Skip to main content

Blood Vessel Repair, Atherosclerosis, and Dedifferentiation

  • Chapter
  • First Online:
Cellular Dedifferentiation and Regenerative Medicine
  • 634 Accesses

Abstract

Muscle cells could be briefly divided into skeletal muscular cells and smooth muscle cells in definition. While skeletal muscles were described in the previous chapter, so this article pays attention to the dedifferentiation issue of smooth muscle cell. Vascular smooth muscle cells (SMCs) retain remarkable plasticity to alternate from a differentiated to a dedifferentiated phenotype at local environmental cues or distinct developmental phases. The cellular switching process of SMCs from a quiescent contractile differentiated phenotype connected with smooth muscle-specific marker genes’ high expression, like smooth muscle 22α, calponin and α-smooth muscle actin, to a synthetic dedifferentiated phenotype associated with the marker genes’ diminished levels plays a decisive part in a large number of proliferative vascular diseases. This phenotypic alteration is regarded as essential for vascular repair. For assorted cardiovascular diseases, the inhibition of abnormal switching and the control of SMC proliferation, nonetheless, are crucial therapeutic strategies. Smooth muscle cells have demonstrated as one ideal research model for phenotypic modulation, dedifferentiation, redifferentiation, cellular plasticity, and switching. Owing to the high incidence and mortality of atherosclerosis, various researchers have devoted themselves into smooth muscle cell-related researches. This review has summed up the current knowledges of blood vessel repair, smooth muscle cell differentiation, and dedifferentiation. Transcription factors, epigenetic modulations, and miRNAs are illustrated as underlying molecular mechanisms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Mack CP, Owens GK. Regulation of smooth muscle alpha-actin expression in vivo is dependent on CArG elements within the 5′ and first intron promoter regions. Circ Res. 1999;84(7):852–61.

    Article  CAS  PubMed  Google Scholar 

  2. Manabe I, Owens GK. CArG elements control smooth muscle subtype-specific expression of smooth muscle myosin in vivo. J Clin Invest. 2001;107(7):823–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Li L, et al. Expression of the SM22alpha promoter in transgenic mice provides evidence for distinct transcriptional regulatory programs in vascular and visceral smooth muscle cells. J Cell Biol. 1996;132(5):849–59.

    Article  CAS  PubMed  Google Scholar 

  4. Mericskay M, et al. An overlapping CArG/octamer element is required for regulation of desmin gene transcription in arterial smooth muscle cells. Dev Biol. 2000;226(2):192–208.

    Article  CAS  PubMed  Google Scholar 

  5. Mack CP, et al. Smooth muscle alpha-actin CArG elements coordinate formation of a smooth muscle cell-selective, serum response factor-containing activation complex. Circ Res. 2000;86(2):221–32.

    Article  CAS  PubMed  Google Scholar 

  6. Du KL, et al. Myocardin is a critical serum response factor cofactor in the transcriptional program regulating smooth muscle cell differentiation. Mol Cell Biol. 2003;23(7):2425–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Li S, et al. The serum response factor coactivator myocardin is required for vascular smooth muscle development. Proc Natl Acad Sci U S A. 2003;100(16):9366–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Chen J, et al. Myocardin: a component of a molecular switch for smooth muscle differentiation. J Mol Cell Cardiol. 2002;34(10):1345–56.

    Article  CAS  PubMed  Google Scholar 

  9. Yoshida T, et al. Myocardin is a key regulator of CArG-dependent transcription of multiple smooth muscle marker genes. Circ Res. 2003;92(8):856–64.

    Article  CAS  PubMed  Google Scholar 

  10. Kocher O, et al. Phenotypic features of smooth muscle cells during the evolution of experimental carotid artery intimal thickening. Biochemical and morphologic studies. Lab Investig. 1991;65(4):459–70.

    CAS  PubMed  Google Scholar 

  11. Clowes AW, et al. Arterial smooth muscle cells in vivo: relationship between actin isoform expression and mitogenesis and their modulation by heparin. J Cell Biol. 1988;107(5):1939–45.

    Article  CAS  PubMed  Google Scholar 

  12. Tedgui A, Mallat Z. Cytokines in atherosclerosis: pathogenic and regulatory pathways. Physiol Rev. 2006;86(2):515–81.

    Article  CAS  PubMed  Google Scholar 

  13. Ross R. Atherosclerosis--an inflammatory disease. N Engl J Med. 1999;340(2):115–26.

    Article  CAS  PubMed  Google Scholar 

  14. Schwartz SM, Stemerman MB, Benditt EP. The aortic intima. II. Repair of the aortic lining after mechanical denudation. Am J Pathol. 1975;81(1):15–42.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Schwartz SM, Virmani R, Rosenfeld ME. The good smooth muscle cells in atherosclerosis. Curr Atheroscler Rep. 2000;2(5):422–9.

    Article  CAS  PubMed  Google Scholar 

  16. Aikawa M, et al. Redifferentiation of smooth muscle cells after coronary angioplasty determined via myosin heavy chain expression. Circulation. 1997;96(1):82–90.

    Article  CAS  PubMed  Google Scholar 

  17. Aikawa M, et al. Human smooth muscle myosin heavy chain isoforms as molecular markers for vascular development and atherosclerosis. Circ Res. 1993;73(6):1000–12.

    Article  CAS  PubMed  Google Scholar 

  18. Thyberg J, et al. Phenotype modulation in primary cultures of arterial smooth muscle cells. On the role of platelet-derived growth factor. Differentiation. 1983;25(2):156–67.

    CAS  PubMed  Google Scholar 

  19. Holycross BJ, et al. Platelet-derived growth factor-BB-induced suppression of smooth muscle cell differentiation. Circ Res. 1992;71(6):1525–32.

    Article  CAS  PubMed  Google Scholar 

  20. Corjay MH, Blank RS, Owens GK. Platelet-derived growth factor-induced destabilization of smooth muscle alpha-actin mRNA. J Cell Physiol. 1990;145(3):391–7.

    Article  CAS  PubMed  Google Scholar 

  21. Ferns GA, et al. Inhibition of neointimal smooth muscle accumulation after angioplasty by an antibody to PDGF. Science. 1991;253(5024):1129–32.

    Article  CAS  PubMed  Google Scholar 

  22. Jawien A, et al. Platelet-derived growth factor promotes smooth muscle migration and intimal thickening in a rat model of balloon angioplasty. J Clin Invest. 1992;89(2):507–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Chen CN, et al. Synergistic roles of platelet-derived growth factor-BB and interleukin-1beta in phenotypic modulation of human aortic smooth muscle cells. Proc Natl Acad Sci U S A. 2006;103(8):2665–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Yoshida T, Gan Q, Owens GK. Kruppel-like factor 4, Elk-1, and histone deacetylases cooperatively suppress smooth muscle cell differentiation markers in response to oxidized phospholipids. Am J Physiol Cell Physiol. 2008;295(5):C1175–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Liu Y, et al. Kruppel-like factor 4 abrogates myocardin-induced activation of smooth muscle gene expression. J Biol Chem. 2005;280(10):9719–27.

    Article  CAS  PubMed  Google Scholar 

  26. Cherepanova OA, et al. Oxidized phospholipids induce type VIII collagen expression and vascular smooth muscle cell migration. Circ Res. 2009;104(5):609–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Yoshida T, Kaestner KH, Owens GK. Conditional deletion of Kruppel-like factor 4 delays downregulation of smooth muscle cell differentiation markers but accelerates neointimal formation following vascular injury. Circ Res. 2008;102(12):1548–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Manabe I, Owens GK. Recruitment of serum response factor and hyperacetylation of histones at smooth muscle-specific regulatory regions during differentiation of a novel P19-derived in vitro smooth muscle differentiation system. Circ Res. 2001;88(11):1127–34.

    Article  CAS  PubMed  Google Scholar 

  29. Yoshida T, et al. Platelet-derived growth factor-BB represses smooth muscle cell marker genes via changes in binding of MKL factors and histone deacetylases to their promoters. Am J Physiol Cell Physiol. 2007;292(2):C886–95.

    Article  CAS  PubMed  Google Scholar 

  30. McDonald OG, et al. Control of SRF binding to CArG box chromatin regulates smooth muscle gene expression in vivo. J Clin Invest. 2006;116(1):36–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Salmon M, et al. Cooperative binding of KLF4, pELK-1, and HDAC2 to a G/C repressor element in the SM22alpha promoter mediates transcriptional silencing during SMC phenotypic switching in vivo. Circ Res. 2012;111(6):685–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Cordes KR, et al. miR-145 and miR-143 regulate smooth muscle cell fate and plasticity. Nature. 2009;460(7256):705–10.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Xin M, et al. MicroRNAs miR-143 and miR-145 modulate cytoskeletal dynamics and responsiveness of smooth muscle cells to injury. Genes Dev. 2009;23(18):2166–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Cheng Y, et al. MicroRNA-145, a novel smooth muscle cell phenotypic marker and modulator, controls vascular neointimal lesion formation. Circ Res. 2009;105(2):158–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Torella D, et al. MicroRNA-133 controls vascular smooth muscle cell phenotypic switch in vitro and vascular remodeling in vivo. Circ Res. 2011;109(8):880–93.

    Article  CAS  PubMed  Google Scholar 

  36. Raitoharju E, et al. miR-21, miR-210, miR-34a, and miR-146a/b are up-regulated in human atherosclerotic plaques in the Tampere Vascular Study. Atherosclerosis. 2011;219(1):211–7.

    Article  CAS  PubMed  Google Scholar 

  37. Wang M, et al. MicroRNA-21 regulates vascular smooth muscle cell function via targeting tropomyosin 1 in arteriosclerosis obliterans of lower extremities. Arterioscler Thromb Vasc Biol. 2011;31(9):2044–53.

    Article  CAS  PubMed  Google Scholar 

  38. McDonald RA, et al. miRNA-21 is dysregulated in response to vein grafting in multiple models and genetic ablation in mice attenuates neointima formation. Eur Heart J. 2013;34(22):1636–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Liu X, et al. A necessary role of miR-221 and miR-222 in vascular smooth muscle cell proliferation and neointimal hyperplasia. Circ Res. 2009;104(4):476–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Sun SG, et al. miR-146a and Kruppel-like factor 4 form a feedback loop to participate in vascular smooth muscle cell proliferation. EMBO Rep. 2011;12(1):56–62.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer-Verlag GmbH Germany

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Fu, X., Zhao, A., Hu, T. (2018). Blood Vessel Repair, Atherosclerosis, and Dedifferentiation. In: Cellular Dedifferentiation and Regenerative Medicine. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-56179-9_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-56179-9_8

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-56177-5

  • Online ISBN: 978-3-662-56179-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics