Skip to main content

Bedeutung immunologischer Prozesse im 2./3. Trimenon

  • Chapter
  • First Online:
Fehlgeburten Totgeburten Frühgeburten
  • 4405 Accesses

Zusammenfassung

Störungen immunologischer Prozesse während der Schwangerschaft können Präeklampsien, HELLP-Syndrome, intrauterine Wachstumsretardierungen sowie Fehl- und Frühgeburten verursachen. Es werden verschiedene Proteine und Hormone beschrieben, deren Dysregulation eine Schwangerschaft gefährden können. Zudem werden Marker genannt, die auf einen pathologischen Schwangerschaftsverlauf hinweisen.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 64.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 84.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Literatur

  • Abrahams VM et al. (2004) Macrophages and apoptotic cell clearance during pregnancy. Am J Reprod Immunol 51(4): 275–282

    Article  PubMed  Google Scholar 

  • Alijotas-Reig J, Llurba E, Gris JM (2014) Potentiating maternal immune tolerance in pregnancy: a new challenging role for regulatory T cells. Placenta 35(4): 241–248

    Article  CAS  PubMed  Google Scholar 

  • Almkvist J, Karlsson A (2004) Galectins as inflammatory mediators. Glycoconj J 19(7-9): 575–581

    Article  PubMed  Google Scholar 

  • Areia A et al. (2015) Can membrane progesterone receptor alpha on T regulatory cells explain the ensuing human labour? J Reprod Immunol 113: 22–26

    Article  PubMed  Google Scholar 

  • Auvynet C et al. (2013) Galectin-1 promotes human neutrophil migration. Glycobiology 23(1): 32–42

    Article  CAS  PubMed  Google Scholar 

  • Bamberger AM et al. (1997) Expression of the apoptosis-inducing Fas ligand (FasL) in human first and third trimester placenta and choriocarcinoma cells. J Clin Endocrinol Metab 82(9): 3173–3175

    Article  CAS  PubMed  Google Scholar 

  • Baumann R (2010) Physiologie. Thieme, Stuttgart

    Google Scholar 

  • Bianchi DW et al. (1996) Male fetal progenitor cells persist in maternal blood for as long as 27 years postpartum. Proc Natl Acad Sci U S A 93(2): 705–708

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Blidner AG, Rabinovich GA (2013) ‚Sweetening‘ pregnancy: galectins at the fetomaternal interface. Am J Reprod Immunol 69(4): 369–382

    Article  CAS  PubMed  Google Scholar 

  • Bozic M et al. (2004) Galectin-1 and galectin-3 in the trophoblast of the gestational trophoblastic disease. Placenta 25(10): 797–802

    Article  CAS  PubMed  Google Scholar 

  • Brune T et al. (2004) The increased lysis of fetal cells in the mother after pregnancies complicated by pre-eclampsia or HELLP syndrome is not the result of a specific anti-fetal cytotoxicity of the mother. Am J Reprod Immunol 51(2): 174–179

    Article  PubMed  Google Scholar 

  • Canellada A et al. (2002) Interleukin regulation of asymmetric antibody synthesized by isolated placental B cells. Am J Reprod Immunol 48(4): 275–282

    Article  CAS  PubMed  Google Scholar 

  • Canellada A et al. (2002) In vitro modulation of protective antibody responses by estrogen, progesterone and interleukin-6. Am J Reprod Immunol 48(5): 334–343

    Article  PubMed  Google Scholar 

  • Cannon JG (2000) Inflammatory cytokines in nonpathological states. News Physiol Sci 15: 298–303

    CAS  PubMed  Google Scholar 

  • Challis JR, Smith SK (2001) Fetal endocrine signals and preterm labor. Biol Neonate 79(3-4): 163–167

    Article  CAS  PubMed  Google Scholar 

  • Chernyshov VP et al. (2008) Th1 and Th2 in human IVF pregnancy with allogenic fetus. Am J Reprod Immunol 59(4): 352–358

    Article  CAS  PubMed  Google Scholar 

  • Damsker JM, Hansen AM, Caspi RR (2010) Th1 and Th17 cells: adversaries and collaborators. Ann N Y Acad Sci 1183: 211–221

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dautzenberg FM, Hauger RL (2002) The CRF peptide family and their receptors: yet more partners discovered. Trends Pharmacol Sci 23(2): 71–77

    Article  CAS  PubMed  Google Scholar 

  • Di Cesare A, Di Meglio P, Nestle FO (2009) The IL-23/Th17 axis in the immunopathogenesis of psoriasis. J Invest Dermatol 129(6): 1339–1350

    Article  CAS  PubMed  Google Scholar 

  • Garin MI et al. (2007) Galectin-1: a key effector of regulation mediated by CD4+CD25+ T cells. Blood 109(5): 2058–2065

    Article  CAS  PubMed  Google Scholar 

  • Gil CD, Gullo CE, Oliani SM (2010) Effect of exogenous galectin-1 on leukocyte migration: modulation of cytokine levels and adhesion molecules. Int J Clin Exp Pathol 4(1): 74–84

    PubMed  PubMed Central  Google Scholar 

  • Hauger RL et al. (2006) Corticotropin releasing factor (CRF) receptor signaling in the central nervous system: new molecular targets. CNS Neurol Disord Drug Targets 5(4): 453–479

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hillhouse EW, Grammatopoulos DK (2002) Role of stress peptides during human pregnancy and labour. Reproduction 124(3): 323–329

    Article  CAS  PubMed  Google Scholar 

  • Hillier SL et al. (1991) Microbiologic causes and neonatal outcomes associated with chorioamnion infection. Am J Obstet Gynecol 165(4 Pt 1): 955–961

    Article  CAS  PubMed  Google Scholar 

  • Hobel CJ et al. (1999) Maternal plasma corticotropin-releasing hormone associated with stress at 20 weeks' gestation in pregnancies ending in preterm delivery. Am J Obstet Gynecol 180(1 Pt 3): S257–263

    Article  Google Scholar 

  • van der Hoorn ML (2010) Clinical and immunologic aspects of egg donation pregnancies: a systematic review. Hum Reprod Update 16(6): 704–712

    Article  PubMed  Google Scholar 

  • van der Hoorn ML et al. (2014) Differential immunoregulation in successful oocyte donation pregnancies compared with naturally conceived pregnancies. J Reprod Immunol 101-102: 96–103

    Article  PubMed  Google Scholar 

  • Iwakura Y, Ishigame H (2006) The IL-23/IL-17 axis in inflammation. J Clin Invest 116(5): 1218–1222

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jacobsson B, Mattsby-Baltzer I, Hagberg H (2005) Interleukin-6 and interleukin-8 in cervical and amniotic fluid: relationship to microbial invasion of the chorioamniotic membranes BJOG 112(6): 719–724

    Article  CAS  PubMed  Google Scholar 

  • Jeschke U et al. (2005) Expression of glycodelin A in decidual tissue of preeclamptic, HELLP and intrauterine growth-restricted pregnancies. Virchows Arch 446(4): 360–368

    Article  CAS  PubMed  Google Scholar 

  • Jeschke U et al. (2007) Expression of galectin-1, -3 (gal-1, gal-3) and the Thomsen-Friedenreich (TF) antigen in normal, IUGR, preeclamptic and HELLP placentas. Placenta 28(11–12): 1165–1173

    Article  CAS  PubMed  Google Scholar 

  • Jeschke U et al. (2013) Expression and function of galectins in the endometrium and at the human feto-maternal interface. Placenta 34(10): 863–872

    Article  CAS  PubMed  Google Scholar 

  • Jiang TT et al. (2014) Regulatory T cells: new keys for further unlocking the enigma of fetal tolerance and pregnancy complications. J Immunol 192(11): 4949–4956

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kalantaridou SN et al. (2003) Roles of reproductive corticotropin-releasing hormone. Ann N Y Acad Sci 997: 129–135

    Article  CAS  PubMed  Google Scholar 

  • Karteris E et al. (2003) Reduced expression of corticotropin-releasing hormone receptor type-1 alpha in human preeclamptic and growth-restricted placentas. J Clin Endocrinol Metab 88(1): 363–370

    Article  CAS  PubMed  Google Scholar 

  • Karteris E et al. (2005) Preeclampsia is associated with impaired regulation of the placental nitric oxide-cyclic guanosine monophosphate pathway by corticotropin-releasing hormone (CRH) and CRH-related peptides. J Clin Endocrinol Metab 90(6): 3680–3687

    Article  CAS  PubMed  Google Scholar 

  • Kolls JK, Linden A (2004) Interleukin-17 family members and inflammation. Immunity 21(4): 467–476

    Article  CAS  PubMed  Google Scholar 

  • Koopman LA et al. (2003) Human decidual natural killer cells are a unique NK cell subset with immunomodulatory potential. J Exp Med 198(8): 1201–1212

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kopcow HD et al. (2008) T cell apoptosis at the maternal-fetal interface in early human pregnancy, involvement of galectin-1. Proc Natl Acad Sci U S A 105(47): 18472–18477

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kovacs-Solyom F et al. (2010) Mechanism of tumor cell-induced T-cell apoptosis mediated by galectin-1. Immunol Lett 127(2): 108–118

    Article  CAS  PubMed  Google Scholar 

  • Kubach J et al. (2007) Human CD4+CD25+ regulatory T cells: proteome analysis identifies galectin-10 as a novel marker essential for their anergy and suppressive function. Blood 110(5): 1550–1558

    Article  CAS  PubMed  Google Scholar 

  • Lange F et al. (2009) Galectin-1 induced activation of the mitochondrial apoptotic pathway: evidence for a connection between death-receptor and mitochondrial pathways in human Jurkat T lymphocytes. Histochem Cell Biol 132(2): 211–223

    Article  CAS  PubMed  Google Scholar 

  • Makrigiannakis A et al. (2001) Corticotropin-releasing hormone promotes blastocyst implantation and early maternal tolerance. Nat Immunol 2(11): 1018–1024

    Article  CAS  PubMed  Google Scholar 

  • Makrigiannakis A et al. (2007) Maternal serum corticotropin-releasing hormone and ACTH levels as predictive markers of premature labor. Int J Gynaecol Obstet 97(2): 115–159

    Article  CAS  PubMed  Google Scholar 

  • Maquoi E et al. (1997) Changes in the distribution pattern of galectin-1 and galectin-3 in human placenta correlates with the differentiation pathways of trophoblasts. Placenta 18(5-6): 433–439

    Article  CAS  PubMed  Google Scholar 

  • Martinez-Varea A et al. (2014) Relationship between maternal immunological response during pregnancy and onset of preeclampsia. J Immunol Res 2014: 210–241

    Article  Google Scholar 

  • Maynard SE et al. (2003) Excess placental soluble fms-like tyrosine kinase 1 (sFlt1) may contribute to endothelial dysfunction, hypertension, and proteinuria in preeclampsia. J Clin Invest 111(5): 649–658

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Minas V et al. (2007) Abortion is associated with increased expression of FasL in decidual leukocytes and apoptosis of extravillous trophoblasts: a role for CRH and urocortin. Mol Hum Reprod 13(9): 663–673

    Article  CAS  PubMed  Google Scholar 

  • Molvarec A et al. (2015) Increased circulating interleukin-17 levels in preeclampsia. J Reprod Immunol 112: 53–57

    Article  CAS  PubMed  Google Scholar 

  • Perone MJ et al. (2009) Suppression of autoimmune diabetes by soluble galectin-1. J Immunol 182(5): 2641–2653

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Petsas G et al. (2012) Aberrant expression of corticotropin-releasing hormone in pre-eclampsia induces expression of FasL in maternal macrophages and extravillous trophoblast apoptosis. Mol Hum Reprod 18(11): 535–545

    Article  CAS  PubMed  Google Scholar 

  • Polgar B et al. (2004) Urinary progesterone-induced blocking factor concentration is related to pregnancy outcome. Biol Reprod 71(5): 1699–1705

    Article  CAS  PubMed  Google Scholar 

  • Rees LH et al. (1975) Possible placental origin of ACTH in normal human pregnancy. Nature 254(5501): 620–622

    Article  CAS  PubMed  Google Scholar 

  • Reiner SL (2007) Development in motion: helper T cells at work. Cell 129(1): 33–36

    Article  CAS  PubMed  Google Scholar 

  • Reister F et al. (1999) The distribution of macrophages in spiral arteries of the placental bed in pre-eclampsia differs from that in healthy patients. Placenta 20(2–3): 229–233

    Article  CAS  PubMed  Google Scholar 

  • Reister F et al. (2001) Macrophage-induced apoptosis limits endovascular trophoblast invasion in the uterine wall of preeclamptic women. Lab Invest 81(8): 1143–1152

    Article  CAS  PubMed  Google Scholar 

  • Romero R et al. (1993) Amniotic fluid interleukin-6 determinations are of diagnostic and prognostic value in preterm labor. Am J Reprod Immunol 30(2–3): 167–183

    Article  CAS  PubMed  Google Scholar 

  • Romero R et al. (2012) Vaginal progesterone in women with an asymptomatic sonographic short cervix in the midtrimester decreases preterm delivery and neonatal morbidity: a systematic review and metaanalysis of individual patient data. Am J Obstet Gynecol 206(2): 124 e1–19

    Article  PubMed  Google Scholar 

  • Saito S et al. (2007) Inadequate tolerance induction may induce pre-eclampsia. J Reprod Immunol 76(1–2): 30–39

    Article  CAS  PubMed  Google Scholar 

  • Sasaki A et al. (1988) Isolation and characterization of a corticotropin-releasing hormone-like peptide from human placenta. J Clin Endocrinol Metab 67(4): 768–773

    Article  CAS  PubMed  Google Scholar 

  • Schlembach D, Lang U (2008) Preeclampsia and pregnancy-induced hypertension - diseases determined in the uterus? Gynakol Geburtshilfliche Rundsch 48(4): 225–230

    Article  PubMed  Google Scholar 

  • Schlembach SV, Klein E, Lapaire O, Ramoni A, Stepan H (2015) Der sFlt-1/PlGF-Quotient in Prädiktion und Diagnostik der Präeklampsie. Frauenarzt 56(10): 858–865

    Google Scholar 

  • Sharma S (2014) Natural killer cells and regulatory T cells in early pregnancy loss. Int J Dev Biol 58(2–4): 219–229

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shevach EM (2001) Certified professionals: CD4(+)CD25(+) suppressor T cells. J Exp Med 193(11): F41–46

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Somerset DA et al. (2004) Normal human pregnancy is associated with an elevation in the immune suppressive CD25+ CD4+ regulatory T-cell subset. Immunology 112(1): 38–43

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Steinman L (2007) A brief history of T(H)17, the first major revision in the T(H)1/T(H)2 hypothesis of T cell-mediated tissue damage. Nat Med 13(2): 139–145

    Article  CAS  PubMed  Google Scholar 

  • Szekeres-Bartho J, Wegmann TG (1996) A progesterone-dependent immunomodulatory protein alters the Th1/Th2 balance. J Reprod Immunol 31(1–2): 81–95

    Article  CAS  PubMed  Google Scholar 

  • Szekeres-Bartho J et al. (1985) The mechanism of the inhibitory effect of progesterone on lymphocyte cytotoxicity: II. Relationship between cytotoxicity and the cyclooxygenase pathway of arachidonic acid metabolism. Am J Reprod Immunol Microbiol 9(1): 19–22

    Article  CAS  PubMed  Google Scholar 

  • Szekeres-Bartho J et al. (1989) Immunoregulatory effects of a suppressor factor from healthy pregnant women's lymphocytes after progesterone induction. Cell Immunol 122(2): 281–294

    Article  CAS  PubMed  Google Scholar 

  • Szekeres-Bartho J et al. (1996) The immunological pregnancy protective effect of progesterone is manifested via controlling cytokine production. Am J Reprod Immunol 35(4): 348–351

    Article  CAS  PubMed  Google Scholar 

  • Tan C et al. (2010) Antigen-specific Th9 cells exhibit uniqueness in their kinetics of cytokine production and short retention at the inflammatory site. J Immunol 185(11): 6795–6801

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Than NG et al. (2008) Chorioamnionitis and increased galectin-1 expression in PPROM - an anti-inflammatory response in the fetal membranes? Am J Reprod Immunol 60(4): 298–311

    Article  PubMed  PubMed Central  Google Scholar 

  • Velez DR et al. (2008) Patterns of cytokine profiles differ with pregnancy outcome and ethnicity. Hum Reprod 23(8): 1902–1909

    Article  CAS  PubMed  Google Scholar 

  • Verlohren S et al. (2012) The sFlt-1/PlGF ratio in different types of hypertensive pregnancy disorders and its prognostic potential in preeclamptic patients. Am J Obstet Gynecol 206(1): 58 e1–8

    Article  PubMed  Google Scholar 

  • Weissenbacher T et al. (2013) Diagnostic biomarkers of pro-inflammatory immune-mediated preterm birth. Arch Gynecol Obstet 287(4): 673–685

    Article  CAS  PubMed  Google Scholar 

  • Williams Z et al. (2009) Foreign fetal cells persist in the maternal circulation. Fertil Steril 91(6): 2593–2595

    Article  PubMed  Google Scholar 

  • Winkler M, Rath W (1996) The role of cytokines in the induction of labor, cervical ripening and rupture of the fetal membranes. Z Geburtshilfe Neonatol 200(suppl 1): 1–12

    PubMed  Google Scholar 

  • Wong MT et al. (2010) Regulation of human Th9 differentiation by type I interferons and IL-21. Immunol Cell Biol 88(6): 624–631

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Vattai, A., Jeschke, U. (2017). Bedeutung immunologischer Prozesse im 2./3. Trimenon. In: Toth, B. (eds) Fehlgeburten Totgeburten Frühgeburten. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-50424-6_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-50424-6_6

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-50423-9

  • Online ISBN: 978-3-662-50424-6

  • eBook Packages: Medicine (German Language)

Publish with us

Policies and ethics