Skip to main content

Electrospun Polymer Scaffolds: Their Biomedical and Mechanical Properties

  • Chapter
  • First Online:
Biomaterials for Implants and Scaffolds

Part of the book series: Springer Series in Biomaterials Science and Engineering ((SSBSE,volume 8))

Abstract

In recent years, electrospun polymer scaffolds have shown great promise and potential for biomedical applications. Besides, copolymers and polymer blends, polymer composites with inorganic particles, such as HA and CNT, are widely used. And the alignment of reinforced fibres is beneficial to improve the mechanical properties and biological response of scaffolds. Further, the physical and chemical surface modifications for electrospun fibres are commonly applied to promote the interaction between the scaffold and cells in tissue engineering applications. In this chapter, we reviewed recent advances in electrospun polymer scaffolds with special emphasis on their biomedical and mechanical properties and the effects of the surface modifications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Doshi J, Reneker DH (1995) Electrospinning process and applications of electrospun fibers. J Electrostat 35:151–160

    Article  Google Scholar 

  2. Reneker DH, Chun I (1996) Nanometer diameter fibers of polymers, produced by electrospinning. Nanotechnology 7:216–223

    Article  Google Scholar 

  3. Schreuder-Gibson H, Gibson P, Wadsworth L, Hemphil SL, Vontorcik J (2002) Effect of filter deformation on the filtration and air flow for elastomeric nonwoven media. Adv Filtr Sep Technol 15:525–537

    Google Scholar 

  4. Wang B, Luo L, Ding Y, Zhao D, Zhang Q (2012) Synthesis of hollow copper oxide by electrospinning and its application as a nonenzymatic hydrogen peroxide sensor. Colloid Surf B Biointerfaces 97:51–56

    Article  Google Scholar 

  5. Wang XY, Kim YG, Drew C, Ku BC, Kumar J, Samuelson LA (2004) Electrostatic assembly of conjugated polymer thin layers on electrospun nanofibrous membranes for biosensors. Nano Lett 4:331–334

    Article  Google Scholar 

  6. Gorji M, Jeddi AAA, Gharehaghaji AA (2012) Fabrication and characterization of polyurethane electrospun nanofiber membranes for protective clothing applications. J Appl Polym Sci 125(5):4135–4141

    Article  Google Scholar 

  7. Liu HQ, Kameoka J, Czaplewski DA, Craighead HG (2004) Polymeric nanowire chemical sensor. Nano Lett 4:671–675

    Article  Google Scholar 

  8. Riboldi SA, Sampaolesi M, Neuenschwander P, Cossu G, Mantero S (2005) Electrospun degradable polyesterurethane membranes: potential scaffolds for skeletal muscle tissue engineering. Biomaterials 26:4606–4615

    Article  Google Scholar 

  9. Yang F, Murugan R, Wang S, Ramakrishna S (2005) Electrospinning of nano/micro scale poly(L-lactic acid) aligned fibers and their potential in neural tissue engineering. Biomaterials 26:2603–2610

    Article  Google Scholar 

  10. Formhals A (1934) Apparatus for producing artificial filaments from material such as cellulose acetate. US patent no. 1975504

    Google Scholar 

  11. Zachariades AE, Porter RS, Doshi J, Srinivasan G, Reneker D (1995) High modulus polymers. A novel electrospinning process. Polym News 20:206–207

    Google Scholar 

  12. Fang X, Reneker DH (1997) DNA fibers by electrospinning. J Macromol Sci B 36:169–173

    Article  Google Scholar 

  13. Srinivasan G, Reneker DH (1995) Structure and morphology of small diameter electrospun aramid fibers. Polym Int 36:195–201

    Article  Google Scholar 

  14. Fong H, Reneker DH (1999) Elastomeric nanofibers of styrene-butadiene-styrene triblock copolymer. J Polym Sci B Polym Phys 37:3488–3493

    Article  Google Scholar 

  15. Yarin AL, Koombhongse S, Reneker DH (2001) Taylor cone and jetting from liquid droplets in electrospinning of nanofibers. J Appl Phys 90:4836–4846

    Article  Google Scholar 

  16. Yarin AL, Koombhongse S, Reneker DH (2001) Bending instability in electrospinning of nanofibers. J Appl Phys 89:3018–3026

    Article  Google Scholar 

  17. Desai K, Kit K, Li JJ, Zivanovic S (2008) Morphological and surface properties of electrospun chitosan nanofibers. Biomacromolecules 9:1000–1006

    Article  Google Scholar 

  18. Aluigi A, Vineis C, Varesano A, Mazzuchetti G, Ferrero F, Tonin C (2008) Structure and properties of keratin/PEO blend nanofibres. Eur Polym J 44:2465–2475

    Article  Google Scholar 

  19. Sanders EH, Kloefkorn R, Bowlin GL, Simpson DG, Wnek GE (2003) Two-phase electrospinning from a single electrified jet: microencapsulation of aqueous reservoirs in poly(ethylene-co-vinyl acetate) fibers. Macromolecules 36:3803–3805

    Article  Google Scholar 

  20. Pham QP, Sharma U, Mikos AG (2006) Electrospinning of polymeric nanofibers for tissue engineering applications: a review. Tissue Eng 12:1197–1211

    Article  Google Scholar 

  21. Ferreira AM, Gentile P, Chiono V, Ciardelli G (2012) Collagen for bone tissue regeneration. Acta Biomater 8:3191–3200

    Article  Google Scholar 

  22. Ma Z, Kotaki M, Inai R, Ramakrishna S (2005) Potential of nanofiber matrix as tissue engineering scaffolds. Tissue Eng 11:101–109

    Article  Google Scholar 

  23. Khil MS, Cha DI, Kim HY, Kim IS, Bhattarai N (2003) Electrospun nanofibrous polyurethane membrane as wound dressing. J Biomed Mater Res B Appl Biomater 67B:675–679

    Article  Google Scholar 

  24. Buttafoco L, Kolkman NG, Poot AA, Dijkstra PJ, Vermes I, Feijen J (2005) Electrospinning collagen and elastin for tissue engineering small diameter blood vessels. J Control Release 101:322–324

    Google Scholar 

  25. Ma Z, Kotaki M, Yong T, He W, Ramakrishna S (2005) Surface engineering of electrospun polyethylene terephthalate (PET) nanofibers towards development of a new material for blood vessel engineering. Biomaterials 26:2527–2536

    Article  Google Scholar 

  26. Katti DS, Robinson KW, Ko FK, Laurencin CT (2004) Bio-resorbable nanofiber-based systems for wound healing and drug delivery: optimization of fabrication parameters. J Biomed Mater Res B Appl Biomater 70B:286–296

    Article  Google Scholar 

  27. Pawlowski KJ, Barnes CP, Boland ED, Wnek GE, Bowlin GL (2004) Biomedical nanoscience: electrospinning basic concepts, applications, and classroom demonstration. Mater Res Soc Symp Proc 827:17–28

    Article  Google Scholar 

  28. How TV, Guidoin R, Young SK, Part H (1992) Engineering design of vascular prostheses, proceedings of the institution of mechanical engineers. J Eng Med 206:61–72

    Article  Google Scholar 

  29. Matthews JA, Wnek GE, Simpson DG, Bowlin GL (2002) Electrospinning of collagen nanofibers. Biomacromolecules 3:232–238

    Article  Google Scholar 

  30. Matthews JA, Boland ED, Wnek GE, Simpson DG, Bowlin GL (2003) Electrospinning of collagen type II: a feasibility study. J Bioact Compat Polym 18:125–134

    Article  Google Scholar 

  31. Shields KJ, Beckman MJ, Bowlin GL, Wayne JS (2004) Mechanical properties and cellular proliferation of electrospun collagen type II. Tissue Eng 10:1510–1517

    Article  Google Scholar 

  32. Boland ED, Matthews JA, Pawlowski KJ, Simpson DG, Wnek GE, Bowlin GL (2004) Electrospinning collagen and elastin: preliminary vascular tissue engineering. Front Biosci 9:1422–1432

    Article  Google Scholar 

  33. Telemeco TA, Ayres C, Bowlin GL, Wnek GE, Boland ED, Cohen N (2005) Regulation of cellular infiltration into tissue engineering scaffolds composed of submicron diameter fibrils produced by electrospinning. Acta Biomater 1:377–385

    Article  Google Scholar 

  34. Rho KS, Jeong L, Lee G, Seo BM, Park YJ, Hong SD (2006) Electrospinning of collagen nanofibers: effects on the behavior of normal human keratinocytes and early-stage wound healing. Biomaterials 27:1452–1461

    Article  Google Scholar 

  35. Ikada Y, Tabata Y (1998) Protein release from gelatin matrices. Adv Drug Deliv Rev 31:287–301

    Article  Google Scholar 

  36. Kuijpers AJ, Engbers GH, Krijgsveld J, Zaat SA, Dankert J, Feijen J (2000) Cross-linking and characterisation of gelatin matrices for biomedical applications. J Biomater Sci Polym Ed 11:225–243

    Article  Google Scholar 

  37. Kuijpers AJ, van Wachem PB, van Luyn MJ, Plantinga JA, Engbers GH, Krijgsveld J, Zaat SA, Dankert J, Feijen J (2000) In vivo compatibility and degradation of crosslinked gelatin gels incorporated in knitted Dacron. J Biomed Mater Res 51:136–145

    Article  Google Scholar 

  38. Yamamoto M, Ikada Y, Tabata Y (2001) Controlled release of growth factors based on biodegradation of gelatin hydrogel. J Biomater Sci Polym Ed 12:77–88

    Article  Google Scholar 

  39. Yao CH, Liu BS, Hsu SH, Chen YS, Tsai CC (2004) Biocompatibility and biodegradation of a bone composite containing tricalcium phosphate and genipin crosslinked gelatin. J Biomed Mater Res 69A:709–717

    Article  Google Scholar 

  40. Balakrishnan B, Jayakrishnan A (2005) Self-cross-linking biopolymers as injectable in situ forming biodegradable scaffolds. Biomaterials 26:3941–3951

    Article  Google Scholar 

  41. Nagura M, Yokota H, Ikeura M, Gotoh Y, Ohkoshi Y (2002) Structures and physical properties of cross-linked gelatin fibers. Polym J 34:761–766

    Article  Google Scholar 

  42. Kidoaki S, Kwon IK, Matsuda T (2005) Mesoscopic spatial designs of nano and microfiber meshes for tissue-engineering matrix and scaffold based on newly devised multilayering andmixing electrospinning techniques. Biomaterials 26:37–46

    Article  Google Scholar 

  43. Zhang Y, Ouyang H, Lim CT, Ramakrishna S, Huang ZM (2005) Electrospinning of gelatin fibers and gelatin/PCL composite fibrous scaffolds. J Biomed Mater Res B Appl Biomater 72:156–165

    Article  Google Scholar 

  44. Ma Z, He W, Yong T, Ramakrishna S (2005) Grafting of gelatin on electrospun poly (caprolactone) nanofibers to improve endothelial cell spreading and proliferation and to control cell orientation. Tissue Eng 11:1149–1158

    Article  Google Scholar 

  45. Gosline JM, Demont ME, Denny MW (1986) The structure and properties of spider silk. Endeavour 10:37–43

    Article  Google Scholar 

  46. Altman GH, Diaz F, Jakuba C, Calabro T, Horan RL, Chen J (2003) Silk-based biomaterials. Biomaterials 24:401–416

    Article  Google Scholar 

  47. Park WH, Jeong L, Yoo DI, Hudson S (2004) Effect of chitosan on morphology and conformation of electrospun silk fibroin nanofibers. Polymer 45:7151–7157

    Article  Google Scholar 

  48. Meinel L, Hofmann S, Karageorgiou V, Kirker-Head C, McCool J, Gronowicz G (2005) The inflammatory responses to silk films in vitro and in vivo. Biomaterials 26:147–155

    Article  Google Scholar 

  49. Dal Pra I, Freddi G, Minic J, Chiarini A, Armato U (2005) De novo engineering of reticular connective tissue in vivo by silk fibroin nonwoven materials. Biomaterials 26:1987–1999

    Article  Google Scholar 

  50. Horan RL, Antle K, Collette AL, Wang Y, Huang J, Moreau JE, Volloch V, Kaplan DL, Altman GH (2005) In vitro degradation of silk fibroin. Biomaterials 26:3385–3393

    Article  Google Scholar 

  51. Min BM, Lee G, Kim SH, Nam YS, Lee TS, Park WH (2004) Electrospinning of silk fibroin nanofibers and its effect on the adhesion and spreading of normal by human keratinocytes and fibroblasts in vitro. Biomaterials 25:1289–1297

    Article  Google Scholar 

  52. Min BM, Jeong L, Nam YS, Kim JM, Kim JY, Park WH (2004) Formation of silk fibroin matrices with different texture and its cellular response to normal human keratinocytes. Int J Biol Macromol 34:223–230

    Article  Google Scholar 

  53. Jin HJ, Chen J, Karageorgiou V, Altman GH, Kaplan DL (2004) Human bone marrow stromal cell responses to electrospun silk fibroin mats. Biomaterials 25:1039–1047

    Article  Google Scholar 

  54. Sukigara S, Gandhi M, Ayutsede J, Micklus M, Ko F (2003) Regeneration of Bombyx mori silk by electrospinning—part 1: processing parameters and geometric properties. Polymer 44:5721–5727

    Article  Google Scholar 

  55. Sukigara S, Gandhi M, Ayutsede J, Micklus M, Ko F (2004) Regeneration of Bombyx mori silk by electrospinning. Part 2. Process optimization and empirical modeling using response surface methodology. Polymer 45:3701–3708

    Article  Google Scholar 

  56. Wang H, Zhang Y, Shao H, Hu X (2005) Electrospun ultra-fine silk fibroin fiber from aqueous solutions. J Mater Sci 40:5359–5363

    Article  Google Scholar 

  57. Wang H, Shao H, Hu X (2006) Structure of silk fibroin fibers made by an electrospun process from a silk fibroin aqueous solution. J Appl Polym Sci 101:961–968

    Article  Google Scholar 

  58. Zhu J, Shao H, Hu X (2007) Morphology and structure of electrospun mats from regenerated silk fibroin aqueous solutions with adjusting pH. Int J Biol Macromol 41:469–474

    Article  Google Scholar 

  59. Zhu J, Zhang Y, Shao H, Hu X (2008) Electorspinning and rheology of regenerated Bombyx mori silk fibroin aqueous solutions: the effects of pH and concentration. Polymer 49:2880–2885

    Article  Google Scholar 

  60. Yang F, Xu CY, Kotaki M, Wang S, Ramakrishna S (2004) Characterization of neural stem cells on electrospun poly(L-lactic acid) nanofibrous scaffold. J Biomater Sci Polym Ed 15:1483–1497

    Article  Google Scholar 

  61. Jing Z, Xu XY, Chen XS, Liang QZ, Bian XC, Yang LX, Jing XB (2003) Biodegradable electrospun fibers for drug delivery. J Control Release 92:227–231

    Article  Google Scholar 

  62. Boland ED, Wnek GE, Simpson DG, Pawlowski KJ, Bowlin GL (2001) Tailoring tissue engineering scaffolds using electrostatic processing techniques: a study of poly(glycolic acid) electrospinning. J Macromol Sci A 38:1231–1243

    Article  Google Scholar 

  63. Boland ED, Telemeco TA, Simpson DG, Wnek GE, Bowlin GL (2004) Utilizing acid pretreatment and electrospinning to improve biocompatibility of poly(glycolic acid) for tissue engineering. J Biomed Mater Res B Appl Biomater 71B:144–152

    Article  Google Scholar 

  64. Verreck G, Chun I, Rosenblatt J, Peeters J, Van Dijck A, Mensch J, Noppe M, Brewster ME (2003) Incorporation of drugs in an amorphous state into electrospun nanofibers composed of a water-insoluble, nonbiodegradable polymer. J Control Release 92:349–360

    Article  Google Scholar 

  65. Son WK, Youk JH, Lee TS, Park WH (2004) The effects of solution properties and polyelectrolyte on electrospinning of ultrafine poly (ethylene oxide) fibers. Polymer 45:2959–2966

    Article  Google Scholar 

  66. Ding B, Kim HY, Lee SC, Shao CL, Lee DR, Park SJ, Kwag GB, Choi KJ (2002) Preparation and characterization of a nanoscale poly(vinyl alcohol) fiber aggregate produced by an electrospinning method. J Polym Sci B Polym Phys 40:1261–1268

    Article  Google Scholar 

  67. Yao L, Haas TW, Guiseppi-Elie A, Bowlin GL, Simpson DG, Wnek GE (2003) Electrospinning and stabilization of fully hydrolyzed poly(vinyl alcohol) fibers. Chem Mater 15:1860–1864

    Article  Google Scholar 

  68. Boland ED, Coleman BD, Barnes CP, Simpson DG, Wnek GE, Bowlin GL (2005) Electrospinning polydioxanone for biomedical applications. Acta Biomater 1:115–123

    Article  Google Scholar 

  69. Xu XL, Zhong W, Zhou SF, Trajtman A, Alfa M (2010) Electrospun PEG-PLA nanofibrous membrane for sustained release of hydrophilic antibiotics. J Appl Polym Sci 118:588–595

    Article  Google Scholar 

  70. Luu YK, Kim K, Hsiao BS, Chu B, Hadjiargyrou M (2003) Development of a nanostructured DNA delivery scaffold via electrospinning of PLGA and PLA-PEG block copolymers. J Control Release 89:341–353

    Article  Google Scholar 

  71. Bhattarai SR, Bhattarai N, Yi HK, Hwang PH, Cha DI, Kim HY (2004) Novel biodegradable electrospun membrane: scaffold for tissue engineering. Biomaterials 25:2595–2602

    Article  Google Scholar 

  72. Kim K, Yu M, Zong X, Chiu J, Fang D, Seo YS, Hsiao BS, Chu B (2003) Control of degradation rate and hydrophilicity in electrospun non-woven poly(d, l-lactide) nanofiber scaffolds for biomedical applications. Biomaterials 24:4977–4985

    Article  Google Scholar 

  73. Mo XM, Xu CY, Kotaki M, Ramakrishna S (2004) Electrospun P(LLA-CL) nanofiber: a biomimetic extracellular matrix for smooth muscle cell and endothelial cell proliferation. Biomaterials 25:1883–1890

    Article  Google Scholar 

  74. Xu CY, Inai R, Kotaki M, Ramakrishna S (2004) Aligned biodegradable nanofibrous structure: a potential scaffold for blood vessel engineering. Biomaterials 25:877–886

    Article  Google Scholar 

  75. Xu CY, Inai R, Kotaki M, Ramakrishna S (2004) Electrospun nanofiber fabrication as synthetic extracellular matrix and its potential for vascular tissue engineering. Tissue Eng 10:1160–1168

    Article  Google Scholar 

  76. Kwon IK, Kidoaki S, Matsuda T (2005) Electrospun nano- to microfiber fabrics made of biodegradable copolyesters: structural characteristics, mechanical properties and cell adhesion potential. Biomaterials 26:3929–3939

    Article  Google Scholar 

  77. Zong X, Fang D, Kim K, Ran S, Hsiao BS, Chu B, Brathwaite C, Li S, Chen E (2002) Nonwoven nanofiber membranes of poly(lactide) and poly (glycolide-co-lactide) via electrospinning and application for antiadhesions. Polym Prepr (Am Chem Soc Div Polym Chem) 43:659–660

    Google Scholar 

  78. Lee IS, Kwon OH, Meng W, Kang IK (2004) Nanofabrication of microbial polyester by electrospinning promotes cell attachment. Macromol Res 12:374–378

    Article  Google Scholar 

  79. Choi JS, Lee SW, Jeong L, Bae SH, Min BC, Youk JH, Park WH (2004) Effect of organosoluble salts on the nanofibrous structure of electrospun poly(3-hydroxybutyrate-co-3- hydroxyvalerate). Int J Biol Macromol 34:249–256

    Article  Google Scholar 

  80. Lee KH, Kim HY, Khil MS, Ra YM, Lee DR (2003) Characterization of nano-structured poly(ε-caprolactone) nonwoven mats via electrospinning. Polymer 44:1287–1294

    Article  Google Scholar 

  81. Na YH, He Y, Shuai X, Kikkawa Y, Doi Y, Inoue Y (2002) Compatibilization effect of poly(ε-caprolactone)-b-poly(ethylene glycol) block copolymers and phase morphology analysis in immiscible poly(lactide)/poly(ε-caprolactone) blends. Biomacromolecules 3:1179–1186

    Article  Google Scholar 

  82. Ajami-Henriquez D, Rodríguez M, Sabino M, Castillo RV, Müller AJ, Boschetti-de-Fierro A, Abetz C, Abetz V, Dubois P (2008) Evaluation of cell affinity on poly(L-lactide) and poly(ε-caprolactone) blends and on PLLA-b-PCL diblock copolymer surfaces. J Biomed Mater Res A 87:405–417

    Article  Google Scholar 

  83. Calandrelli L, Calarco A, Laurienzo P, Malinconico M, Petillo O, Peluso G (2008) Compatibilized polymer blends based on PDLLA and PCL for application in bioartificial liver. Biomacromolecules 9:1527–1534

    Article  Google Scholar 

  84. Liao GY, Chen L, Zeng XY, Zhou XP, Xie XL, Peng EJ, Ye ZQ, Mai YW (2011) Electrospun PLLA/PCL blend fibers and their cellular response to adipose-derived stem cells. J Appl Polym Sci 120:2154–2165

    Article  Google Scholar 

  85. Gimble JM, Katz AJ, Bunnell BA (2007) Adipose-derived stem cells for regenerative medicine. Circ Res 100:1249–1260

    Article  Google Scholar 

  86. Zuk PA, Zhu M, Mizuno H, Huang J, Futrell JW, Katz AJ, Benhaim P, Lorenz HP, Hedrick MH (2001) Multilineage cells from human adipose tissue: implications for cell-based therapies. Tissue Eng 7:211–228

    Article  Google Scholar 

  87. Zuk PA, Zhu M, Ashjian P, De Ugarte DA, Huang JI, Mizuno H, Alfonso ZC, Fraser JK, Benhaim P, Hedrick MH (2002) Human adipose tissue is a source of multipotent stem cells. Mol Biol Cell 13:4279–4295

    Article  Google Scholar 

  88. Rodríguez LV, Alfonso Z, Zhang R, Leung J, Wu B, Ignarro LJ (2006) Clonogenic multipotent stem cells in human adipose tissue differentiate into functional smooth muscle cells. Proc Natl Acad Sci 103:12167–12172

    Article  Google Scholar 

  89. Spasova M, Stoilova O, Manolova N, Altankov G, Rashkov I (2007) Preparation of PLLA/PEG nanofibers by electrospinning and potential applications. J Bioact Compat Polym 22:62–76

    Article  Google Scholar 

  90. Wang BY, Fu SZ, Ni PY, Peng JR, Zheng L, Luo F, Liu H, Qian ZY (2012) Electrospun polylactide/poly(ethylene glycol) hybrid fibrous scaffolds for tissue engineering. J Biomed Mater Res Part A 100A:441–449

    Article  Google Scholar 

  91. Huang L, Nagapudi K, Apkarian RP, Chaikof EL (2001) Engineered collagen-PEO nanofibers and fabrics. J Biomater Sci Polym Ed 12:979–993

    Article  Google Scholar 

  92. Son WK, Youk JH, Lee TS, Park WH (2004) Preparation of antimicrobial ultrafine cellulose acetate fibers with silver nanoparticles. Macromol Rapid Commun 25:1632–1637

    Article  Google Scholar 

  93. Melaiye A, Sun ZH, Hindi K, Milsted A, Ely D, Reneker DH, Tessier CA, Youngs WJ (2005) Silver(I)-imidazole cyclophane gem-diol complexes encapsulated by electrospun tecophilic nanofibers: formation of nanosilver particles and antimicrobial activity. J Am Chem Soc 127:2285–2291

    Article  Google Scholar 

  94. Fujihara K, Kotaki M, Ramakrishna S (2005) Guided bone regeneration membrane made of polycaprolactone/calcium carbonate composite nanofibers. Biomaterials 26:4139–4147

    Article  Google Scholar 

  95. Fan HS, Wen XT, Tan YF, Wang R, Cao HD, Zhang XD (2005) Compare of electrospinning PLA and PLA/b-TCP scaffold in vitro. Mater Sci Forum 475–479:2379–2382

    Article  Google Scholar 

  96. Kim HW, Song JH, Kim HE (2005) Nanofiber generation of gelatin-hydroxyapatite biomimetics for guided tissue regeneration. Adv Funct Mater 15:1988–1994

    Article  Google Scholar 

  97. Kim HW, Lee HH, Knowles JC (2006) Electrospinning biomedical nanocomposite fibers of hydroxyapatite/poly(lactic acid) for bone regeneration. J Biomed Mater Res A 79A:643–649

    Article  Google Scholar 

  98. Xie XL, Mai YW, Zhou XP (2005) Dispersion and alignment of carbon nanotubes in polymer matrix: a review. Mater Sci Eng R 49:89–112

    Article  Google Scholar 

  99. Zhou W, Wu Y, Wei F, Luo G, Qian W (2005) Elastic deformation of multiwalled carbon nanotubes in electrospun MWCNTs-PEO and MWCNTs-PVA nanofibers. Polymer 46:12689–12695

    Article  Google Scholar 

  100. Salalha W, Dror Y, Khalfin RL, Cohen Y, Yarin AL, Zussman E (2004) Single-walled carbon nanotubes embedded in oriented polymeric nanofibers by electrospinning. Langmuir 20:9852–9855

    Article  Google Scholar 

  101. Dror Y, Salalha W, Khalfin RL, Cohen Y, Yarin AL, Zussman E (2003) Carbon nanotubes embedded in oriented polymer nanofibers by electrospinning. Langmuir 19:7012–7020

    Article  Google Scholar 

  102. Sung JH, Kim HS, Jin HJ, Choi HJ, Chin IJ (2004) Nanofibrous membranes prepared by multiwalled carbon nanotube/poly(methyl methacrylate) composites. Macromolecules 37:9899–9902

    Article  Google Scholar 

  103. Sundaray B, Subramanian V, Natarajan TS, Krishnamurthy K (2006) Electrical conductivity of a single electrospun fiber of poly(methyl methacrylate) and multiwalled carbon nanotube nanocomposite. Appl Phys Lett 88:143114–143116

    Article  Google Scholar 

  104. Liu LQ, Tasis D, Prato M, Wagner HD (2007) Tensile mechanics of electrospun multiwalled nanotube/poly(methyl methacrylate) nanofibers. Adv Mater 19:1228–1233

    Article  Google Scholar 

  105. Ge JJ, Hou HQ, Li Q, Graham MJ, Greiner A, Reneker DH, Harris FW, Cheng SZD (2004) Assembly of well-aligned, multiwalled carbon nanotubes in confined polyacrylonitrile environments: electrospun composite nanofiber sheets. J Am Chem Soc 126:15754–15761

    Article  Google Scholar 

  106. Ra EJ, An KH, Kim KK, Jeong SY, Lee YH (2005) Anisotropic electrical conductivity of MWCNT/PAN nanofiber paper. Chem Phys Lett 413:188–193

    Article  Google Scholar 

  107. Allaoui A, Bai S, Cheng HM, Bai JB (2002) Mechanical and electrical properties of a MWNT/epoxy composite. Compos Sci Technol 62:1993–1998

    Article  Google Scholar 

  108. Jose MV, Steinert BW, Thomas V, Dean DR, Abdalla MA, Price G, Janowski GM (2007) Morphology and mechanical properties of nylon 6/MWNT nanofibers. Polymer 48:1096–1104

    Article  Google Scholar 

  109. Kim GM, Michler GH, Potschk P (2005) Deformation processes of ultrahigh porous multiwalled carbon nanotubes/polycarbonate composite fibers prepared by electrospinning. Polymer 46:7346–7351

    Article  Google Scholar 

  110. Sen R, Zhao B, Perea D, Itkis ME, Hu H, Love J, Bekyarova E, Haddo RC (2004) Preparation of single-walled carbon nanotube reinforced polystyrene and polyurethane nanofibers and membranes by electrospinning. Nano Lett 4:459–464

    Article  Google Scholar 

  111. Mazinani S, Ajji A, Dubois C (2009) Polystyrene-carbon nanotubes electrospun fibers: process. Struct Prop Polym 50:3329–3342

    Google Scholar 

  112. Chen D, Liu TX, Zhou XP, Tjiu WC, Hou HQ (2009) Electrospinning fabrication of high strength and toughness polyimide nanofiber membranes containing multiwalled carbon nanotubes. J Phys Chem B 113:9741–9748

    Article  Google Scholar 

  113. Baji A, Mai YW, Wong SC, Abtahi M, Du X (2010) Mechanical behavior of self-assembled carbon nanotube reinforced nylon6, 6 fibers. Compos Sci Technol 70:1401–1409

    Article  Google Scholar 

  114. Saeed K, Park SY, Lee HJ, Baek JB, Huh WS (2006) Preparation of electrospun nanofibers of carbon nanotube/polycaprolactone nanocomposite. Polymer 47:8019–8025

    Article  Google Scholar 

  115. Mei F, Zhong JS, Yang XP, Ouyang XY, Zhang S, Hu XY, Ma Q, Lu JG, Ryu SK, Deng XL (2007) Improved biological characteristics of poly (1-Laclic Acid) electrospun membrane by incorporation of multiwallad carbon nanotubes/hydroxyapatite nanoparticles. Biomacromolecules 8:3729–3735

    Article  Google Scholar 

  116. Fang J, Niu HT, Lin T, Wang XG (2008) Applications of electrospun nanofibers. Chin Sci Bull 53:2265–2286

    Article  Google Scholar 

  117. Sundaray B, Subramanian V, Natarajan TS, Xiang RZ, Chang CC, Fann WS (2004) Electrospinning of continuous aligned polymer fibers. Appl Phys Lett 84:1222–1224

    Article  Google Scholar 

  118. Pan H, Li L, Hu L, Cui X (2006) Continuous aligned polymer fibers produced by a modified electrospinning method. Polymer 47:4901–4904

    Article  Google Scholar 

  119. Li D, Wang Y, Xia Y (2003) Electrospinning of polymeric and ceramic nanofibers as uniaxially aligned arrays. Nano Lett 3:1167–1171

    Article  Google Scholar 

  120. Li D, Wang Y, Xia Y (2004) Electrospinning nanofibers as uniaxially aligned arrays and layer-by-layer stacked films. Adv Mater 16:361–366

    Article  Google Scholar 

  121. Theron A, Zussman E, Yarin AL (2001) Electrostatic field-assisted alignment of electrospun nanofibres. Nanotechnology 12:384–390

    Article  Google Scholar 

  122. Yang D, Lu B, Zhao Y, Jiang X (2007) Fabrication of aligned fibrous arrays by magnetic electrospinning. Adv Mater 19:3702–3706

    Article  Google Scholar 

  123. Katta P, Alessandro M, Ramsier RD, Chase GG (2004) Continuous electrospinning of aligned polymer nanofibers onto a wire drum collector. Nano Lett 4:2215–2218

    Article  Google Scholar 

  124. Fennessey SF, Farris RJ (2008) Fabrication of aligned and molecularly oriented electrospun polyacrylonitrile nanofibers and the mechanical behavior of their twisted yarns. Polymer 45:4217–4225

    Article  Google Scholar 

  125. Ghasemi-Mobarakeh L, Prabhakaran MP, Morshed M, Nasr-Esfahani MH, Ramakrishna S (2008) Electrospun poly(ε-caprolactone)/gelatin nanofibrous scaffolds for nerve tissue engineering. Biomaterials 29:4532–4539

    Article  Google Scholar 

  126. Bini TB, Gao S, Wang S, Ramakrishna S (2006) Poly(l-lactide-co-glycolide) biodegradable microfibers and electrospun nanofibers for nerve tissue engineering: an in vitro study. J Mater Sci 41:6453–6459

    Article  Google Scholar 

  127. Schnell E, Klinkhammer K, Balzer S, Brook G, Kleeb D, Dalton P (2007) Guidance of glial cell migrtion and axonal growth on electrospun nanofibers of poly-ε-caprolactone and a collagen/poly-ε-caprolactone blend. Biomaterials 28:3012–3025

    Article  Google Scholar 

  128. Baker SC, Atkin N, Gunning PA (2006) Characterisation of electrospun polystyrene scaffolds for three-dimensional in vitro biological studies. Biomaterials 27(16):3136

    Article  Google Scholar 

  129. Liao GY, Zhou XP, Chen L, Zeng XY, Xie XL, Mai YW (2012) Electrospun aligned PLLA/PCL/functionalised multiwalled carbon nanotube composite fibrous membranes and their bio/mechanical properties. Compos Sci Technol 72:248–255

    Article  Google Scholar 

  130. Wang YZ, Blasioli DJ, Kim HJ, Kim HS, Kaplan DL (2006) Cartilage tissue engineering with silk scaffolds and human articular chondrocytes. Biomaterials 27:4434–4442

    Article  Google Scholar 

  131. Moroni L, Licht R, de Boer J, de Wijn JR, van Blitterswijk CA (2006) Fiber diameter and texture of electrospun PEOT/PBT scaffolds influence human mesenchymal stem cell proliferation and morphology, and the release of incorporated compounds. Biomaterials 27:4911–4922

    Article  Google Scholar 

  132. Li WJ, Laurencin CT, Caterson EJ, Tuan RS, Ko FK (2002) Electrospun nanofibrous structure: a novel scaffold for tissue engineering. J Biomed Mater Res 60:613–621

    Article  Google Scholar 

  133. Yoshimoto H, Shin YM, Terai H, Vacanti JP (2003) A biodegradable nanofiber scaffold by electrospinning and its potential for bone tissue engineering. Biomaterials 24:2077–2082

    Article  Google Scholar 

  134. Powell HM, Supp DM, Boyce ST (2008) Influence of electrospun collagen on wound contraction of engineered skin substitutes. Biomaterials 29:834–843

    Article  Google Scholar 

  135. Kenawy ER, Bowlin GL, Mansfield K, Layman J, Simpson DG, Sanders EH (2002) Release of tetracycline hydrochloride from electrospun poly(ethylene-co-vinylacetate), poly(lactic acid), and a blend. J Control Release 81:57–64

    Article  Google Scholar 

  136. Goldberg M, Langer R, Jia XQ (2007) Nanostructured materials for applications in drug delivery and tissue engineering. J Biomat Sci Polym Ed 18:241–268

    Article  Google Scholar 

  137. Zhang XH, Reagan MR, Kaplan DL (2009) Electrospun silk biomaterial scaffolds for regenerative medicine. Adv Drug Deliv Rev 61:988–1006

    Article  Google Scholar 

  138. Soffer L, Wang X, Zhang X, Kluge J, Dorfmann L, Kaplan DL, Leisk G (2008) Silk-based electrospun tubular scaffolds for tissue-engineered vascular grafts. J Biomater Sci Polym Ed 19:653–664

    Article  Google Scholar 

  139. Mathew G, Hong JP, Rhee JM, Lee HS, Nah C (2005) Preparation and characterization of properties of electrospun poly(butylene terephthalate) nanofibers filled with carbon nanotubes. Polym Test 24:712–717

    Article  Google Scholar 

  140. Lee BS, Yu WR (2010) PA6/MWNT nanocomposites fabricated using electrospun nanofibers containing MWNT. Macromol Res 18:162–169

    Article  Google Scholar 

  141. Wei K, Xia JH, Kim BS, Kim IS (2011) Multiwalled carbon nanotubes incorporated bombyx mori silk nanofibers by electrospinning. J Polym Res 18:579–585

    Article  Google Scholar 

  142. Saeed K, Park SY (2010) Preparation and characterization of multiwalled carbon nanotubes/polyacrylonitrile nanofibers. J Polym Res 17:535–540

    Article  Google Scholar 

  143. Gao JB, Yu AP, Itkis ME, Bekyarova E, Zhao B, Niyogi S, Haddon RC (2004) Large-scale fabrication of aligned single-walled carbon nanotube array and hierarchical single-walled carbon nanotube assembly. J Am Chem Soc 126:16698–16699

    Article  Google Scholar 

  144. Stanishevsky A, Chowdhury S, Chinoda P, Thomas V (2008) Hydroxyapatite nanoparticle loaded collagen fiber composites: microarchitecture and nanoindentation study. J Biomed Mater Res 86:873–882

    Article  Google Scholar 

  145. Stupp SI, Brawn PV (1997) Molecular manipulation of microstructures: biomaterials, ceramics, and semiconductors. Science 277:1242–1248

    Article  Google Scholar 

  146. Stupp SI, LeBonheur V, Walker K, Li LS, Huggins KE, Keser M (1997) Supramolecular materials: self-organized nanostructures. Science 276:384–389

    Article  Google Scholar 

  147. Bianco A, Federico ED, Moscatelli I, Camaioni A, Armentano I, Campagnolo L, Dottori M, Kenny JM, Siracusa G, Gusmano G (2009) Electrospun poly(ε-caprolactone)/Ca-deficient hydroxyapatite nanohybrids: microstructure, mechanical properties and cell response by murine embryonic stem cells. Mater Sci Eng C 29:2063–2071

    Article  Google Scholar 

  148. Peng F, Shaw MT, Olson JR, Wei M (2011) Hydroxyapatite needle-shaped particles/poly(L-lactic acid) electrospun scaffolds with perfect particle-along-nanofiber orientation and significantly enhanced mechanical properties. J Phys Chem C 115:15743–15751

    Article  Google Scholar 

  149. Yeo MG, Kim GH (2012) Preparation and characterization of 3D composite scaffolds based on rapid-prototyped PCL/β-TCP struts and electrospun PCL coated with collagen and HA for bone regeneration. Chem Mater 24:903–913

    Article  Google Scholar 

  150. Shor L, Guceri S, Wen X, Gandhi M, Sun W (2007) Fabrication of three-dimensional polycaprolactone/hydroxyapatite tissue scaffolds and osteoblast-scaffold interactions in vitro. Biomaterials 28:5291–5297

    Article  Google Scholar 

  151. Turmanova S, Minchev M, Vassilev K, Danev G (2008) Surface grafting polymerization of vinyl monomers on poly(tetrafluoroethylene) films by plasma treatment. J Polym Res 15:309–318

    Article  Google Scholar 

  152. Mori M, Uyama Y, Ikada Y (1994) Surface modification of polyethylene fiber by graft-polymerization. J Polym Sci Polym Chem 32:1683–1690

    Article  Google Scholar 

  153. Kou RQ, Xu ZK, Deng HT, Liu ZM, Seta P, Xu YY (2003) Surface modification of microporous polypropylene membranes by plasma-induced graft polymerization of alpha-allyl glucoside. Langmuir 19:6869–6875

    Article  Google Scholar 

  154. Liu ZM, Xu ZK, Wang JQ, Wu J, Fu JJ (2004) Surface modification of polypropylene microfiltration membranes by graft polymerization of N-vinyl-2-pyrrolidone. Eur Polym J 40:2077–2087

    Article  Google Scholar 

  155. Yao C, Li XS, Neoh KG, Shi ZL, Kang ET (2008) Surface modification and antibacterial activity of electrospun polyurethane fibrous membranes with quaternary ammonium moieties. J Membr Sci 320:259–267

    Article  Google Scholar 

  156. Kim HS, Yoo HS (2010) MMPs-responsive release of DNA from electrospun nanofibrous matrix for local gene therapy: in vitro and in vivo evaluation. J Control Release 145(3):264–271

    Article  Google Scholar 

  157. Park K, Ju YM, Son JS, Ahn KD, Han DK (2007) Surface modification of biodegradable electrospun nanofiber scaffolds and their interaction with fibroblasts. J Biomater Sci Polym Ed 18:369–382

    Article  Google Scholar 

  158. Chua KN, Chai C, Lee PC, Tang YN, Ramakrishna S, Leong KW, Mao HQ (2006) Surface-aminated electrospun nanofibers enhance adhesion and expansion of human umbilical cord blood hematopoietic stem/progenitor cells. Biomaterials 27:6043–6051

    Article  Google Scholar 

  159. Ye P, Xu ZK, Wu J, Innocent C, Seta P (2006) Nanofibrous membranes containing reactive groups: electrospinning from poly(acrylonitrile-co-maleic acid) for lipase immobilization. Macromolecules 39:1041–1045

    Article  Google Scholar 

  160. Li SF, Chen JP, Wu WT (2007) Electrospun polyacrylonitrile nanofibrous membranes for lipase immobilization. J Mol Catal B Enzym 47:117–124

    Article  Google Scholar 

  161. Jia HF, Zhu GY, Vugrinovich B, Kataphinan W, Reneker DH, Wang P (2002) Enzyme carrying polymeric nanofibers prepared via electrospinning for use as unique biocatalysts. Biotechnol Prog 18:1027–1032

    Article  Google Scholar 

  162. Aznar-Cervantes S, Roca MI, Martinez JG, Meseguer-Olmo L, Cenis JL, Moraleda JM, Otero TF (2012) Fabrication of conductive electrospun silk fibroin scaffolds by coating with polypyrrole for biomedical applications. Bioelectrochemistry 85:36–43

    Article  Google Scholar 

  163. Chua KN, Lim WS, Zhang P, Lu H, Wen J, Ramakrishna S, Leong KW, Mao HQ (2005) Stable immobilization of rat hepatocyte spheroids on galactosylated nanofiber scaffold. Biomaterials 26:2537–2547

    Article  Google Scholar 

  164. Yoon JJ, Chung HJ, Park TG (2007) Photo-crosslinkable and biodegradable pluronic/heparin hydrogels for local and sustained delivery of angiogenic growth factor. J Biomed Mater Res A 83A:597–605

    Article  Google Scholar 

  165. Lode A, Reinstorf A, Bernhardt A, Wolf-Brandstetter C, Konig U, Gelinsky M (2008) Heparin modification of calcium phosphate bone cements for VEGF functionalization. J Biomed Mater Res A 86A:749–759

    Article  Google Scholar 

  166. McGonigle JS, Tae G, Stayton PS, Hoffman AS, Scatena M (2008) Heparin-regulated delivery of osteoprotegerin promotes vascularization of implanted hydrogels. J Biomater Sci Polym Ed 19:1021–1034

    Article  Google Scholar 

  167. Stendahl JC, Wang LJ, Chow LW, Kaufman DB, Stupp SI (2008) Growth factor delivery from self-assembling nanofibers to facilitate islet transplantation. Transplantation 86:478–481

    Article  Google Scholar 

  168. Joung YK, Bae JW, Park KD (2008) Controlled release of heparin-binding growth factors using heparin-containing particulate systems for tissue regeneration. Expert Opin Drug Deliv 5:1173–1184

    Article  Google Scholar 

  169. Bolgen N, Vargel I, Korkusuz P, Menceloglu YZ, Piskin E (2007) In vivo performance of antibiotic embedded electrospun PCL membranes for prevention of abdominal adhesions. J Biomed Mater Res B Appl Biomater 81B:530–543

    Article  Google Scholar 

  170. Li LS, Stupp SI (2005) One-dimensional assembly of lipophilic inorganic nanoparticles templated by peptide-based nanofibers with binding functionalities. Angew Chem Int Ed 44:1833–1836

    Article  Google Scholar 

  171. Kalra V, Lee J, Lee JH, Lee SG, Marquez M, Wiesner U, Joo YL (2008) Controlling nanoparticle location via confined assembly in electrospun block copolymer nanofibers. Small 4:2067–2073

    Article  Google Scholar 

  172. Dong H, Wang D, Sun G, Hinestroza JP (2008) Assembly of metal nanoparticles on electrospun nylon 6 nanofibers by control of interfacial hydrogen-bonding interactions. Chem Mater 20:6627–6632

    Article  Google Scholar 

  173. Rujitanaroj PO, Pimpha N, Supaphol P (2008) Wound-dressing materials with antibacterial activity from electrospun gelatin fiber mats containing silver nanoparticles. Polymer 49:4723–4732

    Article  Google Scholar 

  174. Seyedjafari E, Soleimani M, Ghaemi N, Shabani I (2010) Nanohydroxyapatite-coated electrospun poly(L-lactide) nanofibers enhance osteogenic differentiation of stem cells and induce ectopic bone formation. Biomacromolecules 11:3118–3125

    Article  Google Scholar 

  175. Decher G (1997) Fuzzy nanoassemblies: toward layered polymeric multicomposites. Science 277:1232–1237

    Article  Google Scholar 

  176. Delcorte A, Bertrand P, Wischerhoff E, Laschewsky A (1997) Adsorption of polyelectrolyte multilayers on polymer surfaces. Langmuir 13:5125–5136

    Article  Google Scholar 

  177. Picart C, Mutterer J, Richert L, Luo Y, Prestwich GD, Schaaf P, Voegel JC, Lavalle P (2002) Molecular basis for the explanation of the exponential growth of polyelectrolyte multilayers. Proc Natl Acad Sci U S A 99:12531–12535

    Article  Google Scholar 

  178. Thierry B, Winnik FM, Merhi Y, Silver J, Tabrizian M (2003) Bioactive coatings of endovascular stents based on polyelectrolyte multilayers. Biomacromolecules 4:1564–1571

    Article  Google Scholar 

  179. Thierry B, Kujawa P, Tkaczyk C, Winnik FM, Bilodeau L, Tabrizian M (2005) Delivery platform for hydrophobic drugs: prodrug approach combined with selfassembled multilayers. J Am Chem Soc 127:1626–1627

    Article  Google Scholar 

  180. Zhang J, Senger B, Vautier D, Picart C, Schaaf P, Voegel JC, Lavalle P (2005) Natural polyelectrolyte films based on layer-by layer deposition of collagen and hyaluronic acid. Biomaterials 26:3353–3361

    Article  Google Scholar 

  181. Tang ZY, Wang Y, Podsiadlo P, Kotov NA (2006) Biomedical applications of layer-by-layer assembly: from biomimetics to tissue engineering. Adv Mater 18:3203–3224

    Article  Google Scholar 

  182. Kim BS, Park SW, Hammond PT (2008) Hydrogen-bonding layer-by-layer assembled biodegradable polymeric micelles as drug delivery vehicles from surfaces. ACS Nano 2:386–392

    Article  Google Scholar 

  183. Quinn A, Such GK, Quinn JF, Caruso F (2008) Polyelectrolyte blend multilayers: a versatile route to engineering interfaces and films. Adv Funct Mater 18:17–26

    Article  Google Scholar 

  184. Ge LQ, Pan C, Chen HH, Wang X, Wang C, Gu ZZ (2007) The fabrication of hollow multilayered polyelectrolyte fibrous mats and its morphology study. Colloids Surf A 293:272–277

    Article  Google Scholar 

  185. Pan C, Ge LQ, Gu ZZ (2007) Fabrication of multi-walled carbon nanotube reinforced polyelectrolyte hollow nanofibers by electrospinning. Compos Sci Technol 67:3271–3277

    Article  Google Scholar 

  186. Müller K, Quinn JF, Johnston AP, Becker RM, Greiner A, Caruso F (2006) Polyelectrolyte functionalization of electrospun fibers. Chem Mater 18:2397–2403

    Article  Google Scholar 

Download references

Acknowledgement

The authors sincerely thank the National Natural Science Foundation of China (21477118) and National Basic Research Program of China (973 Program) (2011CB606002) for support of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiao-Lin Xie .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer-Verlag GmbH Germany

About this chapter

Cite this chapter

Liao, GY., Zhou, XP., Xie, XL., Mai, YW. (2017). Electrospun Polymer Scaffolds: Their Biomedical and Mechanical Properties. In: Li, Q., Mai, YW. (eds) Biomaterials for Implants and Scaffolds. Springer Series in Biomaterials Science and Engineering, vol 8. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-53574-5_8

Download citation

Publish with us

Policies and ethics