Skip to main content

Targets in Dermal and Transdermal Delivery and Classification of Penetration Enhancement Methods

  • Chapter
Percutaneous Penetration Enhancers Chemical Methods in Penetration Enhancement

Abstract

The application of drugs via the skin is appealing because it is non-invasive and avoids systemic side effects and numerous problems associated with conventional routes of drug application, i.e. intravenous or oral drug delivery (e.g. hepatic first pass, food enzymes, pH changes, etc.). In addition to this the rate of drug input can be controlled and drugs can be self-administered. The target sites of the body for this mode of drug application can be local tissues, regional tissues and systemic circulation. The drug penetration through the skin includes the route across the stratum corneum (intercellular and transcellular routes) or the route via the hair shafts or sweat pores. The skin’s strong barrier properties make it difficult for drugs to penetrate this barrier and achieve therapeutic doses at the site of disease. There are approximately 20 transdermal products on the market, and this number has not shifted much in the past decade. Many of the drugs need help to penetrate the skin. There are a large number of methods that enhance dermal as well as transdermal drug delivery. These methods are broadly chemical and physical, have different modes of action and can be used alone or synergistically. This chapter is a brief overview of targets in skin delivery of drugs and methods used to enhance drug penetration.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdulmajed K, Heard CM (2008) Topical delivery of retinyl ascorbate. 3. Influence of follicle sealing and skin stretching. Skin Pharmacol Physiol 21(1):46–49

    CAS  PubMed  Google Scholar 

  • Abraham MH, Chanda HS, Mitchell RC (1995) The factors that influence skin penetration of solutes. J Pharm Pharmacol 47:8–16

    CAS  Google Scholar 

  • Afouna MI, Fincher TK, Zaghloul AAA, Reddy IK (2003) Effect of Azone upon the in vivo antiviral efficacy of cidofovir or acyclovir topical formulations in treatment/prevention of cutaneous HSV-1 infections and its correlation with skin target site free drug concentration in hairless mice. Int J Pharm 253:159–168

    CAS  PubMed  Google Scholar 

  • Agarwal R, Katare OP, Vyas SP (2000) The pilosebaceous unit: a pivotal route for topical drug delivery. Methods Find Exp Clin Pharmacol 22(2):129–133

    CAS  PubMed  Google Scholar 

  • Ahad A, Aqil M, Kohli K, Chaudhary H, Sultana Y, Mujeeb M et al (2009) Chemical penetration enhancers: a patent review. Expert Opin Ther Pat 19(7):969–988

    CAS  PubMed  Google Scholar 

  • Akimoto T, Nagase Y (2003) Novel transdermal drug penetration enhancer: synthesis and enhancing effect of alkyldisiloxane compounds containing glucopyranosyl group. J Control Release 88(2):243–252

    CAS  PubMed  Google Scholar 

  • Alexander A, Dwivedi S, Ajazuddin, Giri TK, Saraf S, Saraf S, Tripathi DK (2012) Approaches for breaking the barriers of drug permeation through transdermal drug delivery. J Control Release 164(1):26–40

    CAS  PubMed  Google Scholar 

  • Andrews S, Lee JW, Choi S-O, Prausnitz MR (2011) Transdermal insulin delivery using microdermabrasion. Pharm Res 28(9):2110–2118

    PubMed Central  CAS  PubMed  Google Scholar 

  • Andrews SN, Jeong E, Prausnitz MR (2012) Transdermal delivery of molecules is limited by full epidermis, not just stratum corneum. Pharm Res 30(4):1099–109

    PubMed Central  PubMed  Google Scholar 

  • Babu RJ, Pandit JK (2005) Effect of penetration enhancers on the transdermal delivery of bupranolol through rat skin. Drug Deliv 12(3):165–169

    CAS  PubMed  Google Scholar 

  • Banga AK (1998) Electrically assisted transdermal and topical drug delivery. Taylor & Francis Group, London

    Google Scholar 

  • Banga AK, Bose S, Ghosh TK (1999) Iontophoresis and electroporation: comparisons and contrasts. Int J Pharm 179(1):1–19

    CAS  PubMed  Google Scholar 

  • Bangham AD, Standish MM, Watkins JC (1965) Diffusion of univalent ions across the lamellae of swollen phospholipids. J Mol Biol 13:238–252

    CAS  PubMed  Google Scholar 

  • Barry BW (1983) Dermatological formulations: percutaneous absorption. Marcel Dekker, New York

    Google Scholar 

  • Barry BW (1991) Lipid–protein-partititioning theory of skin penetration enhancement. J Control Release 15:237–248

    CAS  Google Scholar 

  • Barry BW (2001) Novel mechanisms and devices to enable successful transdermal drug delivery. Eur J Pharm Sci 14(2):101–114

    CAS  PubMed  Google Scholar 

  • Barry BW (2006) Penetration enhancer classification. In: Smith EW, Maibach HI (eds) Percutaneous penetration enhancers. CRC Press, Taylor& Francis Group, LLC, Boca Raton, pp 3–15

    Google Scholar 

  • Benson HAE (2005) Transdermal drug delivery: penetration enhancement techniques. Curr Drug Deliv 2(1):23–33

    CAS  PubMed  Google Scholar 

  • Benson HAE, Watkinson AC (2012) Transdermal and topical drug delivery: principles and practice. Wiley, Hoboken

    Google Scholar 

  • Blagus T, Markelc B, Cemazar M, Kosjek T, Preat V, Miklavcic D, Sersa G (2013) In vivo real time monitoring system of electroporation mediated control of transdermal and topical drug delivery. J Control Release 172(3):862–71, pii: S0168-3659(13)00827-4

    CAS  PubMed  Google Scholar 

  • Bouwstra JA, Honeywell-Nguyen PL, Gooris GS, Ponec M (2003) Structure of the skin barrier and its modulation by vesicular formulations. Prog Lipid Res 42:1–36

    CAS  PubMed  Google Scholar 

  • Brain KR, Green DM, Dykes PJ, Marks R, Bola TS (2006) The role of menthol in skin penetration from topical formulations of ibuprofen 5% in vivo. Skin Pharmacol Physiol 19:17–21

    CAS  PubMed  Google Scholar 

  • Bremseth DL, Pass F (2001) Delivery of insulin by jet injection: recent observations. Diabetes Technol Ther 3(2):225–232

    CAS  PubMed  Google Scholar 

  • Brychtova K, Jampilek J, Opatrilova R, Raich I, Farsa O, Csollei J (2010) Synthesis, physico-chemical properties and penetration activity of alkyl-6-(2,5-dioxopyrrolidin-1-yl)-2-(2-oxopyrrolidin-1-yl)hexanoates as potential transdermal penetration enhancers. Bioorg Med Chem 18(1):73–79

    CAS  PubMed  Google Scholar 

  • Bucks D, Maibach HI (1999) Occlusion does not uniformly enhance penetration in vivo. In: Bronaugh RL, Maibach HI (eds) Percutaneous absorption: mechanism, methodology, drug delivery, 2nd edn. Marcel Dekker, New York, pp 77–93

    Google Scholar 

  • Bugaj A, Juzeniene A, Juzenas P, Iani V, Ma LW, Moan J (2006) The effect of skin permeation enhancers on the formation of porphyrins in mouse skin during topical application of the methyl ester of 5-aminolevulinic acid. J Photochem Photobiol B 83(2):94–97

    CAS  PubMed  Google Scholar 

  • Buyuktimkin N, Buyuktimkin S, Rytting JH (1997) Chemical means of transdermal drug permeation enhancement. In: Ghosh TK, Pfister WR, Yum S (eds) Transdermal and topical drug delivery systems, Informa health care, London, pp 357–447

    Google Scholar 

  • Cancel LM, Tarbell JM, Ben-Jebria A (2004) Fluorescein permeability and electrical resistance of human skin during low frequency ultrasound application. J Pharm Pharmacol 56(9):1109–1118

    CAS  PubMed  Google Scholar 

  • Cao D, Tazawa Y, Ishii H, Todo H, Sugibayashi K (2011) Pretreatment effects of moxibustion on the skin permeation and skin and muscle concentrations of salicylate in rats. Int J Pharm 407(1–2):105–110

    CAS  PubMed  Google Scholar 

  • Cevc G, Mazgareanu S, Rother M (2008) Preclinical characterisation of NSAIDs in ultradeformable carriers or conventional topical gels. Int J Pharm 360:29–39

    CAS  PubMed  Google Scholar 

  • Chen H, Zhu H, Zheng J, Mou D, Wan J, Zhang J et al (2009) Iontophoresis-driven penetration of nanovesicles through microneedle-induced skin microchannels for enhancing transdermal delivery of insulin. J Control Release 139(1):63–72

    CAS  PubMed  Google Scholar 

  • Cheong H-A, Choi H-K (2003) Effect of ethanolamine salts and enhancers on the percutaneous absorption of piroxicam from a pressure sensitive adhesive matrix. Eur J Pharm Sci 18(2):149–153

    CAS  PubMed  Google Scholar 

  • Ciotti SN, Weiner N (2002) Follicular liposomal delivery systems. J Liposome Res 12(1–2):143–148

    CAS  PubMed  Google Scholar 

  • Costello CT, Jeske AH (1995) Iontophoresis: applications in transdermal medication delivery. Phys Ther 75(6):554–563

    CAS  PubMed  Google Scholar 

  • Denet A-R, Préat V (2003) Transdermal delivery of timolol by electroporation through human skin. J Control Release 88(2):253–262

    CAS  PubMed  Google Scholar 

  • Denet A-R, Vanbever R, Préat V (2004) Skin electroporation for transdermal and topical delivery. Adv Drug Deliv Rev 56(5):659–674

    CAS  PubMed  Google Scholar 

  • Dias MMR, Raghavan SL, Pellett MA, Hadgraft J (2003) The effect of beta-cyclodextrins on the permeation of diclofenac from supersaturated solutions. Int J Pharm 263(1–2):173–181

    CAS  PubMed  Google Scholar 

  • Downing DT, Stewart ME (2000) Epidermal composition. In: Loden M, Maibach HI (eds) Dry skin and moisturizers, chemistry and function. CRC Press, Boca Raton, pp 13–26

    Google Scholar 

  • Dragicevic-Curic N, Scheglmann D, Albrecht V, Fahr A (2008) Temoporfin-loaded invasomes: development, characterization and in vitro skin penetration studies. J Control Release 127(1):59–69

    CAS  PubMed  Google Scholar 

  • Dragicevic-Curic N, Scheglmann D, Albrecht V, Fahr (2009) Development of liposomes containing ethanol for skin delivery of temoporfin: characterization and in vitro penetration studies. Colloids Surf B Biointerfaces 74(1):114–122

    CAS  PubMed  Google Scholar 

  • Ehrenström-Reiz GM, Reiz SL (1982) EMLA–a eutectic mixture of local anaesthetics for topical anaesthesia. Acta Anaesthesiol Scand 26(6):596–598

    PubMed  Google Scholar 

  • El Maghraby GM, Williams AC (2009) Vesicular systems for delivering conventional small organic molecules and larger macromolecules to and through human skin. Expert Opin Drug Deliv 6(2):149–163

    PubMed  Google Scholar 

  • El-Kattan AF, Asbill CS, Michniak BB (2000) The effect of terpene enhancer lipophilicity on the percutaneous permeation of hydrocortisone formulated in HPMC gel systems. Int J Pharm 198:179–189

    CAS  PubMed  Google Scholar 

  • El-Kattan AF, Asbill CS, Kim N, Michniak BB (2001) The effects of terpene enhancers on the percutaneous permeation of drugs with different lipophilicities. Int J Pharm 215:229–240

    CAS  PubMed  Google Scholar 

  • Engwerda EE, Abbink EJ, Tack CJ, de Galan BE (2011) Improved pharmacokinetic and pharmacodynamic profile of rapid-acting insulin using needle-free jet injection technology. Diabetes Care 34(8):1804–1808

    PubMed Central  CAS  PubMed  Google Scholar 

  • Engwerda EE, Tack CJ, de Galan BE (2013) Needle-free jet injection of rapid-acting insulin improves early postprandial glucose control in patients with diabetes. Diabetes Care 36:3436–3441

    PubMed Central  CAS  PubMed  Google Scholar 

  • Feingold KR, Man MQ, Menon GK, Cho SS, Brown BE, Elias PM (1990) Cholesterol synthesis is required for cutaneous barrier function in mice. J Clin Invest 86(5):1738–1745

    PubMed Central  CAS  PubMed  Google Scholar 

  • Flynn GL, Weiner ND (1991) Topical and transdermal delivery-provinces of realism. In: Teubner GR, Teubner A (eds) Dermal and transdermal delivery. Wissenschaftliche Verlagsgesellschaft GmbH, Stuttgart, pp 33–64

    Google Scholar 

  • Forslind B (1994) A domain mosaic model of the skin barrier. Acta Derm Venereol 74(1):1–6

    CAS  PubMed  Google Scholar 

  • Frum Y, Eccleston GM, Meidan VM (2008) Factors influencing hydrocortisone permeation into human hair follicles: use of the skin sandwich system. Int J Pharm 358(1–2):144–150

    CAS  PubMed  Google Scholar 

  • Furuishi T, Fukami T, Suzuki T, Takayama K, Tomono K (2010) Synergistic effect of isopropyl myristate and glyceryl monocaprylate on the skin permeation of pentazocine. Biol Pharm Bull 33(2):294–300

    CAS  PubMed  Google Scholar 

  • Ghyczy M (2002) Chemical composition of liposomes and its influence on the humidity of normal skin, chemical aspects of the skin lipid approach. In: Braun-Falco O, Korting HC, Maibach HI (eds) Liposome dermatics. Springer, Berlin, pp 308–314

    Google Scholar 

  • Gill HS, Prausnitz MR (2007) Coated microneedles for transdermal delivery. J Control Release 117(2):227–237

    PubMed Central  CAS  PubMed  Google Scholar 

  • Gómez C, Costela A, García-Moreno I, Llanes F, Teijón JM, Blanco D (2008) Laser treatments on skin enhancing and controlling transdermal delivery of 5-fluorouracil. Lasers Surg Med 40(1):6–12

    PubMed  Google Scholar 

  • Goodman M, Barry BW (1988) Action of penetration enhancers on human skin as assessed by the permeation of model drugs 5-fluorouracil and estradiol. I. Infinite dose technique. J Invest Dermatol 91(4):323–327

    CAS  PubMed  Google Scholar 

  • Guy RH, Hadgraft J, Bucks DA (1987) Transdermal drug delivery and cutaneous metabolism. Xenobiotica 17(3):325–343

    CAS  PubMed  Google Scholar 

  • Hikima T, Ohsumi S, Shirouzu K, Tojo K (2009) Mechanisms of synergistic skin penetration by sonophoresis and iontophoresis. Biol Pharm Bull 32(5):905–909

    CAS  PubMed  Google Scholar 

  • Hoffman RM (1998) Topical liposome targeting of dyes, melanins, genes, and proteins selectively to hair follicles. J Drug Target 5(2):67–74

    CAS  PubMed  Google Scholar 

  • Honeywell-Nguyen PL, Gooris GS, Bouwstra JA (2004) Quantitative assessment of the transport of elastic and rigid vesicle components and a model drug from these vesicle formulations into human skin in vivo. J Invest Dermatol 123:902–910

    Google Scholar 

  • Ibrahim SA, Li SK (2010) Efficiency of fatty acids as chemical penetration enhancers: mechanisms and structure enhancement relationship. Pharm Res 27(1):115–125

    PubMed Central  CAS  PubMed  Google Scholar 

  • Illel B (1997) Formulation for transfollicular drug administration: some recent advances. Crit Rev Ther Drug Carrier Syst 14(3):207–219

    CAS  PubMed  Google Scholar 

  • Illel B, Schaefer H, Wepierre J, Doucet O (1991) Follicles play an important role in percutaneous absorption. J Pharm Sci 80(5):424–427

    CAS  PubMed  Google Scholar 

  • Inoue K, Sugibayashi K (2012) In vivo enhancement of transdermal absorption of ketotifen by supersaturation generated by amorphous form of the drug. Eur J Pharm Sci 47(1):228–234

    CAS  PubMed  Google Scholar 

  • Jampilek J, Brychtova K (2012) Azone analogues: classification, design, and transdermal penetration principles. Med Res Rev 32(5):907–947

    CAS  PubMed  Google Scholar 

  • Juluri A, Peddikotla P, Repka MA, Murthy SN (2013) Transdermal iontophoretic delivery of propofol: a general anaesthetic in the form of its phosphate salt. J Pharm Sci 102(2):500–507

    CAS  PubMed  Google Scholar 

  • Kalaria DR, Patel P, Merino V, Patravale VB, Kalia YN (2013) Controlled iontophoretic transport of Huperzine A across skin in vitro and in vivo: effect of delivery conditions and comparison of pharmacokinetic models. Mol Pharm 10:4322–4329

    CAS  PubMed  Google Scholar 

  • Kalluri H, Banga AK (2011) Transdermal delivery of proteins. AAPS PharmSciTech 12(1):431–441

    PubMed Central  CAS  PubMed  Google Scholar 

  • Karakatsani M, Dedhiya M, Plakogiannis FM (2010) The effect of permeation enhancers on the viscosity and the release profile of transdermal hydroxypropyl methylcellulose gel formulations containing diltiazem HCl. Drug Dev Ind Pharm 36(10):1195–1206

    CAS  PubMed  Google Scholar 

  • Karande P, Mitragotri S (2009) Enhancement of transdermal drug delivery via synergistic action of chemicals. Biochim Biophys Acta 1788(11):2362–2373

    CAS  PubMed  Google Scholar 

  • Kasting GB, Smith RL, Anderson BD (1992) Prodrugs for dermal delivery solubility, molecular size, and functional group effects. In: Sloan KB (ed) Prodrugs topical and ocular drug delivery. Marcel Dekker, New York, pp 117–161

    Google Scholar 

  • Kim YC, Prausnitz MR (2011) Enabling skin vaccination using new delivery technologies. Drug Deliv Transl Res 1(1):7–12

    PubMed Central  PubMed  Google Scholar 

  • Kost J, Pliquett U, Mitragotri S, Yamamoto A, Langer R, Weaver J (1996) Synergistic effect of electric field and ultrasound on transdermal transport. Pharm Res 13(4):633–638

    CAS  PubMed  Google Scholar 

  • Krishnaiah YS, Satyanarayana V, Karthikeyan RS (2002) Penetration enhancing effect of menthol on the percutaneous flux of nicardipine hydrochloride through excised rat epidermis from hydroxypropyl cellulose gels. Pharm Dev Technol 7:305–315

    CAS  PubMed  Google Scholar 

  • Krishnaiah YS, Satyanarayana V, Bhaskar P (2003) Enhanced percutaneous permeability of nicardipine hydrochloride by carvone across the rat abdominal skin. Drug Dev Ind Pharm 29:191–202

    CAS  PubMed  Google Scholar 

  • Krishnan G, Edwards J, Chen Y, Benson HAE (2010) Enhanced skin permeation of naltrexone by pulsed electromagnetic fields in human skin in vitro. J Pharm Sci 99(6):2724–2731

    CAS  PubMed  Google Scholar 

  • Lauer AC (1999) Percutaneous drug delivery to the hair follicle. In: Bronaugh RL, Maibach HI (eds) Percutaneous absorption drugs-cosmetics-mechanisms-methodology, 3rd edn. Marcel Dekker, Inc., New York, pp 427–449

    Google Scholar 

  • Le L, Kost J, Mitragotri S (2000) Combined effect of low-frequency ultrasound and iontophoresis: applications for transdermal heparin delivery. Pharm Res 17(9):1151–1154

    CAS  PubMed  Google Scholar 

  • Lee S, Kollias N, McAuliffe DJ, Flotte TJ, Doukas AG (1999) Topical drug delivery in humans with a single photomechanical wave. Pharm Res 16(11):1717–1721

    CAS  PubMed  Google Scholar 

  • Leichtnam ML, Rolland H, Wüthrich P, Guy RH (2006) Enhancement of transdermal testosterone delivery by supersaturation. J Pharm Sci 95(11):2373–2379

    CAS  PubMed  Google Scholar 

  • Leichtnam ML, Rolland H, Wüthrich P, Guy RH (2007) Impact of antinucleants on transdermal delivery of testosterone from a spray. J Pharm Sci 96(1):84–92

    CAS  PubMed  Google Scholar 

  • Levin G, Gershonowitz A, Sacks H, Stern M, Sherman A, Rudaev S et al (2005) Transdermal delivery of human growth hormone through RF-microchannels. Pharm Res 22(4):550–555

    CAS  PubMed  Google Scholar 

  • Li L, Hoffman RM (1997) Topical liposome delivery of molecules to hair follicles in mice. J Dermatol Sci 14(2):101–108

    PubMed  Google Scholar 

  • Lindberg M, Forslind B (2000) The skin as a barrier. In: Loden M, Maibach HI (eds) Dry skin and moisturizers, chemistry and function. CRC Press, Boca Raton, pp 27–37

    Google Scholar 

  • Liu K-S, Sung KC, Al-Suwayeh SA, Ku M-C, Chu C-C, Wang J-J et al (2011) Enhancement of transdermal apomorphine delivery with a diester prodrug strategy. Eur J Pharm Biopharm 78(3):422–431

    CAS  PubMed  Google Scholar 

  • Liu S, Jin MN, Quan YS, Kamiyama F, Kusamori K, Katsumi H, Sakane T, Yamamoto A (2013) Transdermal delivery of relatively high molecular weight drugs using novel self-dissolving microneedle arrays fabricated from hyaluronic acid and their characteristics and safety after application to the skin. Eur J Pharm Biopharm 86(2):267–76, pii: S0939-6411(13)00326-3

    PubMed  Google Scholar 

  • Loth H (1992) Percutaneous absorption and conventional penetration enhancers. In: Braun-Falco O, Korting HC, Maibach HI (eds) Liposome dermatics. Springer, Berlin, pp 3–10

    Google Scholar 

  • Megwa SA, Cross SE, Whitehouse MW, Benson HA, Roberts MS (2000) Effect of ion pairing with alkylamines on the in-vitro dermal penetration and local tissue disposition of salicylates. J Pharm Pharmacol 52(8):929–940

    CAS  PubMed  Google Scholar 

  • Milewski M, Yerramreddy TR, Ghosh P, Crooks PA, Stinchcomb AL (2010) In vitro permeation of a pegylated naltrexone prodrug across microneedle-treated skin. J Control Release 146(1):37–44

    PubMed Central  CAS  PubMed  Google Scholar 

  • Mitragotri S (2000) Synergistic effect of enhancers for transdermal drug delivery. Pharm Res 17(11):1354–1359

    CAS  PubMed  Google Scholar 

  • Mitragotri S, Farrell J, Tang H, Terahara T, Kost J, Langer R (2000) Determination of threshold energy dose for ultrasound-induced transdermal drug transport. J Control Release 63(1–2):41–52

    CAS  PubMed  Google Scholar 

  • Mittal A, Sara UVS, Ali A, Aqil M (2009) Status of fatty acids as skin penetration enhancers-a review. Curr Drug Deliv 6(3):274–279

    CAS  PubMed  Google Scholar 

  • Moghimi HR, Alinaghi A, Erfan M (2010) Investigating the potential of non-thermal microwave as a novel skin penetration enhancement method. Int J Pharm 401(1–2):47–50

    CAS  PubMed  Google Scholar 

  • Mohammed AJ, AlAwaidy S, Bawikar S, Kurup PJ, Elamir E, Shaban MMA et al (2010) Fractional doses of inactivated poliovirus vaccine in Oman. N Engl J Med 362(25):2351–2359

    CAS  PubMed  Google Scholar 

  • Monti D, Chetoni P, Burgalassi S, Najarro M, Saettone MF, Boldrini E (2002) Effect of different terpene-containing essential oils on permeation of estradiol through hairless mouse skin. Int J Pharm 237:209–214

    CAS  PubMed  Google Scholar 

  • Murthy SN, Sammeta SM, Bowers C (2010) Magnetophoresis for enhancing transdermal drug delivery: mechanistic studies and patch design. J Control Release 148(2):197–203

    CAS  PubMed  Google Scholar 

  • Mutalik S, Parekh HS, Davies NM, Udupa N (2009) A combined approach of chemical enhancers and sonophoresis for the transdermal delivery of tizanidine hydrochloride. Drug Deliv 16(2):82–91

    CAS  PubMed  Google Scholar 

  • Namjoshi S, Chen Y, Edwards J, Benson HA (2008) Enhanced transdermal delivery of a dipeptide by dermaportation. Biopolymers 90(5):655–662

    CAS  PubMed  Google Scholar 

  • Narishetty STK, Panchagnula R (2004) Transdermal delivery of zidovudine: effect of terpenes and their mechanism of action. J Control Release 95:367–379

    CAS  PubMed  Google Scholar 

  • Parikh NH, Babar A, Plakogiannis FM (1984) Transdermal therapeutic systems (Part 1). Pharm Acta Helv 59:290–292

    CAS  PubMed  Google Scholar 

  • Park J-H, Lee J-W, Kim Y-C, Prausnitz MR (2008) The effect of heat on skin permeability. Int J Pharm 359(1–2):94–103

    PubMed Central  CAS  PubMed  Google Scholar 

  • Park CW, Mansour HM, Oh TO, Kim JY, Ha JM, Lee BJ, Chi SC, Rhee YS, Park ES (2012) Phase behavior of itraconazole-phenol mixtures and its pharmaceutical applications. Int J Pharm 436(1–2):652–658

    CAS  PubMed  Google Scholar 

  • Paudel KS, Milewski M, Swadley CL, Brogden NK, Ghosh P, Stinchcomb AL (2010) Challenges and opportunities in dermal/transdermal delivery. Ther Deliv 1(1):109–131

    PubMed Central  CAS  PubMed  Google Scholar 

  • Polat BE, Hart D, Langer R, Blankschtein D (2011) Ultrasound-mediated transdermal drug delivery: mechanisms, scope, and emerging trends. J Control Release 152(3):330–348

    PubMed Central  CAS  PubMed  Google Scholar 

  • Prausnitz MR, Langer R (2008) Transdermal drug delivery. Nat Biotechnol 26(11):1261–1268

    PubMed Central  CAS  PubMed  Google Scholar 

  • Prausnitz MR, Mitragotri S, Langer R (2004) Current status and future potential of transdermal drug delivery. Nat Rev Drug Discov 3(2):115–124

    CAS  PubMed  Google Scholar 

  • Puglia C, Bonina F (2008) Effect of polyunsaturated fatty acids and some conventional penetration enhancers on transdermal delivery of atenolol. Drug Deliv 15(2):107–112

    CAS  PubMed  Google Scholar 

  • Qandil A, Al-Nabulsi S, Al-Taani B, Tashtoush B (2008) Synthesis of piperazinylalkyl ester prodrugs of ketorolac and their in vitro evaluation for transdermal delivery. Drug Dev Ind Pharm 34(10):1054–1063

    CAS  PubMed  Google Scholar 

  • Ren C, Fang L, Li T, Wang M, Zhao L, He Z (2008) Effect of permeation enhancers and organic acids on the skin permeation of indapamide. Int J Pharm 350(1–2):43–47

    CAS  PubMed  Google Scholar 

  • Redelmeier T, Kitson N (1999) Dermatological Applications of Liposomes. In: Janoff AS (Ed.), Liposomes. Rational Design, Marcell Dekker, New York 283–307

    Google Scholar 

  • Rizwan M, Aqil M, Talegaonkar S, Azeem A, Sultana Y, Ali A (2009) Enhanced transdermal drug delivery techniques: an extensive review of patents. Recent Pat Drug Deliv Formul 3(2):105–124

    CAS  PubMed  Google Scholar 

  • Roberts MS, Pugh WJ, Hadgraft J (1996) Epidermal permeability-penetrant structure relationships. 2. The effect of H-bonding groups in penetrants on their diffusion through the stratum corneum. Int J Pharm 132:23–32

    CAS  Google Scholar 

  • Rouse JG, Yang J, Ryman-Rasmussen JP, Barron AR, Monteiro-Riviere NA (2007) Effects of mechanical flexion on the penetration of fullerene amino acid-derivatized peptide nanoparticles through skin. Nano Lett 7(1):155–160

    CAS  PubMed  Google Scholar 

  • Sá GFF, Serpa C, Arnaut LG (2013) Stratum corneum permeabilization with photoacoustic waves generated by piezophotonic materials. J Control Release 167(3):290–300

    PubMed  Google Scholar 

  • Salerno C, Carlucci AM, Bregni C (2010) Study of in vitro drug release and percutaneous absorption of fluconazole from topical dosage forms. AAPS PharmSciTech 11(2):986–993

    PubMed Central  CAS  PubMed  Google Scholar 

  • Schaefer H (1996) Skin barrier: principles of percutaneous absorption. Karger, Basel

    Google Scholar 

  • Schätzlein A, Cevc G (1998) Non-uniform cellular packing of the stratum corneum and permeability barrier function of intact skin: a high-resolution confocal laser scanning microscopy study using highly deformable vesicles (Transfersomes). Br J Dermatol 138(4):583–592

    PubMed  Google Scholar 

  • Scheuplein RJ (1967) Mechanism of percutaneous absorption. II. Transient diffusion and the relative importance of various routes of skin penetration. J Invest Dermatol 48(1):79–88

    CAS  PubMed  Google Scholar 

  • Schreier H, Bouwstra J (1994) Liposomes and niosomes as topical drug carriers: dermal and transdermal drug delivery. J Control Release 30:1–15

    CAS  Google Scholar 

  • Shaoul E, Ayalon A, Tal Y, Lotan T (2012) Transdermal delivery of scopolamine by natural submicron injectors: in-vivo study in pig. PLoS One 7(2):e31922

    PubMed Central  CAS  PubMed  Google Scholar 

  • Siddiqui O, Roberts MS, Polack AE (1989) Percutaneous absorption of steroids: relative contributions of epidermal penetration and dermal clearance. J Pharmacokinet Biopharm 17(4):405–424

    CAS  PubMed  Google Scholar 

  • Sintov AC, Krymberk I, Daniel D, Hannan T, Sohn Z, Levin G (2003) Radiofrequency-driven skin microchanneling as a new way for electrically assisted transdermal delivery of hydrophilic drugs. J Control Release 89(2):311–320

    CAS  PubMed  Google Scholar 

  • Sivamani RK, Stoeber B, Liepmann D, Maibach HI (2009) Microneedle penetration and injection past the stratum corneum in humans. J Dermatolog Treat 20(3):156–159

    CAS  PubMed  Google Scholar 

  • Sloan KB, Wasdo SC, Rautio J (2006) Design for optimized topical delivery: prodrugs and a paradigm change. Pharm Res 23(12):2729–2747

    CAS  PubMed  Google Scholar 

  • Stott PW, Williams AC, Barry BW (1998) Transdermal delivery from eutectic systems: enhanced permeation of a model drug, ibuprofen. J Control Release 50(1–3):297–308

    CAS  PubMed  Google Scholar 

  • Tezel A, Mitragotri S (2003) Interactions of inertial cavitation bubbles with stratum corneum lipid bilayers during low-frequency sonophoresis. Biophys J 85(6):3502–3512

    PubMed Central  CAS  PubMed  Google Scholar 

  • Touitou E, Dayan N, Bergelson L, Godin B, Eliaz M (2000) Ethosomes-novel vesicular carriers: characterization and delivery properties. J Control Release 65:403–418

    CAS  PubMed  Google Scholar 

  • Van Kuijk-Meuwissen ME, Mougin L, Junginger HE, Bouwstra JA (1998) Application of vesicles to rat skin in vivo: a confocal laser scanning microscopy study. J Control Release 56(1–3):189–196

    PubMed  Google Scholar 

  • Wang S, Kara M, Krishnan TR (1998) Transdermal delivery of cyclosporin-a using electroporation. J Control Release 50(1–3):61–70

    CAS  PubMed  Google Scholar 

  • Wang Y, Thakur R, Fan Q, Michniak B (2005) Transdermal iontophoresis: combination strategies to improve transdermal iontophoretic drug delivery. Eur J Pharm Biopharm 60(2):179–191

    CAS  PubMed  Google Scholar 

  • Wilkes GL, Brown IA, Wildnauer RH (1973) The biomechanical properties of skin. CRC Crit Rev Bioeng 1(4):453–495

    CAS  PubMed  Google Scholar 

  • Williams A (2003) Transdermal and topical drug delivery from theory to clinical practice. Pharmaceutical Press, London

    Google Scholar 

  • Williams AC, Barry BW (1991) Terpenes and the lipid-protein-partitioning theory of skin penetration enhancement. Pharm Res 8(1):17–24

    CAS  PubMed  Google Scholar 

  • Williams AC, Barry BW (2004) Penetration enhancers. Adv Drug Deliv Rev 56(5):603–618

    CAS  PubMed  Google Scholar 

  • Wu PC, Chang JS, Huang YB, Chai CY, Tsai YH (2001) Evaluation of percutaneous absorption and skin irritation of ketoprofen through rat skin: in vitro and in vivo study. Int J Pharm 222:225–235

    CAS  PubMed  Google Scholar 

  • Yan K, Todo H, Sugibayashi K (2010) Transdermal drug delivery by in-skin electroporation using a microneedle array. Int J Pharm 397(1–2):77–83

    CAS  PubMed  Google Scholar 

  • Zewert TE, Pliquett UF, Vanbever R, Langer R, Weaver JC (1999) Creation of transdermal pathways for macromolecule transport by skin electroporation and a low toxicity, pathway-enlarging molecule. Bioelectrochem Bioenerg 49(1):11–20

    CAS  PubMed  Google Scholar 

  • Zhao K, Singh J (1999) In vitro percutaneous absorption enhancement of propranolol hydrochloride through porcine epidermis by terpenes/ethanol. J Control Release 62:359–366

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jelena Predic Atkinson or Nina Dragicevic .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Atkinson, J.P., Maibach, H.I., Dragicevic, N. (2015). Targets in Dermal and Transdermal Delivery and Classification of Penetration Enhancement Methods. In: Dragicevic, N., Maibach, H. (eds) Percutaneous Penetration Enhancers Chemical Methods in Penetration Enhancement. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-45013-0_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-45013-0_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-45012-3

  • Online ISBN: 978-3-662-45013-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics