Service-oriented Communication and Control System Architecture for Dynamically Interconnected Assembly Systems

Conference paper

Zusammenfassung

Varying sales expectations, shorter product life cycles, and a rising product variability caused by individualization: Manufacturing companies are facing the challenge of continually adapting their assembly systems to these and other dynamic conditions. The dynamic interconnection of stations enables to design flexible and individual assembly sequences for each product. Benefit is the possibility to assemble customer-specific products and to react to dynamic conditions of the system. This paradigm shift entails a raise in the level of complexity and flexibility in terms of coordinating the different product flows, exceeding the possibility of existing control systems. Within this paper, we therefore present the concept of a service-oriented communication and control system architecture as a solution to cope with the introduced challenges and requirements of Dynamically Interconnected Assembly Systems.

Schlüsselwörter

Manufacturing System Assembly Agile control 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. 1.
    ElMaraghy, H., Schuh, G., ElMaraghy, W., Piller, F., Schönsleben, P., Tseng, M., Bernard, A.: Product variety management. CIRP Annals - Manufacturing Technology 62(2) (2013) pp. 629–652.Google Scholar
  2. 2.
    Hüttemann, G., Göppert, A., Lettmann, P., Schmitt, R.: Dynamically Interconnected Assembly Systems – Concept Definition, Requirements and Applicability Analysis. WGPJahreskongress 7(1) (2017) pp. 261-268Google Scholar
  3. 3.
    Verein Deutscher Ingenieure: VDI-5600 –Manufacturing Execution Systems (MES). Beuth Verlag, BerlinGoogle Scholar
  4. 4.
    Schmitt, R., Ellerich, M., Groggert, S.: Auf dem Weg zur Individualproduktion 4.0. VDI-Z Integrierte Produktion 157(5) (2015) p. 71Google Scholar
  5. 5.
    Kulik. M., Ochs, J., König, N., McBeth, C., Sauer-Budge, A., Sharon, A., Schmitt, R.: Parallelization in Automated Stem Cell Culture. CIRP Conference on BioManufacturing 65 (2017) pp. 242-247Google Scholar
  6. 6.
    Niggemann, O.: Industrie 4.0 ohne modelbasierte Softwareentwicklung. ATP edition (5) (2014) pp. 22–30Google Scholar
  7. 7.
    VDI/VDE-Gesellschaft Mess- und Automatisierungstechnik: Cyber-Physical Systems: Chancen und Nutzen aus Sicht der Automation. Verein Deutscher Ingenieure (2013), DüsseldorfGoogle Scholar
  8. 8.
    Reinhart, G., Krug, S., Hüttner, S., Mari, Z., Riedelbauch, F., Schlögel, M.: Automatic configuration (Plug & Produce) of Industrial Ethernet networks. IEEE/IAS International Conference on Industry Applications 9 (2010) pp. 1–6Google Scholar
  9. 9.
    Jung, S., Kulik, M., König, N., Schmitt, R.: Design of a Modular Framework for the Integration of Machines and Devices into Service-oriented Production Networks. WGPJahreskongress 7(1) (2017) pp. 167-174Google Scholar
  10. 10.
    Kimemia, J., Gershwin, S.: An Algorithm for the Computer Control of a Flexible Manufacturing System. IIE Transactions 15(4) (1983) pp. 353-362Google Scholar
  11. 11.
    Mendes, J., Leitao, P., Colombo, A., Restivo, F.: Service-Oriented Control Architecture for Reconfigurable Production Systems. IEEE International Conference on Industrial Informatics 6 (2008) pp. 744-749Google Scholar

Copyright information

© Springer-Verlag GmbH Deutschland, ein Teil von Springer Nature 2018

Authors and Affiliations

  1. 1.Fraunhofer Institute for Production Technology IPTAachenDeutschland
  2. 2.Laboratory for Machine Tools and Production Engineering (WZL) of RWTH Aachen UniversityAachenDeutschland

Personalised recommendations