Skip to main content

Production of Amino Acids by Mixed Bacterial Strains-Mediated Solid State Fermentation of Feathers and Dynamic Changes to the Fermentation System

  • Conference paper
  • First Online:
Advances in Applied Biotechnology

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 333))

  • 1788 Accesses

Abstract

Bioprocessing of chicken feather wastes for production of free amino acids was investigated by solid-state fermentation (SSF) with (1) single strain, (2) double strains, (3) triple strains of B. licheniformis TCCC 11593, B. alcalophilus TCCC 11004 and B. subtilis TCCC 11279. The maximum production of total amino acids amounting to 161.35 mg/g was obtained under optimal SSF conditions: feather concentrations 1.0 g/250 mL, moisture contents 1:9 (w/v), inocula ratios (v/v) of 5:5:3 for B. licheniformis: B. alcalophilus: B. subtilis respectively, 60 h fermentation. Monitoring of mixed bacterial populations in the SSF process by real-time PCR indicated that B. alcalophilus was the dominant microorganism present in the SSF cultures. Moreover, measurements of dynamic changes in multienzyme activities in the SSF process suggested that, in terms of amino acid production, keratinase might play an important role in the initial hydrolysis of keratin and the further hydrolysis was most likely to be accomplished by elastase, collagenase, alkaline protease, and neutral protease elaborated by the three mixed bacterial strains. The above results indicated that mixed-strain SSF could serve as a cost-effective method to utilize chicken feather wastes to produce value-added feed additives or organic fertilizers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Riffel A, Brandelli A (2006) Keratinolytic bacteria isolated from feather waste. Braz J Microbiol 37:395–399

    Article  CAS  Google Scholar 

  2. Prakash P, Jayalakshmi SK, Sreeramulu K (2010) Production of keratinase by free and immobilized cells of Bacillus halodurans strain PPKS-2: partial characterization and its application in feather degradation and dehairing of the goat skin. Appl Biochem Biotechnol 160:1909–1920

    Article  CAS  Google Scholar 

  3. Awad GEA, Esawy MA, Salam WA et al (2011) Keratinase production by Bacillus pumilus GHD in solid-state fermentation using sugar cane bagasse: optimization of culture conditions using a Box-Behnken experimental design. Ann Microbiol 61:663–672

    Article  CAS  Google Scholar 

  4. Cai CG, Lou BG, Zheng XD (2008) Keratinase production and Keratin degradation by a mutant strain of Bacillus subtilis. J Zhejiang Univ Sci B 9:60–67

    Article  CAS  Google Scholar 

  5. Kim JM, Lim WJ, Suh HJ (2001) Feather degrading Bacillus species From poultry waste. Process Biochem 37:287–291

    Article  CAS  Google Scholar 

  6. Ramnani P, Singh R, Gupta R (2005) Keratinolytic potential of Bacillus licheniformis RG1: structural and biochemical mechanism of feather degradation. Can J Microbiol 51(3):191–196

    Article  CAS  Google Scholar 

  7. Riffel A, Lucas F, Heeb P et al (2003) Characterization of a new keratinolytic bacterium that completely degrades native feather keratin. Arch Microbiol 179:258–265

    CAS  Google Scholar 

  8. Kalogo Y, Habibi S, Malclean HL et al (2007) Environmental implications of municipal solid waste-derived ethanol. Environ Sci Technol 41:35–41

    Article  CAS  Google Scholar 

  9. Lin CW, Wu CH, Tran DT et al (2011) Mixed culture fermentation from lignocellulosic materials using thermophilic lignocellulose-degrading anaerobes. Process Biochem 46:489–493

    Article  CAS  Google Scholar 

  10. Innerebner G, Knapp B, Vasara T, Romantschuk M, Insam H (2006) Traceability of ammonia-oxidizing bacteria in compost-treated soils. Soil Biol Biochem 38(5):1092–1100

    Article  CAS  Google Scholar 

  11. Danon M, Franke-Whittle IH, Insam H et al (2008) Molecular analysis of bacterial community succession during prolonged compost curing. FEMS Microbiol Ecol 65(1):133–144

    Article  CAS  Google Scholar 

  12. Yong XY, Cui YQ, Chen LH et al (2011) Dynamics of bacterial communities during solid-state fermentation using agro-industrial wastes to produce poly-γ-glutamic acid, revealed by real-time PCR and denaturing gradient gel electrophoresis (DGGE). Appl Microbiol Biotechnol 92:717–725

    Article  CAS  Google Scholar 

  13. Williams CM, Richter CS, Mackenzie JM et al (1990) Isolation, identification and characterization of a feather-degrading bacterium. Appl Environ Microbiol 56:1509–1515

    Google Scholar 

  14. Rai SK, Konwarh R, Mukherjee AK (2009) Purification, characterization and biotechnological application of an alkaline β-keratinase produced by Bacillus subtilis RM-01 in solid-state fermentation using chicken-feather as substrate. Biochem Eng J 45:218–225

    Article  CAS  Google Scholar 

  15. Williams CM, Richter CS, Mackenzie JM et al (1990) Isolation, identification and characterization of a feather-degrading bacterium. Appl Environ Microbiol 56:1509–1515

    Google Scholar 

  16. Friedrich J, Gradisar H, Vrecl M et al (2005) In vitro degradation of porcine skin epidermis by a fungal keratinase of Doratomyces microsporus. Enzyme Microb Technol 36:455–460

    Article  CAS  Google Scholar 

  17. Mehrotra S, Pandey PK, Gaur R et al (1999) The production of alkaline protease by a Bacillus sp. isolate. Biores Technol 67:201–203

    Article  CAS  Google Scholar 

  18. Kang SI, Jang YB, Choi YJ (2005) Purification and properties of a collagenolytic protease produced by marine bacterium Vibrio vulnificus CYK279H. Biotechnol Bioprocess Eng 10:593–598

    Article  CAS  Google Scholar 

  19. Hagihara B, Matsubara H, Nakai M (1958) Crystalline bacterial proteinase of Bacillus subtilis. J Biochem 45:185–194

    CAS  Google Scholar 

  20. Sachar LA, Winter KK, Sicher N (1955) Photometric method for estimation of elastase activity. Proc Soc Exp Biol Med 90:323–326

    Article  CAS  Google Scholar 

  21. Sandhya C, Sumantha A, Szakacs G et al (2005) Comparative evaluation of neutral protease production by Aspergillus oryzae in submerged and solid-state fermentation. Process Biochem 40:2689–2694

    Article  CAS  Google Scholar 

  22. Sieberr J, Palmer RJ, Hirsch P (1991) Analyse of free amino acids in microbially colonized sandstone by precolumn phenyl isothiocyanate derivatization and high-performance liquid chromatography. Appl Environ Microbiol 59:879–881

    Google Scholar 

  23. Cortezi M, Monti R, Contiero J (2005) Temperature effect on dextransucrase production by Leuconostoc mesenteroides FT 045 B isolated from alcohol and sugar mill plant. Afr J Biotechnol 4(3):279–285

    CAS  Google Scholar 

  24. Pandey A, Soccol CR, Mitchell D (2000) New developments in solid state fermentation: I-bioprocesses and products. Process Biochem 35:1153–1169

    Article  CAS  Google Scholar 

  25. Archana A, Satyanarayana T (1997) Xylanase production by thermophilic Bacillus licheniformis A99 in solid state ermentation. Enzyme Microb Technol 21:12–17

    Article  CAS  Google Scholar 

  26. Gautam P, Sabu A, Pandey A (2002) Microbial production of extra-cellular phytase using polystyrene as inert support. Bioresour Technol 83:229–233

    Article  CAS  Google Scholar 

  27. Bustin SA, Benes V, Garson JA (2009) The MIQE guidelines: minimum information for publication of quantitative real-time PCR experiments. Clin Chem 55:611–622

    Article  CAS  Google Scholar 

  28. Silversides FG, Scott TA, Korver DR (2006) A study on the interaction of xylanase and phytase enzymes in wheat-based diets fed to commercial white and brown egg laying hens. Poult Sci 85(2):297–305

    Article  CAS  Google Scholar 

  29. Jeong JH, Jeon YD, Lee OM et al (2010) Characterization of a multifunctional feather-degrading Bacillus subtilis isolated from forest soil. Biodegradation 21(6):1029–1040

    Article  CAS  Google Scholar 

  30. Yamamura S, Morita Y, Hasan Q (2002) Keratin degradation: a cooperative action of two enzymes from Stenotrophomonas sp. Biochem Biophys Res Commun 294(5):1138–1143

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National High-Tech Research and Development Plan (“ 863” Plan), No. 2011AA100905-4 and 2012AA021502, National Natural Science Foundation of China (NSFC), No. 21076159 and Program for Changjiang Scholars and innovative Research Team in University (PSCIRT), No. IRT1166.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fuping Lu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Li, Y. et al. (2015). Production of Amino Acids by Mixed Bacterial Strains-Mediated Solid State Fermentation of Feathers and Dynamic Changes to the Fermentation System. In: Zhang, TC., Nakajima, M. (eds) Advances in Applied Biotechnology. Lecture Notes in Electrical Engineering, vol 333. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-46318-5_23

Download citation

Publish with us

Policies and ethics