Skip to main content

Transmembrane beta-barrel protein structure prediction

  • Chapter
Structural Bioinformatics of Membrane Proteins
  • 1494 Accesses

Abstract

Transmembrane β-barrel (TMB) proteins are embedded in the outer membranes of mitochondria, Gram-negative bacteria, and chloroplasts. These proteins perform critical functions, including active ion-transport and passive nutrient intake. Therefore, there is a need for accurate prediction of secondary and tertiary structures of TMB proteins. A variety of methods have been developed for predicting the secondary structure and these predictions are very useful for constructing a coarse topology of TMB structure; however, they do not provide enough information to construct a low-resolution tertiary structure for a TMB protein. In addition, while the overall structural architecture is well conserved among TMB proteins, the amino acid sequences are highly divergent. Thus, traditional homology modeling methods cannot be applied to many putative TMB proteins. Here, we describe the TMBpro: a pipeline of methods for predicting TMB secondary structure, β-residue contacts, and finally tertiary structure. The tertiary prediction method relies on the specific construction rules that TMB proteins adhere to and on the predicted β-residue contacts to dramatically reduce the search space for the model building procedure.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Altschul S, Madden T, Schaffer A, Zhang J, Zhang Z, Miller W, Lipman D (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25: 3389–3402

    Article  Google Scholar 

  • Bagos P, Liakopoulos T, Spyropoulos I, Hamodrakas S (2004a) A hidden markov model method, capable of predicting and discriminating beta-barrel outer membrane proteins. BMC Bioinform 5: 29

    Article  Google Scholar 

  • Bagos P, Liakopoulos T, Spyropoulos I, Hamodrakas S (2004b) PRED-TMBB: a web server for predicting the topology of beta-barrel outer membrane proteins. Nucleic Acids Res 32: W400–W404

    Article  Google Scholar 

  • Bagos P, Liakopoulos T, Hamodrakas S (2005) Evaluation of methods for predicting the topology of beta-barrel outer membrane proteins and a consensus prediction method. BMC Bioinform 6: 7

    Article  Google Scholar 

  • Baldi P and Pollastri G (2003) The principled design of large-scale recursive neural network architectures-DAG-RNNs and the protein structure prediction problem. J Mach Learn Res 4: 575–602

    Article  Google Scholar 

  • Baldi P, Brunak S, Chauvin Y, Andersen C, Nielsen H (2000) Assessing the accuracy of prediction algorithms for classification: an overview. Bioinformatics 16: 412–424

    Article  Google Scholar 

  • Berman H, Westbrook J, Feng Z, Gilliland G, Bhat T, Weissig H, Shindyalov I, Bourne P (2000) The protein data bank. Nucleic Acids Res 28: 235–242

    Article  Google Scholar 

  • Bigelow H and Rost B (2006) PROFtmb: a web server for predicting bacterial transmembrane beta barrel proteins. Nucleic Acids Res 34: W186–W188

    Article  Google Scholar 

  • Bigelow H, Petrey D, Liu J, Przybylski D, Rost B (2004) Predicting transmembrane beta-barrels in proteomes. Nucleic Acids Res 32: 2566–2577

    Article  Google Scholar 

  • Casadio R, Fariselli P, Martelli P (2003) In silico prediction of the structure of membrane proteins: is it feasible? Brief Bioinform 4: 341–348

    Article  Google Scholar 

  • Cheng J and Baldi P (2005) T ree-stage prediction of protein beta-sheets by neural networks, alignments, and graph algorithms. Bioinformatics 21(Suppl 1): i75–i84

    Article  Google Scholar 

  • Cheng J, Sweredoski M, Baldi P (2005) Accurate prediction of protein disordered regions by mining protein structure data. Data Mining Knowl Discov 11: 213–222

    Article  MathSciNet  Google Scholar 

  • Cheng J, Saigo H, Baldi P (2006a) Large-scale prediction of disulphide bridges using kernel methods, two-dimensional recursive neural networks, and weighted graph matching. Proteins 62: 617–629

    Article  Google Scholar 

  • Cheng J, Sweredoski M, Baldi P (2006b) DOMpro: protein domain prediction using profiles, secondary structure, relative solvent accessibility, and recursive neural networks. Data Mining Knowl Discov 13: 1–10

    Article  MathSciNet  Google Scholar 

  • Diederichs K, Freigang J, Umhau S, Zeth K, Breed J (1998) Prediction by a neural network of outer membrane beta-strand protein topology. Protein Sci 7: 2413–2420

    Article  Google Scholar 

  • Fariselli P, Martelli P, Casadio R (2005) A new decoding algorithm for hidden Markov models improves the prediction of the topology of all-beta membrane proteins. BMC Bioinform 6: S12

    Article  Google Scholar 

  • Garrow A, Agnew A, Westhead D (2005) TMB-Hunt: an amino acid composition based method to screen proteomes for beta-barrel transmembrane proteins. BMC Bioinform 6: 56

    Article  Google Scholar 

  • Gromiha M and Suwa M (2005) A simple statistical method for discriminating outer membrane proteins with better accuracy. Bioinformatics 21: 961–968

    Article  Google Scholar 

  • Gromiha M, Majumdar R, Ponnuswamy P (1997) Identification of membrane spanning beta strands in bacterial porins. Protein Eng 10: 497–500

    Article  Google Scholar 

  • Gromiha M, Ahmad S, Suwa M (2004) Neural network-based prediction of transmembrane betastrand segments in outer membrane proteins. J Comput Chem 25: 762–767

    Article  Google Scholar 

  • Gromiha M, Ahmad S, Suwa M (2005) TMBETA-NET: discrimination and prediction of membrane spanning beta-strands in outer membrane proteins. Nucleic Acids Res 33: W164–W167

    Article  Google Scholar 

  • Jackups R and Liang J (2005) Interstrand pairing patterns in beta-barrel membrane proteins: the positive-outside rule, aromatic rescue, and strand registration prediction. J Mol Biol 354: 979–993

    Article  Google Scholar 

  • Jacoboni I, Martelli P, Fariselli P, Pinto VD, Casadio R (2001) Prediction of the transmembrane regions of beta-barrel membrane proteins with a neural network based predictor. Protein Sci 10: 779–787

    Article  Google Scholar 

  • Kabsch W and Sander C (1983) Dictionary of protein secondary structure: pattern recognition of hydrogen-bonded and geometrical features. Biopolymers 22: 2577–2637

    Article  Google Scholar 

  • Koebnik R, Locher K, Gelder PV (2000) Structure and function of bacterial outer membrane proteins: barrels in a nutshell. Mol Microbiol 37: 239–253

    Article  Google Scholar 

  • Liu Q, Zhu Y, Wang B, Li Y (2003) A HMM-based method to predict the transmembrane regions of beta-barrel membrane proteins. Comput Biol Chem 27: 69–76

    Article  Google Scholar 

  • Lomize M, Lomize A, Pogozheva I, Mosberg H (2006) OPM: orientations of proteins in membrane database. Bioinformatics 22: 623–625

    Article  Google Scholar 

  • Martelli P, Fariselli P, Krogh A, Casadio R (2002) A sequence-profile-based hmm for predicting and discriminating beta barrel membrane proteins. Bioinformatics 18: S46–S53

    Google Scholar 

  • Moult J, Krzysztof F, Rost B, Hubbard T, Tramontano A (2005) Critical assessment of methods of protein structure prediction (CASP) — Round 6. Proteins 61(Suppl 7): 3–7

    Article  Google Scholar 

  • Natt N, Kaur H, Raghava G (2004) Prediction of transmembrane regions of beta-barrel proteins using ANN-and SVM-based methods. Proteins 56: 11–18

    Article  Google Scholar 

  • Oberai A, Ihm Y, Kim S, Bowie J (2006) A limited universe of membrane protein families and folds. Protein Sci 15: 1723–1734

    Article  Google Scholar 

  • Ou YY, Chen SA, Gromiha MM (2010) Prediction of membrane spanning segments and topology in beta-barrel membrane proteins at better accuracy. J Comput Chem 31: 217–223

    Article  Google Scholar 

  • Park K, Gromiha M, Horton P, Suwa M (2005) Discrimination of outer membrane proteins using support vector machines. Bioinformatics 21: 4223–4229

    Article  Google Scholar 

  • Paul C and Rosenbusch J (1985) Folding patterns of porin and bacteriorhodopsin. EMBO J 4: 1593–1597

    Google Scholar 

  • Pollastri G and Baldi P (2002) Prediction of contact maps by GIOHMMs and recurrent neural networks using lateral propagation from all four cardinal corners. Bioinformatics 18: S62–S70

    Google Scholar 

  • Pollastri G, Przybylski D, Rost B, Baldi P (2002) Improving the prediction of protein secondary structure in three and eight classes using recurrent neural networks and profiles. Proteins 47: 228–235

    Article  Google Scholar 

  • Randall A, Cheng J, Sweredoski M, Baldi P (2008) TMBpro: secondary structure, beta-contact and tertiary structure prediction of transmembrane beta-barrel proteins. Bioinformatics 24: 513–520

    Article  Google Scholar 

  • Remaut H, Tang C, Henderson NS, Pinkner JS, Wang T, Hultgren SJ, Tanassi DG, Waksman G, Li H (2008) Fiber formation across the bacterial outer membrane by the chaperone/usher pathway. Cell 133: 640–652

    Article  Google Scholar 

  • Schulz G (2000) Beta-barrel membrane proteins. Curr Opin Struct Biol 10: 443–447

    Article  MathSciNet  Google Scholar 

  • Simons KT, Kooperberg C, Huang E, Baker D (1997) Assembly of protein tertiary structures from fragments with similar local sequences using simulated annealing and Bayesian scoring functions. J Mol Biol 268: 209–225

    Article  Google Scholar 

  • Singha UK, Sharma S, Chaudhuri M (2009) Downregulation of mitochondrial porin inhibits cell growth and alters respiratory phenotype in Trypanosoma brucei. Eukaryot Cell 8: 1418–1428

    Article  Google Scholar 

  • Skolnick J, Kolinski A, Ortiz A (1997) Monsster: a method for folding globular proteins with a small number of distance restraints. J Mol Biol 265: 217–241

    Article  Google Scholar 

  • Tamm L, Arora A, Kleinschmidt J (2001) Structure and assembly of beta-barrel membrane proteins. J Biol Chem 276: 32399–32402

    Article  Google Scholar 

  • Tamm L, Hong H, Liang B (2004) Folding and assembly of beta barrel membrane proteins. Biochim Biophy Acta 1666: 250–263

    Article  Google Scholar 

  • Tusnády GE, Dosztányi Z, Simon I (2004) Transmembrane proteins in the protein data bank: identification and classification. Bioinformatics 20: 2964–2972

    Article  Google Scholar 

  • Tusnády GE, Dosztányi Z, Simon I (2005a) PDB_TM: selection and membrane localization of transmembrane proteins in the protein data bank. Bioinformatics 33: D275–D278

    Google Scholar 

  • Tusnády GE, Dosztányi Z, Simon I (2005b) TMDET: web server for detecting transmembrane domains by using 3D structure of proteins. Bioinformatics 21: 1276–1277

    Article  Google Scholar 

  • Waldispühl J, Berger B, Clote P, Steyaert J (2006a) Predicting transmembrane beta-barrels and interstrand residue interactions from sequence. Proteins 65: 61–74

    Article  Google Scholar 

  • Waldispühl J, Berger B, Clote P, Steyaert J (2006b) transFold: a web server for predicting the structure and residue contacts of transmembrane beta-barrels. Nucleic Acids Res 34: W189–W193

    Article  Google Scholar 

  • Waldispühl J, O’Donnell CW, Devadas S, Clote P, Berger B (2008) Modeling ensembles of transmembrane beta-barrel proteins. Proteins 71: 1097–1112

    Article  Google Scholar 

  • Wallin E and von Heijne G (1998) Genome wide analysis of integral membrane proteins from eubacterial, archaean, and eukaryotic organisms. Protein Sci 7: 1029–1038

    Article  Google Scholar 

  • Welte W, Weiss M, Nestel U, Weckesser J, Schiltz E, Schulz G (1991) Prediction of the general structure of OmpF and PhoE from the sequence and structure of porin from Rhodobacter capsulatus. Orientation of porin in the membrane. Biochim Biophys Acta 1080: 271–274

    Google Scholar 

  • Wimley W (2002) Toward genomic identification of beta-barrel membrane proteins: composition and architecture of known structures. Protein Sci 11: 301–312

    Article  Google Scholar 

  • Wimley W (2003) The versatile beta-barrel membrane protein. Curr Opin Struct Biol 13: 404–411

    Article  Google Scholar 

  • Yooseph S, Sutton G, Rusch DB, Halpern AL, Williamson SJ, Remington K, Eisen JA, Heidelberg KB, Manning G, Li W, Jaroszewski L, Cieplak P, Miller CS, Li H, Mashiyama ST, Joachimiak MP, van Belle C, Chandonia JM, Soergel DA, Zhai Y, Natarajan K, Lee S, Raphael BJ, Bafna V, Friedman R, Brenner SE, Godzik A, Eisenberg D, Dixon JE, Taylor SS, Strausberg RL, Frazier M, Venter JC (2007) The Sorcerer II Global Ocean Sampling expedition: expanding the universe of protein families. PLoS Biol 5: e16

    Article  Google Scholar 

  • Zhai Y and Saier M (2002) The beta-barrel finder (BBF) program, allowing identification of outer membrane beta-barrel proteins encoded within prokaryotic genomes. Protein Sci 11: 2196–2207

    Article  Google Scholar 

  • Zhang T, Kolinski A, Skolnick J (2003) TOUCHSTONE: II a new approach to ab initio protein structure prediction. Biophys J 85: 1145–1164

    Article  Google Scholar 

  • Zemla A, Venclovas C, Fidelis K, Rost B (1999) A modified definition of sov, a segment-based measure for protein secondary structure prediction assessment. Proteins 34: 220–223

    Article  Google Scholar 

  • Zemla A, Venclovas C, Moult J, Fidelis K (2001) Processing and evaluation of predictions in CASP4. Proteins 45(Suppl 5): 13–21

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag/Wien

About this chapter

Cite this chapter

Randall, A., Baldi, P. (2010). Transmembrane beta-barrel protein structure prediction. In: Structural Bioinformatics of Membrane Proteins. Springer, Vienna. https://doi.org/10.1007/978-3-7091-0045-5_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-0045-5_5

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-7091-0044-8

  • Online ISBN: 978-3-7091-0045-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics