Skip to main content

Biomimic Design of Periosteum: Construction Strategies, Scaffold Design and Cell Sources

  • Chapter
  • First Online:
Biomaterials for Implants and Scaffolds

Part of the book series: Springer Series in Biomaterials Science and Engineering ((SSBSE,volume 8))

Abstract

In terms of bone physiology, the periosteum plays critical roles in both bone formation and defect healing. Periosteum is a dual-layered soft tissue membrane that contains osteogenic progenitor cells in the cambial layer, as well as blood supply and supportive cells in the fibrous layer. Transplantation of autogenous or allogenous periosteum has been applied successfully in the repair of various-sized bone defects, especially in large bone defects. However, two major concerns exist in relation to the insufficient autologous donor tissues and donor site morbidity or immunological rejection related to allogeneic tissues. Periosteum tissue engineering is to mimic the natural structure of periosteum, which will guide bone formation in a physiological manner. This chapter provides current information about the construction strategies, scaffold design and cell sources for the periosteum tissue engineering based on the structure and functions of natural periosteum.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Parikh SN (2002) Bone graft substitutes in modern orthopedics. Orthopedics 25(11):1301–1309; quiz 10-1

    Google Scholar 

  2. Kim SS, Sun Park M, Jeon O, Yong Choi C, Kim BS (2006) Poly(lactide-co-glycolide)/hydroxyapatite composite scaffolds for bone tissue engineering. Biomaterials 27(8):1399–1409

    Article  Google Scholar 

  3. Niu X, Fan Y, Liu X, Li X, Li P, Wang J, Sha Z, Feng Q (2011) Repair of bone defect in femoral condyle using microencapsulated chitosan, nanohydroxyapatite/collagen and poly(l-lactide)-based microsphere-scaffold delivery system. Artif Organs 35(7):E119–E128

    Article  Google Scholar 

  4. Nishikawa M, Myoui A, Ohgushi H, Ikeuchi M, Tamai N, Yoshikawa H (2004) Bone tissue engineering using novel interconnected porous hydroxyapatite ceramics combined with marrow mesenchymal cells: quantitative and three-dimensional image analysis. Cell Transplant 13(4):367–376

    Article  Google Scholar 

  5. Yoshikawa H, Myoui A (2005) Bone tissue engineering with porous hydroxyapatite ceramics. J Artif Organs 8(3):131–136

    Article  Google Scholar 

  6. Premaraj S, Mundy B, Parker-Barnes J, Winnard PL, Moursi AM (2005) Collagen gel delivery of Tgf-beta3 non-viral plasmid DNA in rat osteoblast and calvarial culture. Orthod Craniofac Res 8(4):320–322

    Article  Google Scholar 

  7. Knothe Tate ML, Ritzman TF, Schneider E, Knothe UR (2007) Testing of a new one-stage bone-transport surgical procedure exploiting the periosteum for the repair of long-bone defects. J Bone Joint Surg Am 89(2):307–316

    Article  Google Scholar 

  8. Zhang X, Awad HA, O’Keefe RJ, Guldberg RE, Schwarz EM (2008) A perspective: engineering periosteum for structural bone graft healing. Clin Orthop Relat Res 466(8):1777–1787

    Article  Google Scholar 

  9. Allen MR, Hock JM, Burr DB (2004) Periosteum: biology, regulation, and response to osteoporosis therapies. Bone 35(5):1003–1012

    Article  Google Scholar 

  10. Squier CA, Ghoneim S, Kremenak CR (1990) Ultrastructure of the periosteum from membrane bone. J Anat 171:233–239

    Google Scholar 

  11. Malizos KN, Papatheodorou LK (2005) The healing potential of the periosteum molecular aspects. Injury 36(Suppl 3):S13–S19

    Article  Google Scholar 

  12. Asaumi K, Nakanishi T, Asahara H, Inoue H, Takigawa M (2000) Expression of neurotrophins and their receptors (TRK) during fracture healing. Bone 26(6):625–633

    Article  Google Scholar 

  13. Ito Y, Fitzsimmons JS, Sanyal A, Mello MA, Mukherjee N, O’Driscoll SW (2001) Localization of chondrocyte precursors in periosteum. Osteoarthr Cart 9(3):215–223

    Article  Google Scholar 

  14. Nakahara H, Bruder SP, Haynesworth SE, Holecek JJ, Baber MA, Goldberg VM, Caplan AI (1990) Bone and cartilage formation in diffusion chambers by subcultured cells derived from the periosteum. Bone 11(3):181–188

    Article  Google Scholar 

  15. Fang J, Hall BK (1997) Chondrogenic cell differentiation from membrane bone periostea. Anat Embryol (Berl) 196(5):349–362

    Article  Google Scholar 

  16. Allen MR, Burr DB (2005) Human femoral neck has less cellular periosteum, and more mineralized periosteum, than femoral diaphyseal bone. Bone 36(2):311–316

    Article  Google Scholar 

  17. Hutmacher DW, Sittinger M (2003) Periosteal cells in bone tissue engineering. Tissue Eng 9(Suppl 1):S45–S64

    Article  Google Scholar 

  18. Chanavaz M (1995) The periosteum: the “umbilical cord” of bone. Quantification of the blood supply of cortical bone of periosteal origin. Rev Stomatol Chir Maxillofac 96(4):262–267

    Google Scholar 

  19. Yang Y (2009) Skeletal morphogenesis during embryonic development. Crit Rev Eukaryot Gene Expr 19(3):197–218

    Article  Google Scholar 

  20. Chung UI, Kawaguchi H, Takato T, Nakamura K (2004) Distinct osteogenic mechanisms of bones of distinct origins. J Orthop Sci 9(4):410–414

    Article  Google Scholar 

  21. Shapiro F (2008) Bone development and its relation to fracture repair. The role of mesenchymal osteoblasts and surface osteoblasts. Eur Cell Mater 15:53–76

    Google Scholar 

  22. Peters A, Schell H, Bail HJ, Hannemann M, Schumann T, Duda GN, Lienau J (2010) Standard bone healing stages occur during delayed bone healing, albeit with a different temporal onset and spatial distribution of callus tissues. Histol Histopathol 25(9):1149–1162

    Google Scholar 

  23. Dimitriou R, Tsiridis E, Giannoudis PV (2005) Current concepts of molecular aspects of bone healing. Injury 36(12):1392–1404

    Article  Google Scholar 

  24. Engdahl E, Ritsila V, Uddstromer L (1978) Growth potential of cranial suture bone autograft. II. An experimental microscopic investigation in young rabbits. Scand J Plast Reconstr Surg 12(2):125–129

    Article  Google Scholar 

  25. O’Driscoll SW, Fitzsimmons JS (2000) The importance of procedure specific training in harvesting periosteum for chondrogenesis. Clin Orthop Relat Res 380:269–278

    Article  Google Scholar 

  26. O’Driscoll SW, Salter RB (1986) The repair of major osteochondral defects in joint surfaces by neochondrogenesis with autogenous osteoperiosteal grafts stimulated by continuous passive motion. An experimental investigation in the rabbit. Clin Orthop Relat Res 208:131–140

    Google Scholar 

  27. O’Driscoll SW, Marx RG, Fitzsimmons JS, Beaton DE (1999) Method for automated cartilage histomorphometry. Tissue Eng 5(1):13–23

    Article  Google Scholar 

  28. Wakitani S, Yamamoto T (2002) Response of the donor and recipient cells in mesenchymal cell transplantation to cartilage defect. Microsc Res Tech 58(1):14–18

    Article  Google Scholar 

  29. Uddstromer L (1978) The osteogenic capacity of tubular and membranous bone periosteum. A qualitative and quantitative experimental study in growing rabbits. Scand J Plast Reconstr Surg 12(3):195–205

    Article  Google Scholar 

  30. Uddstromer L, Ritsila V (1979) Healing of membranous and long bone defects. An experimental study in growing rabbits. Scand J Plast Reconstr Surg 13(2):281–287

    Article  Google Scholar 

  31. Oni OO, Gregg PJ (1991) An investigation of the contribution of the extraosseous tissues to the diaphyseal fracture callus using a rabbit tibial fracture model. J Orthop Trauma 5(4):480–484

    Article  Google Scholar 

  32. Oni OO, Stafford H, Gregg PJ (1992) A study of diaphyseal fracture repair using tissue isolation techniques. Injury 23(7):467–470

    Article  Google Scholar 

  33. Neel M (2003) The use of a periosteal replacement membrane for bone graft containment at allograft-host junctions after tumor resection and reconstruction with bulk allograft. Orthopedics 26(5 Suppl):s587–s589

    Google Scholar 

  34. Jegoux F, Goyenvalle E, Cognet R, Malard O, Moreau F, Daculsi G, Aguado E (2010) Mandibular segmental defect regenerated with macroporous biphasic calcium phosphate, collagen membrane, and bone marrow graft in dogs. Arch Otolaryngol Head Neck Surg 136(10):971–978

    Article  Google Scholar 

  35. Yonamine Y, Matsuyama T, Sonomura T, Takeuchi H, Furuichi Y, Uemura M, Izumi Y, Noguchi K (2010) Effectable application of vascular endothelial growth factor to critical sized rat calvaria defects. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 109(2):225–231

    Article  Google Scholar 

  36. Okafuji N, Shimizu T, Watanabe T, Kimura A, Kurihara S, Furusawa K, Hasegawa H, Kawakami T (2006) Tissue reaction to poly (lactic-co-glycolic acid) copolymer membrane in rhBMP used rabbit experimental mandibular reconstruction. Eur J Med Res 11(9):394–396

    Google Scholar 

  37. Ma D, Yao H, Tian W, Chen F, Liu Y, Mao T, Ren L (2011) Enhancing bone formation by transplantation of a scaffold-free tissue-engineered periosteum in a rabbit model. Clin Oral Implants Res 22:1193–1199

    Article  Google Scholar 

  38. Ouyang HW, Cao T, Zou XH, Heng BC, Wang LL, Song XH, Huang HF (2006) Mesenchymal stem cell sheets revitalize nonviable dense grafts: implications for repair of large-bone and tendon defects. Transplantation 82(2):170–174

    Article  Google Scholar 

  39. Warnke PH, Douglas T, Sivananthan S, Wiltfang J, Springer I, Becker ST (2009) Tissue engineering of periosteal cell membranes in vitro. Clin Oral Implants Res 20(8):761–766

    Article  Google Scholar 

  40. Schonmeyr B, Clavin N, Avraham T, Longo V, Mehrara BJ (2009) Synthesis of a tissue-engineered periosteum with acellular dermal matrix and cultured mesenchymal stem cells. Tissue Eng Part A 15(7):1833–1841

    Article  Google Scholar 

  41. Guo HG, Yao FL, Ma XL, Yao KD (2008) An experimental study on rabbit’s radial bone defect healed by application of mimetic periosteum with tissue-engineered bone. Zhonghua Zheng Xing Wai Ke Za Zhi 24(1):63–67

    Google Scholar 

  42. Fan W, Crawford R, Xiao Y (2010) Enhancing in vivo vascularized bone formation by cobalt chloride-treated bone marrow stromal cells in a tissue engineered periosteum model. Biomaterials 31(13):3580–3589

    Article  Google Scholar 

  43. Koob S, Torio-Padron N, Stark GB, Hannig C, Stankovic Z, Finkenzeller G (2011) Bone formation and neovascularization mediated by mesenchymal stem cells and endothelial cells in critical-sized calvarial defects. Tissue Eng Part A 17(3-4):311–321

    Article  Google Scholar 

  44. Zhao L, Zhao J, Wang S, Xia Y, Liu J, He J, Wang X (2011) Evaluation of immunocompatibility of tissue-engineered periosteum. Biomed Mater 6(1):015005

    Article  Google Scholar 

  45. Hattori K, Yoshikawa T, Takakura Y, Aoki H, Sonobe M, Tomita N (2005) Bio-artificial periosteum for severe open fracture—an experimental study of osteogenic cell/collagen sponge composite as a bio-artificial periosteum. Biomed Mater Eng 15(3):127–136

    Google Scholar 

  46. Zhang KG, Zeng BF, Zhang CQ (2005) Periosteum construction in vitro by small intestinal submucosa combined with bone marrow mesenchymal stem cell. Zhonghua Wai Ke Za Zhi 43(24):1594–1597

    Google Scholar 

  47. Fan W, Crawford R, Xiao Y (2008) Structural and cellular differences between metaphyseal and diaphyseal periosteum in different aged rats. Bone 42(1):81–89

    Article  Google Scholar 

  48. Seeman E (2003) Periosteal bone formation—a neglected determinant of bone strength. N Engl J Med 349(4):320–323

    Article  Google Scholar 

  49. Augustin G, Antabak A, Davila S (2007) The periosteum. Part 1: anatomy, histology and molecular biology. Injury 38(10):1115–1130

    Article  Google Scholar 

  50. Li D, Xia YN (2004) Electrospinning of nanofibers: reinventing the wheel? Adv Mater 16(14):1151–1170

    Article  Google Scholar 

  51. Reneker DH, Yarin AL, Fong H, Koombhongse S (2000) Bending instability of electrically charged liquid jets of polymer solutions in electrospinning. J Appl Phys 87(9):4531–4547

    Article  Google Scholar 

  52. Pham QP, Sharma U, Mikos AG (2006) Electrospinning of polymeric nanofibers for tissue engineering applications: a review. Tissue Eng 12(5):1197–1211

    Article  Google Scholar 

  53. Han D, Gouma PI (2006) Electrospun bioscaffolds that mimic the topology of extracellular matrix. Nanomedicine 2(1):37–41

    Google Scholar 

  54. Schindler M, Ahmed I, Kamal J, Nur-E-Kamal A, Grafe TH, Chung HY, Meiners S (2005) A synthetic nanofibrillar matrix promotes in vivo-like organization and morphogenesis for cells in culture. Biomaterials 26(28):5624–5631

    Article  Google Scholar 

  55. Ekaputra AK, Prestwich GD, Cool SM, Hutmacher DW (2008) Combining electrospun scaffolds with electrosprayed hydrogels leads to three-dimensional cellularization of hybrid constructs. Biomacromolecules 9(8):2097–2103

    Article  Google Scholar 

  56. Li WJ, Tuli R, Okafor C, Derfoul A, Danielson KG, Hall DJ, Tuan RS (2005) A three-dimensional nanofibrous scaffold for cartilage tissue engineering using human mesenchymal stem cells. Biomaterials 26(6):599–609

    Article  Google Scholar 

  57. Yoshimoto H, Shin YM, Terai H, Vacanti JP (2003) A biodegradable nanofiber scaffold by electrospinning and its potential for bone tissue engineering. Biomaterials 24(12):2077–2082

    Article  Google Scholar 

  58. He W, Ma Z, Yong T, Teo WE, Ramakrishna S (2005) Fabrication of collagen-coated biodegradable polymer nanofiber mesh and its potential for endothelial cells growth. Biomaterials 26(36):7606–7615

    Article  Google Scholar 

  59. Jin HJ, Chen JS, Karageorgiou V, Altman GH, Kaplan DL (2004) Human bone marrow stromal cell responses on electrospun silk fibroin mats. Biomaterials 25(6):1039–1047

    Article  Google Scholar 

  60. Min BM, Lee G, Kim SH, Nam YS, Lee TS, Park WH (2004) Electrospinning of silk fibroin nanofibers and its effect on the adhesion and spreading of normal human keratinocytes and fibroblasts in vitro. Biomaterials 25(7-8):1289–1297

    Article  Google Scholar 

  61. Mo XM, Xu CY, Kotaki M, Ramakrishna S (2004) Electrospun P(LLA-CL) nanofiber: a biomimetic extracellular matrix for smooth muscle cell and endothelial cell proliferation. Biomaterials 25(10):1883–1890

    Article  Google Scholar 

  62. Shin HJ, Lee CH, Cho IH, Kim YJ, Lee YJ, Kim IA, Park KD, Yui N, Shin JW (2006) Electrospun PLGA nanofiber scaffolds for articular cartilage reconstruction: mechanical stability, degradation and cellular responses under mechanical stimulation in vitro. J Biomater Sci Polym Ed 17(1-2):103–119

    Article  Google Scholar 

  63. Venugopal JR, Zhang YZ, Ramakrishna S (2006) In vitro culture of human dermal fibroblasts on electrospun polycaprolactone collagen nanofibrous membrane. Artif Organs 30(6):440–446

    Article  Google Scholar 

  64. Zhang Y, Ouyang H, Lim CT, Ramakrishna S, Huang ZM (2005) Electrospinning of gelatin fibers and gelatin/PCL composite fibrous scaffolds. J Biomed Mater Res B Appl Biomater 72(1):156–165

    Article  Google Scholar 

  65. Kidoaki S, Kwon IK, Matsuda T (2005) Mesoscopic spatial designs of nano- and microfiber meshes for tissue-engineering matrix and scaffold based on newly devised multilayering and mixing electrospinning techniques. Biomaterials 26(1):37–46

    Article  Google Scholar 

  66. Nam J, Huang Y, Agarwal S, Lannutti J (2007) Improved cellular infiltration in electrospun fiber via engineered porosity. Tissue Eng 13(9):2249–2257

    Article  Google Scholar 

  67. Pham QP, Sharma U, Mikos AG (2006) Electrospun poly(epsilon-caprolactone) microfiber and multilayer nanofiber/microfiber scaffolds: characterization of scaffolds and measurement of cellular infiltration. Biomacromolecules 7(10):2796–2805

    Article  Google Scholar 

  68. Eichhorn SJ, Sampson WW (2005) Statistical geometry of pores and statistics of porous nanofibrous assemblies. J R Soc Interface 2(4):309–318

    Article  Google Scholar 

  69. Sorrell JM, Baber MA, Caplan AI (2007) A self-assembled fibroblast-endothelial cell co-culture system that supports in vitro vasculogenesis by both human umbilical vein endothelial cells and human dermal microvascular endothelial cells. Cells Tissues Organs 186(3):157–168

    Article  Google Scholar 

  70. Oberringer M, Meins C, Bubel M, Pohlemann T (2007) A new in vitro wound model based on the co-culture of human dermal microvascular endothelial cells and human dermal fibroblasts. Biol Cell 99(4):197–207

    Article  Google Scholar 

  71. Black AF, Berthod F, L’Heureux N, Germain L, Auger FA (1998) In vitro reconstruction of a human capillary-like network in a tissue-engineered skin equivalent. FASEB J 12(13):1331–1340

    Google Scholar 

  72. Elbjeirami WM, West JL (2006) Angiogenesis-like activity of endothelial cells co-cultured with VEGF-producing smooth muscle cells. Tissue Eng 12(2):381–390

    Article  Google Scholar 

  73. Rouwkema J, De Boer J, Van Blitterswijk CA (2006) Endothelial cells assemble into a 3-dimensional prevascular network in a bone tissue engineering construct. Tissue Eng 12(9):2685–2693

    Article  Google Scholar 

  74. Bianco P, Riminucci M, Gronthos S, Robey PG (2001) Bone marrow stromal stem cells: nature, biology, and potential applications. Stem Cells 19(3):180–192

    Article  Google Scholar 

  75. Bianco P, Kuznetsov SA, Riminucci M, Gehron Robey P (2006) Postnatal skeletal stem cells. Methods Enzymol 419:117–148

    Article  Google Scholar 

  76. Mosna F, Sensebe L, Krampera M (2010) Human bone marrow and adipose tissue mesenchymal stem cells: a user’s guide. Stem Cells Dev 19(10):1449–1470

    Article  Google Scholar 

  77. Reyes M, Lund T, Lenvik T, Aguiar D, Koodie L, Verfaillie CM (2001) Purification and ex vivo expansion of postnatal human marrow mesodermal progenitor cells. Blood 98(9):2615–2625

    Article  Google Scholar 

  78. Lucarelli E, Donati D, Cenacchi A, Fornasari PM (2004) Bone reconstruction of large defects using bone marrow derived autologous stem cells. Transfus Apher Sci 30(2):169–174

    Article  Google Scholar 

  79. Mastrogiacomo M, Papadimitropoulos A, Cedola A, Peyrin F, Giannoni P, Pearce SG, Alini M, Giannini C, Guagliardi A, Cancedda R (2007) Engineering of bone using bone marrow stromal cells and a silicon-stabilized tricalcium phosphate bioceramic: evidence for a coupling between bone formation and scaffold resorption. Biomaterials 28(7):1376–1384

    Article  Google Scholar 

  80. Estrela C, Alencar AH, Kitten GT, Vencio EF, Gava E (2011) Mesenchymal stem cells in the dental tissues: perspectives for tissue regeneration. Braz Dent J 22(2):91–98

    Google Scholar 

  81. Lin CS, Xin ZC, Deng CH, Ning H, Lin G, Lue TF (2010) Defining adipose tissue-derived stem cells in tissue and in culture. Histol Histopathol 25(6):807–815

    Google Scholar 

  82. Gassling V, Douglas T, Warnke PH, Acil Y, Wiltfang J, Becker ST (2010) Platelet-rich fibrin membranes as scaffolds for periosteal tissue engineering. Clin Oral Implants Res 21(5):543–549

    Article  Google Scholar 

  83. Koch S, Yao C, Grieb G, Prevel P, Noah EM, Steffens GC (2006) Enhancing angiogenesis in collagen matrices by covalent incorporation of VEGF. J Mater Sci Mater Med 17(8):735–741

    Article  Google Scholar 

  84. Sarkar S, Lee GY, Wong JY, Desai TA (2006) Development and characterization of a porous micro-patterned scaffold for vascular tissue engineering applications. Biomaterials 27(27):4775–4782

    Article  Google Scholar 

  85. Shepherd BR, Enis DR, Wang F, Suarez Y, Pober JS, Schechner JS (2006) Vascularization and engraftment of a human skin substitute using circulating progenitor cell-derived endothelial cells. FASEB J 20(10):1739–1741

    Article  Google Scholar 

  86. Reyes M, Dudek A, Jahagirdar B, Koodie L, Marker PH, Verfaillie CM (2002) Origin of endothelial progenitors in human postnatal bone marrow. J Clin Invest 109(3):337–346

    Article  Google Scholar 

  87. Zisch AH (2004) Tissue engineering of angiogenesis with autologous endothelial progenitor cells. Curr Opin Biotechnol 15(5):424–429

    Article  Google Scholar 

  88. Ahrens I, Domeij H, Topcic D, Haviv I, Merivirta RM, Agrotis A, Leitner E, Jowett JB, Bode C, Lappas M, Peter K (2011) Successful in vitro expansion and differentiation of cord blood derived CD34+ cells into early endothelial progenitor cells reveals highly differential gene expression. PLoS One 6(8):e23210

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yin Xiao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer-Verlag GmbH Germany

About this chapter

Cite this chapter

Xiao, Y., Fan, W., Crawford, R., Hutmacher, D.W. (2017). Biomimic Design of Periosteum: Construction Strategies, Scaffold Design and Cell Sources. In: Li, Q., Mai, YW. (eds) Biomaterials for Implants and Scaffolds. Springer Series in Biomaterials Science and Engineering, vol 8. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-53574-5_10

Download citation

Publish with us

Policies and ethics