Central Nervous System and Dedifferentiation

  • Xiaobing Fu
  • Andong Zhao
  • Tian Hu


Central nervous system serves as the leading organ controlling, manipulating, and involving into almost every aspects of human body’s functions. Researches and neuroscientists have been trying to find out varieties of approaches to repair and restore the damaged or degenerated central nervous system. It is generally believed that there are hundreds of billions of neurons in our brain, and the quantity would not change after birth. The olfactory bulb and hippocampus are the only two regions that could undergo self-renewal during our lifetime. Neural stem cells could differentiate into neuronal restricted progenitors and glial restricted progenitors. Glial restricted progenitors could produce type I astrocytes, type II astrocytes, and oligodendrocytes. But the regenerative capacity of these stem cells is far insufficient. Dedifferentiation of certain types of cells that resided in the central nervous system has provided the opportunity for neural regeneration, since other approaches, such as transplantation or drugs, could hardly take effects. Specifically, astrocyte dedifferentiation was observed successfully both in vivo and vitro. Injury triggers the dedifferentiation in vivo, while astrocytes could be reprogrammed to dedifferentiated types in vitro. This review summarized the current understandings and researches on central nervous regeneration, astrocyte differentiation, and direct reprogramming of astrocytes. In order to achieve the goal of CNS regeneration, clarifying the molecular mechanisms of regulating dedifferentiation and redifferentiation in situ would lay the solid foundation for further researches.


Central nervous system Neural stem cell Astrocytes Dedifferentiation Regeneration Brain injury Spinal cord injury 


  1. 1.
    Kizil C, Kaslin J, Kroehne V, Brand M. Adult neurogenesis and brain regeneration in zebrafish. Dev Neurobiol. 2012;72(3):429–61.CrossRefPubMedGoogle Scholar
  2. 2.
    Tanaka EM, Ferretti P. Considering the evolution of regeneration in the central nervous system. Nat Rev Neurosci. 2009;10(10):713–23.CrossRefPubMedGoogle Scholar
  3. 3.
    Gage FH, Temple S. Neural stem cells: generating and regenerating the brain. Neuron. 2013;80(3):588–601.CrossRefPubMedGoogle Scholar
  4. 4.
    Seidenfaden R, Desoeuvre A, Bosio A, Virard I, Cremer H. Glial conversion of SVZ-derived committed neuronal precursors after ectopic grafting into the adult brain. Mol Cell Neurosci. 2006;32(1–2):187–98.CrossRefPubMedGoogle Scholar
  5. 5.
    Gotz M, Huttner WB. The cell biology of neurogenesis. Nat Rev Mol Cell Biol. 2005;6(10):777–88.CrossRefPubMedGoogle Scholar
  6. 6.
    Pinto L, Gotz M. Radial glial cell heterogeneity--the source of diverse progeny in the CNS. Prog Neurobiol. 2007;83(1):2–23.CrossRefPubMedGoogle Scholar
  7. 7.
    Kyritsis N, Kizil C, Brand M. Neuroinflammation and central nervous system regeneration in vertebrates. Trends Cell Biol. 2014;24(2):128–35.CrossRefPubMedGoogle Scholar
  8. 8.
    Bonfanti L, Peretto P. Radial glial origin of the adult neural stem cells in the subventricular zone. Prog Neurobiol. 2007;83(1):24–36.CrossRefPubMedGoogle Scholar
  9. 9.
    Robel S, Berninger B, Gotz M. The stem cell potential of glia: lessons from reactive gliosis. Nat Rev Neurosci. 2011;12(2):88–104.CrossRefPubMedGoogle Scholar
  10. 10.
    Buffo A, Rite I, Tripathi P, Lepier A, Colak D, Horn AP, Mori T, Gotz M. Origin and progeny of reactive gliosis: a source of multipotent cells in the injured brain. Proc Natl Acad Sci U S A. 2008;105(9):3581–6.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Barnabe-Heider F, Goritz C, Sabelstrom H, Takebayashi H, Pfrieger FW, Meletis K, Frisen J. Origin of new glial cells in intact and injured adult spinal cord. Cell Stem Cell. 2010;7(4):470–82.CrossRefPubMedGoogle Scholar
  12. 12.
    Shimada IS, Peterson BM, Spees JL. Isolation of locally derived stem/progenitor cells from the peri-infarct area that do not migrate from the lateral ventricle after cortical stroke. Stroke. 2010;41(9):e552–60.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Seri B, Garcia-Verdugo JM, McEwen BS, Alvarez-Buylla A. Astrocytes give rise to new neurons in the adult mammalian hippocampus. J Neurosci. 2001;21(18):7153–60.PubMedGoogle Scholar
  14. 14.
    Nakagomi T, Taguchi A, Fujimori Y, Saino O, Nakano-Doi A, Kubo S, Gotoh A, Soma T, Yoshikawa H, Nishizaki T, Nakagomi N, Stern DM, Matsuyama T. Isolation and characterization of neural stem/progenitor cells from post-stroke cerebral cortex in mice. Eur J Neurosci. 2009;29(9):1842–52.CrossRefPubMedGoogle Scholar
  15. 15.
    Shimada IS, LeComte MD, Granger JC, Quinlan NJ, Spees JL. Self-renewal and differentiation of reactive astrocyte-derived neural stem/progenitor cells isolated from the cortical peri-infarct area after stroke. J Neurosci. 2012;32(23):7926–40.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Arvidsson A, Collin T, Kirik D, Kokaia Z, Lindvall O. Neuronal replacement from endogenous precursors in the adult brain after stroke. Nat Med. 2002;8(9):963–70.CrossRefPubMedGoogle Scholar
  17. 17.
    Sirko S, Behrendt G, Johansson PA, Tripathi P, Costa M, Bek S, Heinrich C, Tiedt S, Colak D, Dichgans M, Fischer IR, Plesnila N, Staufenbiel M, Haass C, Snapyan M, Saghatelyan A, Tsai LH, Fischer A, Grobe K, Dimou L, Gotz M. Reactive glia in the injured brain acquire stem cell properties in response to Sonic hedgehog. [corrected]. Cell Stem Cell. 2013;12(4):426–39.CrossRefPubMedGoogle Scholar
  18. 18.
    Lang B, Liu HL, Liu R, Feng GD, Jiao XY, Ju G. Astrocytes in injured adult rat spinal cord may acquire the potential of neural stem cells. Neuroscience. 2004;128(4):775–83.CrossRefPubMedGoogle Scholar
  19. 19.
    Chen J, Leong SY, Schachner M. Differential expression of cell fate determinants in neurons and glial cells of adult mouse spinal cord after compression injury. Eur J Neurosci. 2005;22(8):1895–906.CrossRefPubMedGoogle Scholar
  20. 20.
    Frisen J, Johansson CB, Torok C, Risling M, Lendahl U. Rapid, widespread, and longlasting induction of nestin contributes to the generation of glial scar tissue after CNS injury. J Cell Biol. 1995;131(2):453–64.CrossRefPubMedGoogle Scholar
  21. 21.
    Hunter KE, Hatten ME. Radial glial cell transformation to astrocytes is bidirectional: regulation by a diffusible factor in embryonic forebrain. Proc Natl Acad Sci U S A. 1995;92(6):2061–5.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Yang H, Cheng XP, Li JW, Yao Q, Ju G. De-differentiation response of cultured astrocytes to injury induced by scratch or conditioned culture medium of scratch-insulted astrocytes. Cell Mol Neurobiol. 2009;29(4):455–73.CrossRefPubMedGoogle Scholar
  23. 23.
    Yang H, Ling W, Vitale A, Olivera C, Min Y, You S. ErbB2 activation contributes to de-differentiation of astrocytes into radial glial cells following induction of scratch-insulted astrocyte conditioned medium. Neurochem Int. 2011;59(7):1010–8.CrossRefPubMedGoogle Scholar
  24. 24.
    Yu T, Cao G, Feng L. Low temperature induced de-differentiation of astrocytes. J Cell Biochem. 2006;99(4):1096–107.CrossRefPubMedGoogle Scholar
  25. 25.
    Sharif A, Prevot V, Renault-Mihara F, Allet C, Studler JM, Canton B, Chneiweiss H, Junier MP. Transforming growth factor alpha acts as a gliatrophin for mouse and human astrocytes. Oncogene. 2006;25(29):4076–85.CrossRefPubMedGoogle Scholar
  26. 26.
    Zhou R, Wu X, Skalli O. TGF-alpha induces a stationary, radial-glia like phenotype in cultured astrocytes. Brain Res Bull. 2001;56(1):37–42.CrossRefPubMedGoogle Scholar
  27. 27.
    Sharif A, Legendre P, Prevot V, Allet C, Romao L, Studler JM, Chneiweiss H, Junier MP. Transforming growth factor alpha promotes sequential conversion of mature astrocytes into neural progenitors and stem cells. Oncogene. 2007;26(19):2695–706.CrossRefPubMedGoogle Scholar
  28. 28.
    White RE, Rao M, Gensel JC, McTigue DM, Kaspar BK, Jakeman LB. Transforming growth factor alpha transforms astrocytes to a growth-supportive phenotype after spinal cord injury. J Neurosci. 2011;31(42):15173–87.CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Dufour C, Cadusseau J, Varlet P, Surena AL, de Faria GP, Dias-Morais A, Auger N, Leonard N, Daudigeos E, Dantas-Barbosa C, Grill J, Lazar V, Dessen P, Vassal G, Prevot V, Sharif A, Chneiweiss H, Junier MP. Astrocytes reverted to a neural progenitor-like state with transforming growth factor alpha are sensitized to cancerous transformation. Stem Cells. 2009;27(10):2373–82.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Schmid RS, McGrath B, Berechid BE, Boyles B, Marchionni M, Sestan N, Anton ES. Neuregulin 1-erbB2 signaling is required for the establishment of radial glia and their transformation into astrocytes in cerebral cortex. Proc Natl Acad Sci U S A. 2003;100(7):4251–6.CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Yang H, Feng GD, Olivera C, Jiao XY, Vitale A, Gong J, You SW. Sonic hedgehog released from scratch-injured astrocytes is a key signal necessary but not sufficient for the astrocyte de-differentiation. Stem Cell Res. 2012;9(2):156–66.CrossRefPubMedGoogle Scholar
  32. 32.
    Bambakidis NC, Petrullis M, Kui X, Rothstein B, Karampelas I, Kuang Y, Selman WR, LaManna JC, Miller RH. Improvement of neurological recovery and stimulation of neural progenitor cell proliferation by intrathecal administration of Sonic hedgehog. J Neurosurg. 2012;116(5):1114–20.CrossRefPubMedGoogle Scholar
  33. 33.
    Feng GD, He BR, Lu F, Liu LH, Zhang L, Chen B, He ZP, Hao DJ, Yang H. Fibroblast growth factor 4 is required but not sufficient for the astrocyte dedifferentiation. Mol Neurobiol. 2014;50(3):997–1012.CrossRefPubMedGoogle Scholar
  34. 34.
    Mohn F, Weber M, Rebhan M, Roloff TC, Richter J, Stadler MB, Bibel M, Schubeler D. Lineage-specific polycomb targets and de novo DNA methylation define restriction and potential of neuronal progenitors. Mol Cell. 2008;30(6):755–66.CrossRefPubMedGoogle Scholar
  35. 35.
    Hirabayashi Y, Suzki N, Tsuboi M, Endo TA, Toyoda T, Shinga J, Koseki H, Vidal M, Gotoh Y. Polycomb limits the neurogenic competence of neural precursor cells to promote astrogenic fate transition. Neuron. 2009;63(5):600–13.CrossRefPubMedGoogle Scholar
  36. 36.
    Sher F, Rossler R, Brouwer N, Balasubramaniyan V, Boddeke E, Copray S. Differentiation of neural stem cells into oligodendrocytes: involvement of the polycomb group protein Ezh2. Stem Cells. 2008;26(11):2875–83.CrossRefPubMedGoogle Scholar
  37. 37.
    Sher F, Boddeke E, Copray S. Ezh2 expression in astrocytes induces their dedifferentiation toward neural stem cells. Cell Reprogram. 2011;13(1):1–6.CrossRefPubMedGoogle Scholar
  38. 38.
    Vierbuchen T, Ostermeier A, Pang ZP, Kokubu Y, Sudhof TC, Wernig M. Direct conversion of fibroblasts to functional neurons by defined factors. Nature. 2010;463(7284):1035–41.CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Caiazzo M, Dell’Anno MT, Dvoretskova E, Lazarevic D, Taverna S, Leo D, Sotnikova TD, Menegon A, Roncaglia P, Colciago G, Russo G, Carninci P, Pezzoli G, Gainetdinov RR, Gustincich S, Dityatev A, Broccoli V. Direct generation of functional dopaminergic neurons from mouse and human fibroblasts. Nature. 2011;476(7359):224–7.CrossRefPubMedGoogle Scholar
  40. 40.
    Pfisterer U, Kirkeby A, Torper O, Wood J, Nelander J, Dufour A, Bjorklund A, Lindvall O, Jakobsson J, Parmar M. Direct conversion of human fibroblasts to dopaminergic neurons. Proc Natl Acad Sci U S A. 2011;108(25):10343–8.CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Son EY, Ichida JK, Wainger BJ, Toma JS, Rafuse VF, Woolf CJ, Eggan K. Conversion of mouse and human fibroblasts into functional spinal motor neurons. Cell Stem Cell. 2011;9(3):205–18.CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Heins N, Malatesta P, Cecconi F, Nakafuku M, Tucker KL, Hack MA, Chapouton P, Barde YA, Gotz M. Glial cells generate neurons: the role of the transcription factor Pax6. Nat Neurosci. 2002;5(4):308–15.CrossRefPubMedGoogle Scholar
  43. 43.
    Berninger B, Costa MR, Koch U, Schroeder T, Sutor B, Grothe B, Gotz M. Functional properties of neurons derived from in vitro reprogrammed postnatal astroglia. J Neurosci. 2007;27(32):8654–64.CrossRefPubMedGoogle Scholar
  44. 44.
    Heinrich C, Blum R, Gascon S, Masserdotti G, Tripathi P, Sanchez R, Tiedt S, Schroeder T, Gotz M, Berninger B. Directing astroglia from the cerebral cortex into subtype specific functional neurons. PLoS Biol. 2010;8(5):e1000373.CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Torper O, Pfisterer U, Wolf DA, Pereira M, Lau S, Jakobsson J, Bjorklund A, Grealish S, Parmar M. Generation of induced neurons via direct conversion in vivo. Proc Natl Acad Sci U S A. 2013;110(17):7038–43.CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Guo Z, Zhang L, Wu Z, Chen Y, Wang F, Chen G. In vivo direct reprogramming of reactive glial cells into functional neurons after brain injury and in an Alzheimer’s disease model. Cell Stem Cell. 2014;14(2):188–202.CrossRefPubMedGoogle Scholar
  47. 47.
    Corti S, Nizzardo M, Simone C, Falcone M, Donadoni C, Salani S, Rizzo F, Nardini M, Riboldi G, Magri F, Zanetta C, Faravelli I, Bresolin N, Comi GP. Direct reprogramming of human astrocytes into neural stem cells and neurons. Exp Cell Res. 2012;318(13):1528–41.CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Niu W, Zang T, Zou Y, Fang S, Smith DK, Bachoo R, Zhang CL. In vivo reprogramming of astrocytes to neuroblasts in the adult brain. Nat Cell Biol. 2013;15(10):1164–75.CrossRefPubMedGoogle Scholar
  49. 49.
    Su Z, Niu W, Liu ML, Zou Y, Zhang CL. In vivo conversion of astrocytes to neurons in the injured adult spinal cord. Nat Commun. 2014;5:3338.PubMedPubMedCentralGoogle Scholar
  50. 50.
    Huang EJ, Reichardt LF. Neurotrophins: roles in neuronal development and function. Annu Rev Neurosci. 2001;24:677–736.CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Lim DA, Tramontin AD, Trevejo JM, Herrera DG, Garcia-Verdugo JM, Alvarez-Buylla A. Noggin antagonizes BMP signaling to create a niche for adult neurogenesis. Neuron. 2000;28(3):713–26.CrossRefPubMedGoogle Scholar
  52. 52.
    Kondo T, Raff M. Oligodendrocyte precursor cells reprogrammed to become multipotential CNS stem cells. Science. 2000;289(5485):1754–7.CrossRefPubMedGoogle Scholar
  53. 53.
    Kim J, Lengner CJ, Kirak O, Hanna J, Cassady JP, Lodato MA, Wu S, Faddah DA, Steine EJ, Gao Q, Fu D, Dawlaty M, Jaenisch R. Reprogramming of postnatal neurons into induced pluripotent stem cells by defined factors. Stem Cells. 2011;29(6):992–1000.CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Friedmann-Morvinski D, Bushong EA, Ke E, Soda Y, Marumoto T, Singer O, Ellisman MH, Verma IM. Dedifferentiation of neurons and astrocytes by oncogenes can induce gliomas in mice. Science. 2012;338(6110):1080–4.CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Sgubin D, Aztiria E, Perin A, Longatti P, Leanza G. Activation of endogenous neural stem cells in the adult human brain following subarachnoid hemorrhage. J Neurosci Res. 2007;85(8):1647–55.CrossRefPubMedGoogle Scholar
  56. 56.
    Nakayama D, Matsuyama T, Ishibashi-Ueda H, Nakagomi T, Kasahara Y, Hirose H, Kikuchi-Taura A, Stern DM, Mori H, Taguchi A. Injury-induced neural stem/progenitor cells in post-stroke human cerebral cortex. Eur J Neurosci. 2010;31(1):90–8.CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2018

Authors and Affiliations

  • Xiaobing Fu
    • 1
  • Andong Zhao
    • 2
  • Tian Hu
    • 3
  1. 1.Key Laboratory of Wound Repair and Regeneration of PLAThe First Hospital Affiliated to the PLA General HospitalBeijingChina
  2. 2.Tianjin Medical UniversityTianjinChina
  3. 3.School of MedicineNankai UniversityTianjinChina

Personalised recommendations