Skip to main content

The Basic Features of Viscoplasticity

  • Chapter
  • First Online:
Fluid Mechanics of Viscoplasticity
  • 1615 Accesses

Abstract

Consider an incompressible Bingham fluid at rest between two parallel walls. Assume that the domain \(\varOmega \) of the fluid can be described through a region symmetrical about the \(x\)-axis

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    In [12], the stick-slip model has been used to examine the initiation and cessation of the flows of viscoplastic fluids in a pipe of circular cross-section. The treatment given above is influenced by that work.

References

  1. Nouar C, Frigaard IA (2001) Nonlinear stability of Poiseuille flow of a Bingham fluid: theoretical results and comparison with phenomenological criteria. J Non-Newt Fluid Mech 100:127–149

    Google Scholar 

  2. Stakgold I (1968) Boundary value problems of mathematical physics, vol II. Macmillan, New York

    Google Scholar 

  3. Duvaut G (1973) Résolution d’un problème de Stéfan (Fusion d’un bloc de glace à zéro degré). C R Acad Sci Paris 276:1461–1463

    MATH  MathSciNet  Google Scholar 

  4. Baiocchi C (1978) Free boundary problems and variational inequalities. Technical Summary Report 1883, Mathematics Research Center, University of Wisconsin-Madison

    Google Scholar 

  5. Kinderlehrer D (1978) Variational principles and free boundary problems. Bull Am Math Soc 84:7–26

    Article  MATH  MathSciNet  Google Scholar 

  6. Baiocchi C, Capelo A (1984) Variational and quasivariational inequalities: applications to free-boundary problems. Wiley, New York

    MATH  Google Scholar 

  7. Duvaut G, Lions JL (1972) Les inéquations on mécanique et en physique. Dunod, Paris

    Google Scholar 

  8. Duvaut G, Lions JL (1976) Inequalities in mechanics and physics. Springer, New York

    Book  MATH  Google Scholar 

  9. Glowinski R (1974) Sur l’ecoulement d’un fluide de Bingham dans une conduite cylindrique. J de Méc. 13:601–621

    MathSciNet  Google Scholar 

  10. Fortin A, Côté D, Tanguy PA (1991) On the imposition of friction boundary conditions for the numerical simulation of Bingham fluid flows. Comput Methods Appl Mech Eng 88:97–109

    Article  MATH  Google Scholar 

  11. Ramamurthy AV (1986) Wall slip in viscous fluids and influence of materials of construction. J Rheol 30:337–357

    Article  Google Scholar 

  12. Damianou Y, Philippou M, Kaoullas G, Georgiou GC (2014) Cessation of viscoplastic Poiseuille flow with wall slip. J Non-Newt Fluid Mech 203:24–37

    Article  Google Scholar 

  13. Doraiswamy D (2002) The origins of Rheology: a short historical excursion. Rheol Bull 71(1):7–9, 11, 13–17

    Google Scholar 

  14. Bingham EC (1922) Fluidity and plasticity. McGraw-Hill, New York

    Google Scholar 

  15. Barnes HA (2007) The ‘The yield stress myth?’ paper - 21 years on. Appl Rheol 17:43110-1–43110-5

    Google Scholar 

  16. Nguyen QD, Boger DV (1992) Measuring the flow properties of yield stress fluids. Ann Rev Fluid Mech 24:47–88

    Article  Google Scholar 

  17. Barnes HA, Walters K (1985) The yield stress myth? Rheol Acta 24:323–326

    Article  Google Scholar 

  18. Rivlin RS (1960) Some topics in finite elasticity. In: Goodier JN, Hoff NJ (eds) Structural mechanics: proceedings of the first symposium on naval structural mechanics. Pergamon, Oxford, pp 169–198

    Google Scholar 

  19. Rajagopal KR (2011) Modeling a class of geological materials. Int J Adv Eng Sci Appl Math 3:2–13

    Article  MathSciNet  Google Scholar 

  20. Astarita G (1990) Letter to the editor: the engineering reality of the yield stress. J Rheol 34:275–277

    Article  Google Scholar 

  21. Tabuteau H, Coussot P, de Bruyn JR (2007) Drag force on a sphere in steady motion through a yield-stress fluid. J Rheol 51:125–137

    Article  Google Scholar 

  22. Beris AN, Tsamopoulos JA, Armstrong RC, Brown RA (1985) Creeping motion of a sphere through a Bingham plastic. J Fluid Mech 158:219–244

    Article  MATH  MathSciNet  Google Scholar 

  23. Beaulne M, Mitsoulis E (1997) Creeping motion of a sphere in tubes filled with Herschel-Bulkley fluids. J Non-Newt Fluid Mech 72:55–71

    Article  Google Scholar 

  24. Papanastasiou TC (1987) Flow of materials with yield. J Rheol 31:385–404

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raja R. Huilgol .

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Huilgol, R.R. (2015). The Basic Features of Viscoplasticity. In: Fluid Mechanics of Viscoplasticity. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-45617-0_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-45617-0_1

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-45616-3

  • Online ISBN: 978-3-662-45617-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics