Skip to main content

Abstract

Liposomes are used as carriers to deliver the entrapped drugs into the skin, beneath the skin or into the systemic circulation, but the major limitation of using liposomes topically onto the skin is the liquid nature of the preparation, as they may leak from the application site upon their administration. However, this disadvantage of using liposome dispersion can be overcome by their incorporation in an adequate vehicle, where original structure of vesicles is preserved and their rheological and/or mucoadhesive properties are adjusted. This can be achieved by adding gelling agents into liposomal dispersions or by incorporating liposome dispersions into hydrogels, when liposomal gels are formed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

Chol:

Cholesterol

DSPC-Chol:

Distearoyl-glycero-PC and cholesterol

EPC:

Egg phosphatidylcholine

EPC-Na:

Egg phosphatidylglycerol sodium

HEC:

Hydroxyethyl cellulose

HPC:

Hydrogenated PC

HPMC:

Hydroxypropyl methylcellulose

PC:

Phosphatidylcholine

References

  • Abraham Lingan M, Abdul Hasan Sathali M, Vijaya Kumar MR, Gokila A (2011) Formulation and evaluation of topical drug delivery system containing clobetasol propionate niosomes. Sci Revs Chem Commun 1:7–17

    CAS  Google Scholar 

  • Allen TM, Cullis PR (2013) Liposomal drug delivery systems: from concept to clinical applications. Adv Drug Deliv Rev 65:36–48

    Article  CAS  PubMed  Google Scholar 

  • Antunes FE, Gentile L, Oliviero Rossi C, Tavano L, Ranieri GA (2011) Gels of Pluronic F127 and nonionic surfactants from rheological characterization to controlled drug permeation. Colloids Surf B Biointerfaces 87:42–48

    Article  CAS  PubMed  Google Scholar 

  • Barry BW (1983) Dermatological formulations: percutaneous absorption. Marcel Dekker, New York

    Google Scholar 

  • Batrakova EV, Kabanov AVJ (2008) Pluronic block copolymers: evolution of drug delivery concept from inert nanocarriers to biological response modifiers. Control Release 130:98–106

    Article  CAS  Google Scholar 

  • Bernadete M, Pierre R, dos Santos I, Costa M (2011) Liposomal systems as drug delivery vehicles for dermal and transdermal applications. Arch Dermatol Res 303:607–621

    Article  Google Scholar 

  • Bronaugh RL, Maibach HI (1985) Percutaneous absorption. Marcel Dekker, New York

    Google Scholar 

  • Dragicevic-Curica N, Winter S, Stupar M, Milic J, Krajisnik D, Gitter B, Fahr A (2009) Temoporfin-loaded liposomal gels: viscoelastic properties and in vitro skin penetration. Int J Pharm 373:77–84

    Article  Google Scholar 

  • El Maghraby GM, Barry BW, Williams AC (2008) Liposomes and skin: from drug delivery to model membranes. Eur J Pharm Sci 34:203–222

    Article  PubMed  Google Scholar 

  • El-Nabarawi MA, Bendas ER, Tag R, El Rehem A, Abary MYS (2013) Transdermal drug delivery of paroxetine through lipid-vesicular formulation to augment its bioavailability. Int J Pharm 443:307–317

    Article  CAS  PubMed  Google Scholar 

  • Florence AT, Jani PU (1994) Novel oral drug formulations. Their potential in modulating adverse-effects. Drug Saf 410:233–266

    Article  Google Scholar 

  • Foldvari M (1996) Effect of vehicle on topical liposomal drug delivery: petrolatum bases. J Microencapsul 13:589–600

    Article  CAS  PubMed  Google Scholar 

  • Gabrijelcic V, Sentjurc M (1995) Influence of hydrogels on liposome stability and on the transport of liposome entrapped substances into the skin. Int J Pharm 118:207–212

    Article  CAS  Google Scholar 

  • Glavas-Dodov M, Goracinova K, Mladenovska K, Fredro-Kumbaradzi E (2002) Release profile of lidocaine HCl from topical liposomal gel formulation. Int J Pharm 242:381–384

    Article  CAS  PubMed  Google Scholar 

  • Glavas-Dodov M, Fredro-Kumbaradz E, Goracinova K, Calis S, Simonoska M, Hincal AA (2003) 5-Fluorouracil in topical liposome gels for anticancer treatment – formulation and evaluation. Acta Pharm 53:241–250

    CAS  PubMed  Google Scholar 

  • Gregoriadis G, Florence AT (1993) Liposomes in drug delivery. Clinical, diagnostic and ophthalmic potential. Drugs 45:15–28

    Article  CAS  PubMed  Google Scholar 

  • Hoare TR, Kohane DS (2008) Hydrogels in drug delivery: progress and challenges. Polymer 49:1993–2007

    Article  CAS  Google Scholar 

  • Jian Hwa G (2003) Carbopol® polymers for pharmaceutical drug delivery applications. Drug Dev Deliv 3:6–13

    Google Scholar 

  • Jithan AV, Swathi M (2010) Development of topical diclofenac sodium liposomal gel for better antiinflammatory activity. Int J Pharm Sci Nanotechnol 3:986–993

    CAS  Google Scholar 

  • Jones DS, Woolfson AD, Brown AF (1997) Textural, viscoelastic and mucoadhesive properties of pharmaceutical gels composed of cellulose polymers. Int J Pharm 151:223–233

    Article  CAS  Google Scholar 

  • Kapoor Y, Chauhan A (2008) Drug and surfactant transport in cyclosporine A and brij 98 laden p-HEMA hydrogels. J Colloid Interface Sci 322:624–633

    Article  CAS  PubMed  Google Scholar 

  • Kostarelos K, Tadros TF, Luckham PF (1999) Physical conjugation of (tri-) block copolymers to liposomes toward the construction of sterically stabilized vesicle systems. Langmuir 15:369–376

    Article  CAS  Google Scholar 

  • Lee JH, Oh H, Baxa U, Raghavan SR, Blumenthal R (2012) Biopolymer-connected liposome networks as injectable biomaterials capable of sustained local drug delivery. Biomacromolecules 13:3388–3394

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Manosroi A, Jantrawuta P, Manosroi J (2008) Anti-inflammatory activity of gel containing novel elastic niosomes entrapped with diclofenac diethylammonium. Int J Pharm 360:56–63

    Article  Google Scholar 

  • Mansoori MA, Jawade S, Agrawal S, Khan MI (2012) Formulation development of ketoprofen liposomal gel. J Pharm Cosmet 2:22–29

    Google Scholar 

  • Mezei M, Gulasekharam V (1980) Liposomes – a selective drug delivery system for the topical route of administration. I. Lotion dosage form. Life Sci 26:1473–1477

    Article  CAS  PubMed  Google Scholar 

  • Mezei M, Gulasekharam V (1982) Liposomes-a selective drug delivery system for the topical route of administration. J Pharm Pharmacol 34:473–474

    Article  CAS  PubMed  Google Scholar 

  • Megha R, Harsoliya MS, Shraddha J, Azam K. Development of Liposomal Gel for Transdermal Delivery of Selegiline. Int J Pharm Biol Arch. 2012;3:1–3.

    Google Scholar 

  • Mitkari BV, Korde SA, Mahadik KR, Kokare CR (2010) Formulation and evaluation of topical liposomal gel for fluconazole. Ind J Pharm Educ Res 44:324–333

    Google Scholar 

  • Mourtas S, Fotopoulou S, Duraj S, Sfika V, Tsakiroglou C, Antimisiaris SG (2007) Effect of liposome, drug and gel properties on drug release kinetics. Colloids Surf B Biointerfaces 55:212–221

    Article  CAS  PubMed  Google Scholar 

  • Mourtas S, Haikou M, Theodoropoulou M, Tsakiroglou C, Antimisiaris SG (2008) The effect of added liposomes on the rheological properties of a hydrogel: a systematic study. J Colloid Interface Sci 317:611–619

    Article  CAS  PubMed  Google Scholar 

  • Mura P, Maestrelli F, Gonzalez-Rodrıguez ML, Michelacci I, Ghelardini C, Rabasco AM (2007) Development, characterization and in vivo evaluation of benzocaine-loaded liposomes. Eur J Pharm Biopharm 67:86–95

    Article  CAS  PubMed  Google Scholar 

  • Narin GJ (1997) Encyclopedia of pharmaceutical technology. Marcel Decker, New York

    Google Scholar 

  • Nie S, Hsiao WLW, Pan W, Yang Z (2011) Thermoreversible Pluronic® F127-based hydrogel containing liposomes for the controlled delivery of paclitaxel: in vitro drug release, cell cytotoxicity, and uptake studies. Int J Nanomedicine 6:151–166

    PubMed Central  CAS  PubMed  Google Scholar 

  • Padamwar MN, Pokharkar VB (2006) Development of vitamin loaded topical liposomal formulation using factorial design approach: drug deposition and stability. Int J Pharm 320:37–44

    Article  CAS  PubMed  Google Scholar 

  • Patel RP, Patel HH, Baria AH (2009) Formulation and evaluation of carbopol gel containing liposomes of ketoconazole. (Part-II). Int J Drug Deliv Technol 1:42–45

    Google Scholar 

  • Patel KK, Kumar P, Thakkar HP (2012) Formulation of niosomal gel for enhanced transdermal lopinavir delivery and its comparative evaluation with ethosomal gel. AAPS PharmSciTech 13:1502–1510

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Pavelic Z, Skalko-Basnet N, Schubert R (2001) Liposomal gels for vaginal drug delivery. Int J Pharm 219:139–149

    Article  CAS  PubMed  Google Scholar 

  • Pavelic Z, Skalko-Basnet N, Jalsenjak I (2005) Characterisation and in vitro evaluation of bioadhesive liposome gels for local therapy of vaginitis. Int J Pharm 301:140–148

    Article  CAS  PubMed  Google Scholar 

  • Peppas NA (1986) Hydrogels in medicine and pharmacy. CRC Press, Boca Raton

    Google Scholar 

  • Peppas N, Bures P, Leobandung W, Ichikawa H (2000) Hydrogels in pharmaceutical formulations. Eur J Pharm Biopharm 50:27–46

    Article  CAS  PubMed  Google Scholar 

  • Prausnitz MR, Langer R (2008) Transdermal drug delivery. Nat Biotechnol 26:1261–1268

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Schreier H, Bouwstra J (1994) Liposomes and niosomes as drug carriers: dermal and transdermal drug delivery. J Control Rel 30:1–15

    Article  CAS  Google Scholar 

  • Tavano L, Muzzalupo R, Trombino S, Cassano R, Pingitore A, Picci N (2010) Effect of formulations variables on the in vitro percutaneous permeation of sodium diclofenac from new vesicular systems obtained from pluronic triblock copolymers. Colloids Surf B Biointerfaces 79:227–234

    Article  CAS  PubMed  Google Scholar 

  • Vyas J, Vyas P, Raval D, Paghdar P (2011) Development of topical niosomal gel of benzoyl peroxide. Int Sch Res Netw Nanotechnol 2011:1–6

    Google Scholar 

  • Wichterle O, Lim D (1960) Hydrophilic gels for biological use. Nature 185:117–118

    Article  Google Scholar 

  • Zhao SS, Du Q, Cao DY (2007) Preparation of liposomal fluconazole gel and in vitro transdermal delivery. J Chin Pharm Sci 16:116–118

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lorena Tavano PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Tavano, L. (2015). Liposomal Gels in Enhancing Skin Delivery of Drugs. In: Dragicevic, N., Maibach, H. (eds) Percutaneous Penetration Enhancers Chemical Methods in Penetration Enhancement. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-45013-0_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-45013-0_23

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-45012-3

  • Online ISBN: 978-3-662-45013-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics