand 24: 1108

    Article  CAS  Google Scholar 

  86. Liu QF, Zhao WM, (2003) A New Dendrobine-Type Alkaloid from Dendrobium nobile. Chin Chem Lett 14: 278

    CAS  Google Scholar 

  87. Elander M, Leander K (1971) Studies on Orchidaceae Alkaloids XXI. 6-Hydroxynobiline, a New Alkaloid from Dendrobium hildebrandii Rolfe. Acta Chem Scand 25: 717

    Article  CAS  Google Scholar 

  88. Liu WH, Hua YF (2007) Moniline, a New Alkaloid from Dendrobium moniliforme. J Chem Res 317

    Google Scholar 

  89. Wang H, Zhao T, Che CT (1985) Dendrobine and 3-Hydroxy-2-oxodendrobine from Dendrobium nobile. J Nat Prod 48: 796

    Article  CAS  Google Scholar 

  90. Blomqvist L, Brandänge S, Gawell L, Leander K, Lüning B (1973) Studies on Orchidaceae Alkaloids XXXVII. Dendrowardine, a Quaternary Alkaloid from Dendrobium wardianum. Acta Chem Scand 27: 1439

    Article  CAS  Google Scholar 

  91. The Angiosperm Phylogeny Group (AGP) (1998) An Ordinal Classification for the Families of Flowering Plants. Ann Missouri Bot Gard 85: 531

    Google Scholar 

  92. The Angiosperm Phylogeny Group (AGP II) (2003) An Update of the Angiosperm Phylogeny Group Classification of Orders and Families of Flowering Plants. Bot J Linn Soc 141: 299

    Google Scholar 

  93. Wink M (2006) Schriftzeichen im Logbuch des Lebens. Molekulare Evolutionsforschung. Biol Unserer Zeit 36: 26

    Article  CAS  Google Scholar 

  94. Hegnauer R (1962–2001) Chemotaxonomie der Pflanzen vols. 2, p 383; 3, pp 562, 563, 662, 674; 5, 311; 7, pp 739, 741, 743, 748; 8, pp 331, 333, 334, 452, 453, 685, 710; 9, 404, 561, 563, 564, 730 Birkhäuser Verlag, Basel and Stuttgart

    Google Scholar 

  95. Yokoyama J, Suzuki M, Iwatsuki K, Hasebe M (2000) Molecular Phylogeny of Coriaria with Special Emphasis on the Disjunct Distribution. Mol Phylogen Evol 14: 11

    Article  CAS  Google Scholar 

  96. Corbella A, Gariboldi P, Jommi G, Scolastico C (1969) Biosynthesis of Tutin. J Chem Soc, Chem Commun 634–635

    Google Scholar 

  97. a) Wang XK, Zhao TF, Wang M (1985) Gas Chromatographic-Mass Spectroscopic Investigation of the Alkaloids of D. nobile Cultivated on Eleven Trees. Bull Chin Nat Med 10: 367–369 b) Wang XK, Zhao TF (1985) TLC Determination of Dendrobine in D. nobile Cultivated on Trees. Acta Acad Med Sichuan 16: 249–253

    CAS  Google Scholar 

  98. Paterson CR (1947) Part IV. The Source of the Toxic Honey-Field Observations NZ J Sci Technol, Sect A 29: 125

    Google Scholar 

  99. Love JL (1990) Toxic Honey - a New Zealand Story. Anal Proc 27: 87

    CAS  Google Scholar 

  100. Sutherland MD (1992) New Zealand Toxic Honey – The Actual Story. Anal Proc 29: 112

    Article  CAS  Google Scholar 

  101. a) Lorence A, Nessler CL (2004) Camptothecin, over Four Decades of Surprising Findings. Phytochemistry 65: 2735 b) Larsson S (2007) The New Phylogeny Has Reduced Scattering Somewhat: The “New” Chemosystematics: Phylogeny and Phytochemistry. Phytochemistry 68: 2903 c) Kusari S, Zühlke S, Spiteller M (2009) An Endophytic Fungus from Camptotheca acuminata that Produces Camptothecin and Analogues. J Nat Prod 72: 2, and literature cited therein

    Article  CAS  Google Scholar 

  102. Wink M (2003) Evolution of Secondary Metabolites from an Ecological and Molecular Phylogenetic Perspective. Phytochemistry 64: 3, and literature cited therein

    Article  CAS  Google Scholar 

  103. a) Dunning Hotopp JC, Clark ME, Oliveira DSG, Foster GM, Fischer P, Munoz Torres MC, Giebel JD, Kumar N, Ishmael N, Wang S, Ingram J, Nene RV, Shepard J, Tomkins J, Richards S, Spiro DJ, Ghedin E, Slatko BE, Tettelin H, Werren JH (2007) Widespread Lateral Gene Transfer from Intracellular Bacteria to Multicellular Eukaryotes. Science 317 (5845): 1753 b) Gunatilaka AAL (2006) Natural Products from Plant-associated Microorganisms: Distribution, Structural Diversity, Bioactivity, and Implications of Their Occurrence. J Nat Prod 69: 509

    Article  CAS  Google Scholar 

  104. Ahimsa-Müller MA, Markert A, Hellwig S, Knoop V, Steiner U, Drewke C, Leistner E (2007) Clavicipitaceous Fungi Associated with Ergoline Alkaloid-Containing Convolvulaceae. J Nat Prod 70: 1955–1960

    Article  CAS  Google Scholar 

  105. Wink M, Witte L (1983) Evidence for a Widespread Occurrence of the Genes of Quinolizidine Alkaloid Biosynthesis. Induction of Alkaloid Accumulation in Cell Suspension Cultures of Alkaloid-“free” Species. FEBS Letters 159: 196

    Article  CAS  Google Scholar 

  106. Wu CY, Zhang G (1984) Quantitative Analysis of Sesquiterpene Lactone in Loranthus parasiticus (L.) Merr. Parasiting on Coriaria sinica Maxim, and in Seeds of Coriaria sinica Maxim. Acta Pharm Sin (Yaoxue Xuebao) 19: 56

    CAS  Google Scholar 

  107. Henkel JB (1858) Beitraege zur Kenntniss der chemischen Bestandtheile der Früchte von Hyenanche globosa Lamb., Euphorbiaceae. Arch Pharm 144: 16

    Article  Google Scholar 

  108. Henry TA (1920) Hyenanchin and other Constituents of Hyenanche globosa. J Chem Soc 117: 1619

    Article  CAS  Google Scholar 

  109. Biollaz M, Arigoni D (1964) Structure de l’Hyenanchine, Principe Amer de l’Hyenanche globosa Lamb. Chimia 18: 184

    Google Scholar 

  110. Suzuki H, Keimatsu I (1932) Über die Alkaloide der chinesischen Droge „Chin-shih-hu“. (II Mitteilung). Über das Dendrobin (I). J Pharm Soc Jap 52: 1049

    CAS  Google Scholar 

  111. Suzuki H, Keimatsu I, Ito K (1934) Über die Alkaloide der chinesischen Droge „Chin-Shih-Hu“. (III Mitteilung). Über das Dendrobin (II). J Pharm Soc Jap 54: 802

    CAS  Google Scholar 

  112. Chen KK, Chen AL (1935) The Alkaloid of “Chin-shih-hu”. J Biol Chem 111: 653

    CAS  Google Scholar 

  113. Wang SY, Song XQ, Li HH (2007) Analysis of Dendrobium nobile Lindl Produced in Yunnan and Content of Total Alkaloids Provided by Cell Culture. Guizhou Shifan Daxue Xuebao, Ziran Kexueban 25(2): 1.2, 16; CAN 2008: 36071

    Google Scholar 

  114. Inubushi Y, Ishii H, Yasui B, Konita T, Harayama T (1964) Isolation and Characterization of Alkaloids of the Chinese Drug “Chin-Shi-Hu”. Chem Pharm Bull 12: 1175

    Article  CAS  Google Scholar 

  115. Conroy H (1957) Picrotoxin. III. α-Picrotoxininic and Bromopicrotoxininic Acids; Apopicrotoxininic Dilactone. J Am Chem Soc 79: 1726

    Article  CAS  Google Scholar 

  116. Craven BM (1960) Molecular Structure and Absolute Configuration of Picrotoxinin. Tetrahedron Lett 21

    Google Scholar 

  117. Craven BM (1962) The Crystal Structure of α-1-Bromopicrotoxinin. Acta Crystallogr. 15: 387

    Article  CAS  Google Scholar 

  118. Corey EJ, Pearce HL (1979) Total Synthesis of Picrotoxinin. J Am Chem Soc 101: 5842

    Google Scholar 

  119. Niwa H, Wakamatsu K, Hida T, Niiyama K, Kigoshi H, Yamada M, Nagase H, Suzuki M, Yamada K (1984) Stereocontrolled Total Synthesis of (−)-Picrotoxinin and (+)-Coriamyrtin via a Common Isotwistane Intermediate. J Am Chem Soc 106: 4547

    Article  CAS  Google Scholar 

  120. Miyashita M, Suzuki T, Yoshikoshi A (1989) Selective Total Synthesis of (−)-Picrotoxinin and (−)-Picrotin. J Am Chem Soc 111: 3728

    Article  CAS  Google Scholar 

  121. Trost BM, Krische MJ (1996) General Strategy for the Asymmetric Synthesis of Picrotoxanes. J Am Chem Soc 118: 233

    Article  CAS  Google Scholar 

  122. Trost BM, Krische MJ (1999) Palladium-Catalyzed Enyne Cyclodimerization in Asymmetric Approach to the Picrotoxane Sesquiterpenes. 2. Second-Generation Total Syntheses of Corianin, Picrotoxinin, Picrotin, and Methyl Picrotoxate. J Am Chem Soc 121: 6131

    Article  CAS  Google Scholar 

  123. Schmidt TJ, Okuyama E, Fronczek FR (1999) The Molecular Structure of 2α-Hydroxyneoanisatin and Structure Activity Relationships among Convulsant Sesquiterpenes of the seco-Prezizaane and Picrotoxane Types. Bioorg Med Chem 7: 2857

    Article  CAS  Google Scholar 

  124. Corey EJ, Pearce HL (1980) Total Synthesis of Picrotin. Tetrahedron Lett 21: 1823

    Article  CAS  Google Scholar 

  125. Okuda T, Yoshida T (1964) Structure of Coriamyrtin. Tetrahedron Lett 9: 439

    Article  Google Scholar 

  126. Okuda T, Yoshida T (1967) Coriamyrtin X. Stereochemistry of Coriamyrtin and Problems of Derivatives. Chem Pharm Bull 15: 1697

    Article  CAS  Google Scholar 

  127. Craven BM (1964) The Crystal Structure and Absolute Configuration of α-Bromoisotutin. Acta Crystallogr 17: 396

    Article  CAS  Google Scholar 

  128. Tanaka K, Uchiyama F, Sakamoto K, Inubushi Y (1982) Stereocontrolled Total Synthesis of (±)-Coriamyrtin. J Am Chem Soc 104: 4965

    Article  CAS  Google Scholar 

  129. Tanaka K, Uchiyama F, Sakamoto K, Inubushi Y (1983) Synthetic Studies on a Picrotoxane Sesquiterpene, Coriamyrtin III. Completion of the Stereocontrolled Total Synthesis of Coriamyrtin. Chem Pharm Bull 31: 1972

    Article  CAS  Google Scholar 

  130. Wakamatsu K, Kigoshi H, Niiyama K, Niwa H, Yamada K (1984) Stereocontrolled Total Synthesis of (+)-Tutin, A Toxic Sesquiterpene of Picrotoxane-Type. Tetrahedron Lett 25: 3873

    Article  CAS  Google Scholar 

  131. Krische MJ, Trost BM (1998) Transformation of the Picrotoxanes: The Synthesis of Corianin and Structural Analogs from Picrotoxinin. Tetrahedron 54: 7109

    Article  CAS  Google Scholar 

  132. Trost BM, Haffner CD, Jebaratnam DJ, Krische MJ, Thomas AP (1999) The Palladium-Catalyzed Enyne Cycloisomerization Reaction in a General Approach to the Asymmetric Syntheses of the Picrotoxane Sesquiterpenes. Part. I. First-Generation Total Synthesis of Corianin and Formal Syntheses of Picrotoxinin and Picrotin. J Am Chem Soc 121: 6183

    Article  CAS  Google Scholar 

  133. Hodges R, White EP (1964) The Structure of Mellitoxin. Tetrahedron Lett 371

    Google Scholar 

  134. Severini Ricca G, Scolastico C (1967) Complessi di Collisione e Spettri NMR.- Nota I. Spettri NMR dei Composti della Serie della Ienancina. Gazz Chim Italiana 97: 1905

    CAS  Google Scholar 

  135. Wakamatsu K, Kigoshi H, Niiyama K, Niwa H, Yamada K (1984) Stereocontrolled Total Synthesis of (+)-Asteromurin A, a Picrotoxane Sesquiterpene Isolated from the Scale Insect Asterococcus muratae Kuwana. Chem Lett 1763

    Google Scholar 

  136. a) Inubushi Y, Sasaki Y, Tsuda Y, Yasui B, Konita T, Matsumoto J, Katarao E, Nakano J (1963) Structure of Dendrobine. Yakugaku Zasshi (J Pharm Soc Japan) 83: 1184 b) Inubushi Y, Sasaki Y, Tsuda Y, Yasui B, Konita T, Matsumoto J, Katarao E, Nakano J (1964) Structure of Dendrobine. Tetrahedron 20: 2007

    CAS  Google Scholar 

  137. Onaka T, Kamata S, Maeda T, Kawazoe Y, Natsume M, Okamoto T, Uchimaru F, Shimizu M (1964) The Structure of Dendrobine. Chem Pharm Bull 12: 506

    Article  CAS  Google Scholar 

  138. Yamamura S, Hirata Y (1964) Structures of Nobiline and Dendrobine. Tetrahedron Lett 79

    Google Scholar 

  139. Inubushi Y, Katarao E, Tsuda Y, Yasui B (1964) Absolute Configuration of Dendrobine. Chem Ind (London) 1698

    Google Scholar 

  140. Huang (Hwang) WK (1965) Configurations of Dendrobine and Nobiline. Acta Chim Sin 31: 333

    Google Scholar 

  141. Matsuda H, Tomiie Y, Nitta I (1965) 18th Annual Meeting of the Chemical Society Japan (Osaka; Abstracts of Papers, p. 215)

    Google Scholar 

  142. Onaka T, Kamata S, Maeda T, Kawazoe Y, Natsume M, Okamoto T, Uchimaro F, Shimizu M (1965) The Structure of Nobilonine. The Second Alkaloid from Dendrobium nobile. Chem Pharm Bull 13: 745

    CAS  Google Scholar 

  143. Sha CK, Chiu RT, Yang CF, Yao NT, Tseng WH, Liao FL, Wang SL (1997) Total Synthesis of (−)-Dendrobine via α-Carbonyl Radical Cyclization. J Am Chem Soc 119: 4130

    Article  CAS  Google Scholar 

  144. Cassayre J, Zard S (1999) A Short Synthesis of (−)-Dendrobine. J Am Chem Soc 121: 6072

    Article  CAS  Google Scholar 

  145. Genovese S, Curini M, Epifano F (2009) Chemistry and Biological Activity of Azoprenylated Secondary Metabolites. Phytochemistry 70: 1082

    Article  CAS  Google Scholar 

  146. Yamada K, Suzuki M, Hayakawa Y, Aoki K, Nakamura H, Nagase H, Hirata Y (1972) Total Synthesis of (±)-Dendrobine. J Am Chem Soc 94: 8278

    Article  CAS  Google Scholar 

  147. Inubushi Y, Kikuchi T, Ibuka T, Tanaka K, Saji I, Tokane K (1972) Total Synthesis of the Alkaloid (±)-Dendrobine. J Chem Soc, Chem Commun 1252

    Google Scholar 

  148. Inubushi Y, Kikuchi T, Ibuka T, Tanaka K, Saji I, Tokane K (1974) Total Synthesis of the Alkaloid (±)-Dendrobine. Chem Pharm Bull 22: 349

    Article  CAS  Google Scholar 

  149. Brattesani DN, Heathcock CH (1975) A Synthetic Approach to the Dendrobine Skeleton. J Org Chem 40: 2165

    Article  CAS  Google Scholar 

  150. Yamamoto K, Kawasaki I, Kaneko T (1970) Synthesis of the Skeleton of Dendrobine. Tetrahedron Lett 11: 4859

    Article  Google Scholar 

  151. Kende AS, Bentley TJ, Mader RA, Ridge D (1974) A Simple Total Synthesis of (±)-Dendrobine. J Am Chem Soc 96: 4332

    Article  CAS  Google Scholar 

  152. Hu QY, Zhou G, Corey EJ (2004) Application of Chiral Cationic Catalyst to Several Classical Synthesis of Racemic Natural Products Transforms Them into Highly Enantioselective Pathways. J Am Chem Soc 126: 13708

    Article  CAS  Google Scholar 

  153. Borch RF, Evans AJ, Wade JJ (1975) Synthesis of 8-epi-Dendrobine. J Am Chem Soc 97: 6282

    Article  CAS  Google Scholar 

  154. Borch RF, Evans AJ, Wade JJ (1977) Synthesis of 8-epi-Dendrobine. J Am Chem Soc 99: 1612

    Article  CAS  Google Scholar 

  155. Roush WR (1978) Total Synthesis of (±)-Dendrobine. J Am Chem Soc 100: 3599

    Article  CAS  Google Scholar 

  156. Roush WR (1980) Total Synthesis of (±)-Dendrobine. J Am Chem Soc 102: 1390

    Article  CAS  Google Scholar 

  157. Roush WR, Gillis HR (1980) Improved Synthesis of the Perhydroindenone Precursor of Dendrobine. J Org Chem 45: 4283

    Article  CAS  Google Scholar 

  158. Martin SF, Li W (1989) General Methods for Alkaloid Synthesis via Intramolecular Diels-Alder Reactions. A Concise Formal Total Synthesis of (±)-Dendrobine. J Org Chem 54: 268

    Article  Google Scholar 

  159. Martin SF, Li W (1991) Applications of Intramolecular Diels-Alder Reactions to Alkaloid Synthesis. A Formal Total Synthesis of (±)-Dendrobine. J Org Chem 56: 642

    Article  CAS  Google Scholar 

  160. Padwa A, Dimitroff M, Liu B (2000) Formal Synthesis of (±)-Dendrobine: Use of the Amidofuran Cycloaddition/Rearrangement Sequence. Org Lett 2: 3233

    Article  CAS  Google Scholar 

  161. Padwa A, Brodney MA, Dimitroff M, Liu B, Wu T (2001) Application of Furanyl Carbamate Cycloadditions Toward the Synthesis of Hexahydroindolinone Alkaloids. J Org Chem 66: 3119

    Article  CAS  Google Scholar 

  162. Connolly PJ, Heathcock CH (1985) An Approach to the Total Synthesis of Dendrobine. J Org Chem 50: 4135

    Article  CAS  Google Scholar 

  163. Westling M, Livinghouse T (1987) Acylnitrilium Ion Cyclization in Heterocycle Synthesis. A Convergent Method for the Preparation of 2-Acylpyrrolines via the Intramolecular Acylation of Silyloxyalkenes with α-Keto Imidoyl Chlorides. J Am Chem Soc 109: 590

    Article  CAS  Google Scholar 

  164. Lee CH, Westling M, Livinghouse T, Williams AC (1992) Acylnitrilium Ion Initiated Heteroannulations in Alkaloid Synthesis. An Efficient, Stereocontrolled, Total Synthesis of Orchidaceae Alkaloid (±)-Dendrobine. J Am Chem Soc 114: 4089

    Article  CAS  Google Scholar 

  165. Takano S, Inomata K, Ogasawara K (1992) A Facile Approach to the Dendrobine Skeleton by Intramolecular Pauson Khand Reaction. Chem Lett 443

    Google Scholar 

  166. Cassayre J, Zard S (2001) A Short Synthesis of (−)-Dendrobine. Some Observations on the Nickel Mediated Radical Cyclisation and on the Pauson-Khand reaction. J Organomet Chem 624: 316

    Article  CAS  Google Scholar 

  167. Mori M, Uesaka N, Shibasaki M (1992) Novel Synthesis of Nitrogen Heterocycles Using Zirconium-Promoted Reductive Coupling. Formal Total Synthesis of Dendrobine. J Org Chem 57: 3519

    Article  CAS  Google Scholar 

  168. Mori M, Saitoh F, Uesaka N, Shibasaki M (1993) Formal Total Synthesis of (−)-Dendrobine Using Zirconium Promoted Cyclization. Determination of the Absolute Configuration of the Intermediary Tricyclic Ketone. Chem Lett 213

    Google Scholar 

  169. Uesaka N, Saitoh F, Mori M, Shibasaki M, Okamura K, Date T (1994) Formal Total Synthesis of (−)-Dendrobine Using Zirconium-Promoted Reductive Cyclization. J Org Chem 59: 5633

    Article  CAS  Google Scholar 

  170. Trost BM, Tasker AS, Rüther G, Brandes A (1991) Activation in Transition-Metal Catalysis by Catalyst Relay. A Synthetic Approach to (−)-Dendrobine. J Am Chem Soc 113: 670

    Article  CAS  Google Scholar 

  171. Heathcock CH, Graham SL, Pirrung MC, Plavac F, White CT (1979) Total Synthesis of Sesquiterpenes, 1970–1979. In: ApSimon J (ed) Synthesis of Natural Products, Vol. V, p. 510. Wiley, New York, Chichester, Brisbane, Toronto, Singapore

    Google Scholar 

  172. Ireland RE, Bey P (1988) Homogeneous Catalytic Hydrogenation: Dihydrocarvone [2-Cyclohexen-1-one, 2-methyl-5-(1-methylethyl)-]. In: Organic Synthesis, Coll. VI, p. 459. Wiley, New York, Chichester, Brisbane, Toronto, Singapore

    Google Scholar 

  173. Hayakawa Y, Nakamura H, Aoki K, Suzuki M, Yamada K, Hirata Y (1971) Synthetic Intermediate Potentially Useful for the Synthesis of Dendrobine. Tetrahedron 27: 5157

    Article  CAS  Google Scholar 

  174. Ruzicka L, Sternbach L (1940) Zur Kenntnis der Diterpene. Dehydrierung von Oxydationsprodukten der Abietinsäure zu 1-Methyl-oxy-phenanthren und 1,5-Dimethyl-6-oxy-naphtalin. Synthese von 1,5-Dimethyl-7-oxy- und von 1,6-Dimethyl-7-oxy-naphtalin. Helv Chim Acta 23: 355

    Article  CAS  Google Scholar 

  175. a) Johnson WS, Shulman S, Williamson KL, Pappo R (1962) Production of a Fused-Ring System by an Intramolecular Michael Condensation. J Org Chem 27: 2015–2018 b) Barton DHR, Campos-Neves AS, Scott IA (1957) Approach to the Partial Synthesis of Aldosterone from Steroids Lacking Substitution of C-18. J Chem Soc 2698

    Article  CAS  Google Scholar 

  176. Borch RF (1968) A New Method for the Reduction of Secondary and Tertiary Amides. Tetrahedron Lett 61

    Google Scholar 

  177. Boyce CBC, Whitehurst JC (1960) Some Preliminary Synthetical Studies with 5,6,7,8-Tetrahydro-8-methylindane-1,5-dione. J Chem Soc 4547; cf. Acklin W, Prelog V, Prieto AP (1958) Reaktionen mit Mikroorganismen. Die stereospezifische Reduktion von (±)-Δ4,9–8-Methylhexahydroindendion-(1,5). Helv Chim Acta 41: 1416

    Google Scholar 

  178. a) Kremers E, Wakeman N, Hixon RM (1941) Thymoquinone. In Organic Synthesis, Coll. I, p. 511. Wiley, New York, Chichester, Brisbane, Toronto, Singapore b) McOmie JFW, Blatchly JM (1972) Thiele-Winter Acetoxylation of Quinones. Org React 19: 199

    Google Scholar 

  179. a) Corey EJ, Yamamoto H (1970) Modification of the Wittig Reaction to Permit the Stereospecific Synthesis of Certain Trisubstituted Olefins. Stereospecific Synthesis of α-Santalol. J Am Chem Soc 92: 226 b) Corey EJ, Yamamoto H, Herron DK, Achiwa KJ (1970) New stereospecific synthetic routes to trisubstituted olefins. J Am Chem Soc 92: 6635

    Article  CAS  Google Scholar 

  180. Corey EJ, Gilman NW, Ganem BE (1968) New Methods for the Oxidation of Aldehydes to Carboxylic Acids and Esters. J Am Chem Soc 90: 5616

    Article  CAS  Google Scholar 

  181. a) Burden RS, Crombie L (1969) Amides of Vegetable Origin. New Series of 2,4-Alkadienoic Tyramine Amides from Anacyclus pyrethrum. J Chem Soc 2477 b) Bohlmann F, Zdero C (1973) New Synthesis of Cyclohexadiene Derivatives. Chem Ber 106: 3779

    Google Scholar 

  182. Cargill RL, Jackson TE, Peet NP, Pond DM (1974) Acid-catalyzed Rearrangements of β,γ-Unsaturated Ketones. Acc Chem Res 7: 106

    Article  CAS  Google Scholar 

  183. Lynch VM, Li W, Martin SF, Davis BE (1990) Structure of the ABC Ring Subunit of 3-Hydroxy-2-oxodendrobine. Acta Crystallogr, Sect C. Cryst Struct Commun 46: 1159

    Article  Google Scholar 

  184. a) Meyers AI, Tomioka K, Fleming MP (1978) Convenient Preparation of α,β-Unsaturated Aldehydes. J Org Chem 43: 3788 b) Corey EJ, Schmidt G (1980) A Simple Route to Δ2-Butenolides from Conjugated Aldehydes. Tetrahedron Lett 21: 731

    Article  CAS  Google Scholar 

  185. a) Ziegler FE, Piwinski JJ (1982) Tandem Cope-Claisen Rearrangement: Scope and Stereochemistry. J Am Chem Soc 104: 7181 b) Oppolzer W, Fröstl W (1975) The Preparation of trans-N-Acyl, N-alkyl-1-amino-1,3-butadienes. Helv Chim Acta 58: 587 c) Oppolzer W, Bieber L, Francotte (1979) An Improved, Versatile Preparation of trans-N-Acyl-1-Amino-1,3-Dienes. Tetrahedron Lett 981

    Article  CAS  Google Scholar 

  186. Akhtar M, Botting NP, Cohen MA Gani D (1987) Enantiospecific Synthesis of 3-Substituted Aspartic Acids via Enzymic Amination of Substituted Fumaric Acids. Tetrahedron 43: 5899

    Article  CAS  Google Scholar 

  187. Trost BM, Jebaratnam DJ (1987) Syntheses of the Picrotoxane Skeleton via Palladium (II)-cazalyzed Carbacyclization Reaction. Tetrahedron Lett 28: 1611

    Article  CAS  Google Scholar 

  188. Trost BM (1990) Palladium-catalyzed Cycloisomerizations of Enynes and Related Reactions. Acc Chem Res 23: 34

    Article  CAS  Google Scholar 

  189. Mori M, Uesaka N, Saitoh F, Shibasaki M (1994) Novel Synthesis of Nitrogen Heterocycles Using Zirconium Promoted Reductive Cyclization. J Org Chem 59: 5643

    Article  CAS  Google Scholar 

  190. Mori, M (2005) Development of a Novel Synthetic Method for Ring Construction Using Organometallic Complexes and Its Application to the Total Syntheses of Natural Products. Chem Pharm Bull 53: 457; especially pp. 457–459

    Article  CAS  Google Scholar 

  191. Mori M, Saitoh F, Uesaka N, Okamura K, Date T (1994) Synthesis and X-Ray Crystal Structures of Tricyclic Ketones Containing trans-Fused Azabicyclo[3.3.0]octane Units. J Org Chem 59: 4993

    Article  CAS  Google Scholar 

  192. Taber DF, Campell CL, Louey JP, Wang Y, Zhang W (2000) Predicting the Diastereoselectivity of Intramolecular Diene Cyclozirconation. Curr Org Chem 4: 809, especially pp. 813–814

    Article  CAS  Google Scholar 

  193. Sha CK, Young JJ, Jean TS (1987) Synthesis of α-Iodo Ketones. J Org Chem 52: 3919

    Article  CAS  Google Scholar 

  194. Sha CK, Jean TS, Wang DC (1990) Intramolecular Radical Cyclization of Silylacetylenic or Olefinic α-Iodo Ketones: Application to the Total Synthesis of (±)-Modhephene. Tetrahedron Lett 31: 3745

    Article  CAS  Google Scholar 

  195. Takazawa O, Tamura H, Kogami K, Hayashi K (1982) New Synthesis of Megastigma-4,6,8-trien-3-ones, 3-Hydroxyionol, 3-Hydroxy-ß-ionone, 5,6-Epoxy-3-hydroxy-ß-ionol and 3-Oxo-α-ionol. Bull Chem Soc Jap 55: 1907

    Article  CAS  Google Scholar 

  196. Zard SZ (1996) Iminyl Radicals: a Fresh Look at a Forgotten Species (and Some of its Relatives). Synlett 1148

    Google Scholar 

  197. Padwa A, Dimitroff M, Waterson AG, Wu T (1997) Diels-Alder Reaction of 2-Amino-Substituted Furans as a Method for Preparing Substituted Anilines. J Org Chem 62: 4088

    Article  CAS  Google Scholar 

  198. Padwa A, Brodney MA, Dimitroff M (1998) A New Method for the Formation of Octahydroindole Alkaloids via the Intramolecular Diels-Alder Reaction of 2-Amidofurans. J Org Chem 63: 5304

    Article  CAS  Google Scholar 

  199. Shioiri T, Ninomiya K, Yamada S (1972) Diphenylphosphorylazide. A New Convenient Reagent for a Modified Curtius Reaction and for the Peptide Synthesis. J Am Chem Soc 94: 6203

    Article  CAS  Google Scholar 

  200. Heathcock CH, Graham SL, Pirrung MC, Plavac F, White CT (1979) Total Synthesis of Sesquiterpenes, 1970–1979. In: ApSimon J (ed.), Synthesis of Natural Products, Vol. V, p. 330. Wiley New York, Chichester, Brisbane, Toronto, Singapore

    Google Scholar 

  201. Corey EJ, Cheng XM (1989) The Logic of Chemical Synthesis, especially pp. 86–87, 178–179. John Wiley & Son New York, Chichester, Brisbane, Toronto, Singapore

    Google Scholar 

  202. Corey EJ, Enders D (1976) Synthetic Routes to Polyfunctional Molecules via Metallated N,N-Dimethylhydrazones. Tetrahedron Lett 11

    Google Scholar 

  203. Alder K, Schneider S (1936) Zur Kenntnis der Oxydation von Doppelbindingen I. Die Oxydation der endo-cis-3,6-Endomethylentetrahydrophtalsäure. Liebigs Ann Chem 524: 189

    Article  CAS  Google Scholar 

  204. Corey EJ, Gross AW (1980) Bislactonization of Unsaturated Diacids using Lead Tetraacetate. Tetrahedron Lett 21: 1819

    Article  CAS  Google Scholar 

  205. Tanaka K, Uchiyama F, Asada A, Furusawa Y, Inubushi Y (1983) Synthetic Studies on a Picrotoxane Sesquiterpene, Coriamyrtin. I. The Grignard Reaction of 5-(2-Methyl-1,3-dioxo-2-cyclopentyl)methyl-2,5-H-furanone with Isopropenyl-magnesium Bromide and Stereochemistries of the Products. Chem Pharm Bull 31: 1943

    Article  CAS  Google Scholar 

  206. Tanaka K, Uchiyama F, Ikeda T, Inubushi Y (1983) Synthetic Studies on a Picrotoxane Sesquiterpene, Coriamyrtin. II. An Effective Stereocontrolled Synthesis of the Picrotoxane Skeleton Except for a C1 Unit at the C9 Position and Functionalization of the Five-membered Ring. Chem Pharm Bull 31: 1958

    Article  CAS  Google Scholar 

  207. Grundmann C, Kober E (1955) An Improved Synthesis of Protoanemonin. J Am Chem Soc 77: 2332

    Article  CAS  Google Scholar 

  208. Niwa H, Yamada K (1986) Stereocontrolled Total Synthesis of Picrotoxane Sesquiterpenoids. J Syn Org Chem (Japan) 44: 180

    Article  CAS  Google Scholar 

  209. Vedejs E, Engler DA, Telschow JE (1978) Transition-Metal Peroxide Reactions. Synthesis of α-Hydroxycarbonyl Compounds from Enolates. J Org Chem 43: 188

    Article  CAS  Google Scholar 

  210. Johnson CR, Kirchhoff RA (1979) Synthesis of Alkenes by Reductive Elimination of ß-Hydroxysulfoximines. J Am Chem Soc 101: 3602

    Article  CAS  Google Scholar 

  211. Dale JA, Dull DL, Mosher HS (1969) α-Methoxy-α-trifluoromethylphenylacetic Acid, a Versatile Reagent for the Determination of Enantiomeric Composition of Alcohols and Amines. J Org Chem 34: 2543

    Article  CAS  Google Scholar 

  212. Carlsen PHJ, Katsuki T, Martin VS, Sharpless KB (1981) A Greatly Improved Procedure for Ruthenium Tetraoxide Catalyzed Oxidations of Organic Compounds. J Org Chem 46: 3936

    Article  CAS  Google Scholar 

  213. Corey EJ, Nicolaou KC, Shibasaki M, Machida Y, Shiner CS (1975) Superoxide Ion as a Synthetically Useful Oxygen Nucleophile. Tetrahedron Lett 3183

    Google Scholar 

  214. Miyashita M, Suzuki T, Yoshikoshi (1985) Highly Efficient Conversion of (−)-Carvone to (+)-5ß-Hydroxycarvone. J Org Chem 50: 3377

    Article  CAS  Google Scholar 

  215. Gras JL (1990) Methylene Ketones and Aldehydes by Simple, Direct Methylene Transfer: 2-Methylene-1-oxo-1,2,3,4-tetrahydronaphthalene. In: Organic Synthesis, Coll VII., p. 332. Wiley, New York, Chichester, Brisbane, Toronto, Singapore

    Google Scholar 

  216. Miyashita M, Hoshino M, Yoshikoshi A (1988) Sodium Phenylseleno(triethoxy)borate, Na+[PhSeB(OEt)3]-: the Reactive Species Generated from (PhSe)2 with NaBH4 in Ethanol. Tetrahedron Lett 29: 347

    Article  CAS  Google Scholar 

  217. Trost BM, Lee DC, Rise F (1989) A New Palladium Catalyst for Intramolecular Carbametallation of Enynes. Tetrahedron Lett 30: 651

    Article  CAS  Google Scholar 

  218. Trost BM, Romero DL, Rise F (1994) Pd-Catalyzed Cycloisomerization to 1,2-Dialkylidenecycloalkanes. 2. Alternative Catalyst System. J Am Chem Soc 116: 4268

    Article  CAS  Google Scholar 

  219. Eastwood FW, Harrington KJ, Josan JS, Pura JL (1970) Conversion of 2-dimethylamino-1,3-dioxolanes into alkenes. Tetrahedron Lett 11: 5223

    Article  Google Scholar 

  220. Sharpless KB, Umbreit MA, Nieh MT, Flood TC (1972) Lower Valent Tungsten Halides. A New Class of Reagents for Deoxygenation of Organic Molecules. J Am Chem Soc 94: 6538

    Article  CAS  Google Scholar 

  221. Rohmer M (2007) Diversity in Isoprene Unit Biosynthesis: The Methylerythritol Phosphate Pathway in Bacteria and Plastids. Pure Appl Chem 79: 739, and literature cited therein

    Article  CAS  Google Scholar 

  222. a) Giner JL, Jaun B, Arigoni D (1998) Biosynthesis of Isoprenoids in Escherichia coli: The Fate of the 3-H and 4-H Atoms of 1-Deoxy-D-xylose. J Chem Soc, Chem Commun 1857, and literature cited therein b) Eisenreich W, Bacher A, Arigoni D, Rohdich F (2004) Biosynthesis of Isoprenoids via the Non-mevalonate Pathway. Cell Mol Life Sci 61: 1401

    Google Scholar 

  223. Cordell GA (1976) Biosynthesis of Sesquiterpenes. Chem Rev 76: 425

    Article  CAS  Google Scholar 

  224. Yamazaki M, Matsuo M, Arai K (1966) Biosynthesis of Dendrobine. Chem Pharm Bull 14: 1058

    Article  CAS  Google Scholar 

  225. Edwards OE, Douglas JL, Mootoo B (1970) Biosynthesis of Dendrobine. Can J Chem 48: 2517

    Article  CAS  Google Scholar 

  226. Corbella A, Gariboldi P, Jommi G (1973) Aspects of the Biosynthesis of the Terpenoid Dendrobine. J Chem Soc, Chem Commun 729

    Google Scholar 

  227. Corbella A, Gariboldi P, Jommi G, Sisti M (1975) Biosynthesis of the Terpenoid Dendrobine. Early Stages of the Pathway. J Chem Soc, Chem Commun 288

    Google Scholar 

  228. Arigoni D (1975) Stereochemical Aspects of Sesquiterpene Biosynthesis. Pure Appl Chem 41: 219

    Article  CAS  Google Scholar 

  229. a) Cane DE, Iyengar R, Shiao M-S (1981) Cyclonerodiol Biosynthesis and Enzymatic Conversion of Farnesyl to Nerolidyl Pyrophosphate. J Am Chem Soc 104: 914 b) Cane DE (1990) Enzymatic Formation of Sesquiterpenes. Chem Rev 90: 1089

    Article  Google Scholar 

  230. Biollaz M, Arigoni D (1969) Biosynthesis of Coriamyrtin and Tutin. J Chem Soc, Chem Commun 633

    Google Scholar 

  231. a) Turnbull KW, Gould SJ, Arigoni D (1972) Biological Conversion of Copaborneol into Tutin. J Chem Soc, Chem Commun 597 b) Turnbull KW, Acklin W, Arigoni D, Corbella A, Gariboldi P, Jommi G (1972) Biological Conversion of Copaborneol into Tutin. J Chem Soc, Chem Commun 598

    Google Scholar 

  232. Corbella A, Gariboldi P, Jommi G (1972) Biosynthesis of Tutin from (4R)-[4–3H1]Mevalonic Acid. J Chem Soc, Chem Commun 600

    Google Scholar 

  233. a) Wei XY (2005) Construction of Substractive cDNA Library from Leaves of Dendrobium candidum Wall. ex Lindl by Suppression Substractive Hybridization Technology. Guangzhou Zhongyiyao Daxue Xuebao 22: 320, 326 b) Wei XY (2006) Construction and Analysis of cDNA Expression Library from Leaves of Dendrobium candidum Wall. ex Lindl. Guangzhou Zhongyiyao Daxue Xuebao 23: 62, 68

    CAS  Google Scholar 

  234. Jarboe CH, Porter LA, Buckler RT (1968) Structural Aspects of Picrotoxinin Action. J Med Chem 11: 729

    Article  CAS  Google Scholar 

  235. Haro de L, Pommier P, Tichadou L, Hayek-Lanthois M, Arditti J (2005) Poisoning by Coriaria myrtifolia Linnaeus: a New Case Report and Review of the Literature. Toxicon 46: 600

    Article  CAS  Google Scholar 

  236. Marshall CR (1906) Physiological Action of Tutin. CA: 1906: 126934

    Google Scholar 

  237. Fuentealba J, Guzman L, Manriquez-Navarro P, Perez C, Silva M, Becerra J, Aguayo LG (2007) Inhibitory Effects of Tutin on Glycine Receptors in Spinal Neurons. Eur J Pharmacol 559: 61

    Article  CAS  Google Scholar 

  238. Smith AB (1999) Hunters and Herders in the Karoo Landscape. In: Dean WRJ, Milton SJ (eds) The Karoo, Ecological Patterns and Processes, p. 243. Cambridge University Press, Cambridge UK

    Chapter  Google Scholar 

  239. Mosoco RM (1943) Catalogus Florae Domingensis, p. 732. L. & S. Printing Co., New York

    Google Scholar 

  240. Kudo Y, Tanaka A, Yamada K (1983) Dendrobine, an Antagonist of ß-Alanine, Taurine and of Presynaptic Inhibition in the Frog Spinal Cord. Br J Pharmacol 78: 709

    Article  CAS  Google Scholar 

  241. Hayden WJ, Gillis WT, Stone DE, Broome CR, Webster GL (1984) Systematics and Palynology of Picrodendron: Further Evidence for Relationship with the Oldfieldiodeae (Euphorbiaceae). J Arn Arbor 65: 105

    Google Scholar 

  242. Hosie AM, Aronstein K, Sattelle DB, ffrench-Constant RH (1997) Molecular Biology of Insect Neuronal GABA Receptors. Trends Neurosci 20: 578

    Article  CAS  Google Scholar 

  243. Ozoe Y, Akamatsu M (2001) Non-competitive GABA Antagonists: Probing the Mechanisms of Their Selectivity for Insect versus Mammalian Receptors. Pest Manag Sci 57: 923

    Article  CAS  Google Scholar 

  244. Schmidt TJ, Gurrath M, Ozoe Y (2004) Structure-activity Relationships of seco-Prezizaane and Picrotoxane/Picrodendrane Terpenoids by Quasar Receptor-surface Modelling. Bioorg Med Chem 7: 2857

    Article  Google Scholar 

  245. Hosie AM, Ozoe Y, Koike K, Ohmoto T, Nikaido T, Sattelle DB (1996) Actions of Picrodendrin Antagonists on Dieldrin-sensitive and –resistant Drosophila GABA Receptors. Brit J Pharmacol 119: 1569, and literature cited therein

    Article  CAS  Google Scholar 

  246. Ozoe Y, Akamatsu M, Higata T, Ikeda I, Mochida K, Koike K, Ohmoto T, Nikaido T (1998) Picrodendrin and Related Terpenoid Antagonists Reveal Structural Differences Between Ionotropic GABA Receptors of Mammals and Insects. Bioorg Med Chem 6: 481

    Article  CAS  Google Scholar 

  247. Calder JA, Wyatt JA, Frenkel DA, Casida JE (1993) CoMFA Validation of the Superposition of Six Classes of Compounds which Block GABA Receptors Non-competitively. J Comp-Aided Mol Design 7: 45

    Article  CAS  Google Scholar 

  248. Hutchinson J, Dalziel JM (1954) Flora of West Tropical Africa (revised Keay RJW) Vol.1, part 2, p. 374. HMSO, London

    Google Scholar 

  249. Watanabe I, Koike K, Satou T, Nikaido T (1999) Nematocidal Activity of Picrodendrins against a Species of Diplogastridae. Biol Pharm Bull 22: 1310

    Article  CAS  Google Scholar 

  250. Pitterna T (2007) Activators/New Natural Products (Avermectins and Milbemycins). In Modern Crop Protection Compounds; Krämer W, Schirmer U (eds.), vol 3, p 1069. Wiley-VCH: Weinheim

    Google Scholar 

  251. a) Anonymous (2001) Homöopathie in der Apotheke. Cocculus-Reisekrankheit. Österr. Apotheker Zeitung. 13 b) Morton JF (1977) Major Medicinal Plants: Botany, Culture and Uses, p. 93. Charles C Thomas Publishers, Springfield, IL, USA

    Google Scholar 

  252. Anonymous (1977) Dictionary of Traditional Chinese Medicine, p. 294. Shanghai People Press. Shanghai

    Google Scholar 

  253. Chiu NY, Chang KH (1992) Alpine Medical Plants of Taiwan, Vol. 3, p. 123. Southern Materials Center, Taipei

    Google Scholar 

  254. Tang W, Eisenbrand G (1992) Chinese Drugs of Plant Origin. Springer Verlag, Berlin, Heidelberg, New York, London, Paris, Tokyo, Hong Kong, Barcelona, Budapest

    Book  Google Scholar 

  255. Zhang GN, Bi ZM, Wang ZT, Xu LS, Xu GJ (2003) Chin. Trad. Herbal Drugs 34, S5 (appendix)

    CAS  Google Scholar 

  256. Jiangsu New Medical College (1986) Dictionary of Chinese Herb Medicine, p. 586. Shanghai Scientific and Technologic Press, Shanghai

    Google Scholar 

  257. Castaneda P, Garcia MR, Hernandez BE, Torres BA, Anaya AL, Mara R (1992) Effects of Some Compounds Isolated from Celaenodendron mexicanum Standl (Euphorbiaceae) on Seeds and Pathogenic Fungi. J Chem Ecol 18: 1025

    Article  CAS  Google Scholar 

  258. Burkill HM (1985) The Useful Plants of West Tropical Africa, vol 2 (softcover). Royal Botanic Gardens, Kew. Richmond, Surrey, UK

    Google Scholar 

  259. a) Wang Y, Zhou D, Wang B, Li HS, Chai HX, Zhou Q, Zhang SF, Stefan H (2003) A Kindling Model of Pharmacoresistent Temporal Lobe Epilepsy in Sprague-Dawley Rats Induced by Coriaria Lactone and Its Possible Mechanism. Epilepsia 44: 475 b) Zhou H, Tang YH, Zheng Y (2006) A New Rat Model of Acute Seizure Induced by Tutin. Brain Research 1092: 207

    Article  Google Scholar 

  260. a) Dannhardt G, Kiefer W (2007) Antiepileptica-Wirkprinzipien und strukturelle Parameter. Pharm Unserer Zeit 36: 270 b) Feuerstein TJ (2008) Antikonvulsiva, Konvulsiva-Pharmakotherapie der Epilepsien. In: K. Aktories, U. Förstermann, F. Hofmann, K. Starke (eds.) Allgemeine und spezielle Pharmakologie und Toxikologie; 10th edn., p. 283 Urban & Fischer, München, Jena

    Article  CAS  Google Scholar 

  261. Takeuchi A, Takeuchi N (1969) A Study of the Action of Picrotoxin on the Inhibitory Neuromuscular Junction of the Crayfish. J Physiol 205: 377

    CAS  Google Scholar 

  262. Smits SHJ, Schmitt L (2009) Eine Strukturbiologie für Membranproteine. Nachr Chem 57: 27, and literature cited therein

    Article  CAS  Google Scholar 

  263. Hucho F (1995) Toxine als Werkzeuge in der Neurochemie. Angew Chem 107: 23 (picrotoxanes are missing in this otherwise interesting publication)

    Article  Google Scholar 

  264. Dougherty DA (2008) Physical Organic Chemistry on the Brain. J Org Chem 73: 3667

    Article  CAS  Google Scholar 

  265. Trauner D (guest ed) (2008) Chemical Reviews thematic Issue: Chemical Approaches to Neurobiology. Chem Rev 108: 1499

    Google Scholar 

  266. Narahashi T (2004) Chemicals as Tools in the Study of Excitable Membranes. J Pharmacol Exp Ther. 294: 1, 282

    Google Scholar 

  267. Sine SM, Engel AG (2006) Recent Advances in Cys-loop Receptor Structure and Function. Nature 440: 448

    Article  CAS  Google Scholar 

  268. Wang PY, Slaughter MM (2005) Effects of GABA Receptor Antagonists on Retinal Glycine Receptors and on Homomeric Glycine Receptor Alpha Subunits. J Neurophysiol 93: 3120

    Article  CAS  Google Scholar 

  269. Dibas MI, Gonzales EB, Das P, Bell-Horner CL, Dillon GH (2002) Identification of a Novel Residue within the Second Transmembrane Domain that Confers Use-facilitated Block by Picrotoxin in Glycine α1-Receptors. J Biol Chem 277: 9112

    Article  CAS  Google Scholar 

  270. Carland JE, Johnston GAR, Chebib M (2008) Relative Impact of Residues at the Intracellular and Extracellular Ends of the Human GABAC ρ1 Receptor M2 Domain on Picrotoxinin Activity. Eur J Pharmacol 580: 27

    Article  CAS  Google Scholar 

  271. Casida JE, Tomozawa M (2008) Insecticide Interaction with γ-Aminobutyric Acid and Nicotinic Receptors: Predictive Aspects of Structural Models. J Pestic Sci 33: 4

    Article  CAS  Google Scholar 

  272. Chen LG, Durkin KA, Casida JE (2006) Structural Model for γ-Aminobutyric Acid Receptor Noncompetitive Antagonist Binding: Widely Diverse Structures Fit the Same Site. Proc Nat Acad Sci USA 103: 5185

    Article  CAS  Google Scholar 

  273. Qian HH, Pan Y, Zhu YJ, Khalili P (2005) Picrotoxin Accelerates Relaxation of GABAC Receptors. Mol Pharmacol 67: 470

    Article  CAS  Google Scholar 

  274. Dresbach T, Nawrotzki R, Kremer T, Schuhmacher S, Quinones D, Kluska M, Kuhse J, Kirsch J (2008) Molecular Architecture of Glycinergic Synapses. Histochem Cell Biol 130: 617

    Article  CAS  Google Scholar 

  275. Yang Z, Cromer BA, Harvey RJ, Parker MW, Lynch JW (2007) A Proposed Structural Basis for Picrotoxinin and Picrotin Binding in the Glycine Receptor Pore. J Neurochem 103: 580

    Article  CAS  Google Scholar 

  276. Wang DS, Buckinx R, Lecorronc H, Mangin JM, Rigo JM, Legendre P (2007) Mechanisms for Picrotoxinin and Picrotin Blocks of α2 Homomeric Glycine Receptors. J Biol Chem 282: 16016

    Article  CAS  Google Scholar 

  277. Lynch JW (2004) Molecular Structure and Function of the Glycine Receptor Chloride Channel. Physiol Rev 84: 1051

    Article  CAS  Google Scholar 

  278. Etter A, Cully DF, Liu KK, Reiss B, Vassilatis DK, Schaeffer JM, Arena JP (1999) Picrotoxin Blockade of Invertebrate Glutamate Gated Chloride Channels: Subunit Dependence and Evidence for Binding within the Pore. J Neurochem 72: 318

    CAS  Google Scholar 

  279. Cleland TA (1996) Inhibitory Glutamate Receptor Channels. Mol Neurobiol 13: 97

    Article  CAS  Google Scholar 

  280. Yarowsky J, Carpenter DO (1978) A Comparison of Similar Ionic Responses to γ-Aminobutyric Acid and Acetylcholine. J Neurophysiol 41: 531

    CAS  Google Scholar 

  281. Magoski NS, Bulloch AG (1999) Dopamine Activates two Different Receptors to Produce Variability in Sign at an Identified Synapse. J Neurophysiol 81: 1330

    CAS  Google Scholar 

  282. Pietra F (1995) Structurally Similar Natural Products in Phylogenetically Distant Marine Organisms, and a Comparison with Terrestrial Species. Chem Soc Rev 24: 65

    Article  CAS  Google Scholar 

  283. Erpenbeck D, van Soest RWM (2007) Status and Perspective of Sponge Chemosystematics. Marine Biotechnology 9: 2

    Article  CAS  Google Scholar 

  284. Whitham GH (1961) The Reaction of α-Pinene with Lead Tetraacetate. J Chem Soc 2232

    Google Scholar 

  285. Schmidt TJ (1999) Toxic Activities of Sesquiterpene Lactones. Structural and Biochemical Aspects. Curr Org Chem 3: 577, especially pp. 599–600

    CAS  Google Scholar 

  286. Ju XL, Hao YL, Pei JF, Ozoe Y (2007) Investigation of Structural Requirements for Inhibitory Activity at the Rat and Housefly Picrotoxinin Binding Sites in Ionotropic GABA receptors using DISCOtech and CoMFA. Chemosphere 69: 864

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The author thanks Dr. F. Wuggenig for reading through the manuscript. She is grateful to Prof. P. K. Endress for the valuable advice and to Prof. Wei-Min Zhao for his information on the structure of dendronobiline A. Her special thanks go to Prof. Jie Yan for translating Chinese written publications. For their assistance concerning the early literature on the picrotoxanes, she wishes to thank Dr. U. Rinner, Prof. W. Schmid, and Dr. K. Zimmermann. The author is grateful to Mag. C. Lentsch for his help concerning EDV problems.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edda Gössinger .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag/Wien

About this chapter

Cite this chapter

Gössinger, E. (2010). Picrotoxanes. In: Kinghorn, A., Falk, H., Kobayashi, J. (eds) Fortschritte der Chemie organischer Naturstoffe / Progress in the Chemistry of Organic Natural Products, Vol. 93. Fortschritte der Chemie organischer Naturstoffe / Progress in the Chemistry of Organic Natural Products, vol 93. Springer, Vienna. https://doi.org/10.1007/978-3-7091-0140-7_2

Download citation

Publish with us

Policies and ethics