Skip to main content

Abstract

Hydrogels are three-dimensional insoluble networks able to imbibe large amount of water. They can be used in various fields including pharmaceutical and biomedical applications owing to their physical and chemical properties such as swelling behavior and chemical structure. Different methods used for the production of hydrogels as well as hydrogels based on several polymers such as chitosan, polyvinyl alcohol, and alginate have been reported. Moreover, the applications of hydrogels in transdermal drug delivery were described. In particular, the attention was focused on hydrogels as semisolid systems and film-based systems (matrix-type systems, membrane-coated systems, and film-forming solution) able to minimize skin irritation, promote adhesion properties, guarantee dosage flexibility, enhance patient acceptability, and improve ease of use.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ale I, Lachapelle JM, Maibach HI (2009) Skin tolerability associated with transdermal drug delivery systems: an overview. Adv Ther 26(10):920–935

    Article  CAS  PubMed  Google Scholar 

  • Anderson JM, Shive MS (1997) Biodegradation and biocompatibility of PLA and PLGA microspheres. Adv Drug Deliv Rev 28:5–24

    Article  CAS  PubMed  Google Scholar 

  • Berger J, Reist M, Mayer MJ, Felt O, Peppas NA, Gurny R (2004) Structure and interactions in covalently and ionically crosslinked chitosan hydrogels for biomedical applications. Eur J Pharm Biopharm 57:19–34

    Article  CAS  PubMed  Google Scholar 

  • Brasch U, Burchard W (1996) Preparation and solution properties of microhydrogels from poly(vinyl alcohol). Macromol Chem Phys 197:223–235

    Article  CAS  Google Scholar 

  • Brown MB, Martin GP, Jones SA, Akomeah FK (2006) Dermal and transdermal drug delivery systems: current and future prospects. Drug Deliv 13(3):175–187

    Article  CAS  PubMed  Google Scholar 

  • Cerchiara T, Luppi B, Bigucci F, Orienti I, Zecchi V (2002) Physically cross-linked chitosan hydrogels as topical vehicles for hydrophilic drugs. J Pharm Pharmacol 54:1453–1459

    Article  CAS  PubMed  Google Scholar 

  • Chen L, Tian Z, Du Y (2004) Synthesis and pH sensitivity of carboxymethyl chitosan-based polyampholyte hydrogels for protein carrier matrices. Biomaterials 25(17):3725–3732

    Article  CAS  PubMed  Google Scholar 

  • Damink LHHO, Dijkstra PJ, vanLuyn MJA, vanWachem PB, Nieuwenhuis P, Feijen J (1996) In vitro degradation of dermal sheep collagen cross-linked using a water-soluble carbodiimide. Biomaterials 17:679–684

    Article  CAS  Google Scholar 

  • Denet AR, Vanbever R, Préat V (2004) Skin electroporation for transdermal and topical delivery. Adv Drug Deliv Rev 56:659–674

    Article  CAS  PubMed  Google Scholar 

  • Draye JP, Delaey B, van de Voorde A, van den Bulcke A, Bogdanov B, Schacht E (1998) In vitro release characteristics of bioactive molecules from dextran dialdehyde cross-linked gelatin hydrogel films. Biomaterials 19:99–107

    Article  PubMed  Google Scholar 

  • Eagland D, Crowther NJ, Butler CJ (1994) Complexation between polyoxyethylene and polymethacrylic acid – the importance of the molar mass of polyethylene. Eur Polym J 30:767–773

    Article  CAS  Google Scholar 

  • Eliaz RE, Kost J (2000) Characterization of a polymeric PLGA-injectable implant delivery system for the controlled release of proteins. J Biomed Mater Res 50:388–396

    Article  CAS  PubMed  Google Scholar 

  • Feldstein MM, Tohmakhchi VN, Malkhazov LB, Vasiliev AE, Plate NA (1996) Hydrophilic polymeric matrices for enhanced transdermal drug delivery. Int J Pharm 131:229–242

    Article  Google Scholar 

  • Grant G, Morris ER, Rees DA, Smith PJC, Thom D (1973) Biological interaction between polysaccharides and divalent cations: the egg-box model. FEBS Lett 32(1):195–198

    Article  CAS  Google Scholar 

  • Guo R, Du X, Zhang R, Deng L, Dong A, Zhang J (2011) Bioadhesive film formed from a novel organic-inorganic hybrid gel for transdermal drug delivery system. Eur J Pharm Biopharm 79(3):574–583

    Article  CAS  PubMed  Google Scholar 

  • Guy RH (1996) Current status and future prospects of transdermal drug delivery. Pharm Res 13:1765–1769

    Article  CAS  PubMed  Google Scholar 

  • He W, Guo X, Zhang M (2008) Transdermal permeation enhancement of N-trimethyl chitosan for testosterone. Int J Pharm 356(1–2):82–87

    Article  CAS  PubMed  Google Scholar 

  • He W, Guo X, Xiao L, Feng M (2009) Study on the mechanisms of chitosan and its derivatives used as transdermal penetration enhancers. Int J Pharm 382(1–2):234–243

    Article  CAS  PubMed  Google Scholar 

  • Hennink WE, van Nostrum CF (2002) Novel crosslinking methods to design hydrogels. Adv Drug Deliv Rev 54(1):13–36

    Article  CAS  PubMed  Google Scholar 

  • Henry S, McAllister DV, Allen MG, Prausnitz MR (1998) Microfabricated microneedles: a novel approach to transdermal drug. J Pharm Sci 87:922–925

    Article  CAS  PubMed  Google Scholar 

  • Hickey AS, Peppas NA (1995) Mesh size and diffusive characteristics of semicrystalline poly(vinyl alcohol) membranes prepared by freezing/thawing techniques. J Membr Sci 107:229–237

    Article  CAS  Google Scholar 

  • Hoffman AS (1991) Environmentally sensitive polymers and hydrogels – “smart” biomaterials. MRS Bull XVI:42–46

    Google Scholar 

  • Hoffman AS (2002) Hydrogels for biomedical applications. Adv Drug Deliv Rev 54:3–12

    Article  CAS  PubMed  Google Scholar 

  • Hu Q, Liang W, Bao J, Ping Q (2000) Enhanced transdermal delivery of tetracaine by electroporation. Int J Pharm 202:121–124

    Article  CAS  PubMed  Google Scholar 

  • Iordanskii AL, Feldstein MM, Markin VS, Hadgraft J, Plate NA (2000) Modeling of the drug delivery from a hydrophilic transdermal therapeutic system across polymer membrane. Eur J Pharm Biopharm 49:287–293

    Article  CAS  PubMed  Google Scholar 

  • Ishii Y, Nakae T, Sakamoto F, Matsuo K, Quan YS, Kamiyama F et al (2008) A transcutaneous vaccination system using a hydrogel patch for viral and bacterial infection. J Control Release 131(2):113–120

    Article  CAS  PubMed  Google Scholar 

  • Jatav VS, Singh H, Singh SK (2011) Recent trends on hydrogels in human body. IJRPBS 2:442–447

    Google Scholar 

  • Kabanov VY (1998) Preparation of polymeric biomaterials with the aid of radiation-chemical methods. Russ Chem Rev 67:783–816

    Article  Google Scholar 

  • Khare AR, Peppas NA, Massimo G, Colombo P (1992) Measurement of the swelling force in ionic polymeric networks. I. Effect of pH and ionic content. J Control Release 22:239–244

    Article  CAS  Google Scholar 

  • Kim J, Shin SC (2004) Controlled release of atenolol from the ethylene-vinyl acetate matrix. Int J Pharm 273:23–27

    Article  CAS  PubMed  Google Scholar 

  • Kim SW, Bae YH, Okano T (1992) Hydrogels: swelling, drug loading and release. Pharm Res 9:283–290

    Article  CAS  PubMed  Google Scholar 

  • Kopeceka J (2007) Hydrogel biomaterials: a smart future? Biomaterials 28:5185–5192

    Article  Google Scholar 

  • Kurihara-Bergstrom T, Good WR, Feisulin S, Signur C (1991) Skin compatibility of transdermal drug delivery systems. J Control Release 15:271–278

    Article  CAS  Google Scholar 

  • Langer R (2004) Transdermal drug delivery: past progress, current status and future prospects. Adv Drug Deliv Rev 56:557–558

    Article  CAS  PubMed  Google Scholar 

  • Lee KY, Bouhadir KH, Mooney DJ (2004) Controlled degradation of hydrogels using multi-functional cross-linking molecules. Biomaterials 25(13):2461–2466

    Article  CAS  PubMed  Google Scholar 

  • Luo Y, Kirker RK, Prestwich GD (2000) Crosslinked hyaluronic acid hydrogels films: new biomaterials for drug delivery. J Control Release 69:169–184

    Article  CAS  PubMed  Google Scholar 

  • Luppi B, Cerchiara T, Bigucci F, Di Pietra AM, Orienti I, Zecchi V (2003) Crosslinked poly(methyl vinyl ether-co-maleic anhydride) as topical vehicles for hydrophilic and lipophilic drugs. Drug Deliv 10:239–244

    Article  CAS  PubMed  Google Scholar 

  • Luppi B, Bigucci F, Cerchiara T, Zecchi V (2010a) Chitosan-based hydrogels for nasal drug delivery: from inserts to nanoparticles. Expert Opin Drug Deliv 7:811–828

    Article  CAS  PubMed  Google Scholar 

  • Luppi B, Bigucci F, Baldini M, Abruzzo A, Cerchiara T, Corace G et al (2010b) Hydroxypropylmethylcellulose films for prolonged delivery of the antipsychotic drug chlorpromazine. J Pharm Pharmacol 62:305–309

    Article  CAS  PubMed  Google Scholar 

  • Mengatto LN, Helbling IM, Luna JA (2012) Recent advances in chitosan films for controlled release of drugs. Recent Pat Drug Deliv Formul 6(2):156–170

    Article  CAS  PubMed  Google Scholar 

  • Miyata T, Uragami T, Nakamae K (2002) Biomolecule-sensitive hydrogels. Adv Drug Deliv Rev 54(1):79–98

    Article  CAS  PubMed  Google Scholar 

  • Murdan S (2003) Electro-responsive drug delivery from hydrogels. J Control Release 92(1–2):1–17

    Article  CAS  PubMed  Google Scholar 

  • Murphy M, Carmichael AJ (2000) Transdermal drug delivery systems and skin sensitivity reactions: incidence and management. Am J Clin Dermatol 1(6):361–368

    Article  CAS  PubMed  Google Scholar 

  • Muzzarelli R, Baldassarre V, Conti F, Ferrara P, Biagini G, Gazzanelli G et al (1988) Biological activity of chitosan: ultrastructural study. Biomaterials 9:247–252

    Article  CAS  PubMed  Google Scholar 

  • Nedkov E, Tsvetkova S (1994) Effect of γ-irradiation on the crystalline structure of ultra high molecular weight poly(ethylene oxide). Radiat Phys Chem 43:397–401

    Article  CAS  Google Scholar 

  • Noble L, Gray AL, Sadiq L, Uchegbu IF (1999) A non-covalently cross-linked chitosan based hydrogel. Int J Pharm 192(2):173–182

    Article  CAS  PubMed  Google Scholar 

  • Orienti I, Di Pietra A, Luppi B, Zecchi V (2000) Crosslinked polyvinylalcohol hydrogels as vehicles for hydrophilic drugs. Arch Pharm Pharm Med Chem 333:421–424

    Article  CAS  Google Scholar 

  • Padula C, Colombo G, Nicoli S, Catellani PL, Massimo G, Santi P (2003) Bioadhesive film for the transdermal delivery of lidocaine: in vitro and in vivo behaviour. J Control Release 88(2):277–285

    Article  CAS  PubMed  Google Scholar 

  • Peppas NA, Mikos AG (1986) Preparation methods and structure of hydrogels. In: Peppas NA (ed) Hydrogels in medicine and pharmacy. CRC press, Boca Raton, pp 1–25

    Google Scholar 

  • Peppas NA, Bures P, Leobandung W, Ichikawa H (2000) Hydrogels in pharmaceutical formulations. Eur J Pharm Biopharm 50:27–46

    Article  CAS  PubMed  Google Scholar 

  • Peppas NA, Hilt JZ, Khademhosseini A, Langer R (2006) Hydrogels in biology and medicine: from molecular principles to bionanotechnology. Adv Mater 18:1345–1360

    Article  CAS  Google Scholar 

  • Pikal MJ (2001) The role of electroosmotic flow in transdermal iontophoresis. Adv Drug Deliv Rev 46:281–305

    Article  CAS  PubMed  Google Scholar 

  • Prausnitz MR, Langer R (2008) Transdermal drug delivery. Nat Biotechnol 26(11):1261–1268

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Qu X, Wirsen A, Albertson AC (1999) Synthesis and characterization of pH-sensitive hydrogels based on chitosan and D. L-lactic acid. J Appl Polym Sci 74:3186–3192

    Article  CAS  Google Scholar 

  • Rosiak JM (1991) Hydrogel dressings. In: Clough RL, Shalaby SW (eds) Radiation effects on polymers. ACS symposium series 475. American Chemical Society, Washington, DC. pp 271–299

    Google Scholar 

  • Safrany A (1997) Radiation processing: synthesis and modification of biomaterials for medical use. Nucl Inst Methods Phys Res B 131(1–4):376–381

    Article  CAS  Google Scholar 

  • Sahin S, Selek H, Ponchel G, Ercan MT, Sargon M, Hincal AA et al (2002) Preparation, characterization and in vivo distribution of terbutaline sulfate loaded albumin microspheres. J Control Release 82(2–3):345–358

    Article  CAS  PubMed  Google Scholar 

  • Schroeder IZ, Franke P, Schaefer UF, Lehr C (2007) Development and characterization of film forming polymeric solutions for skin drug delivery. Eur J Pharm Biopharm 65(1):111–121

    Article  Google Scholar 

  • Silva CL, Pereira JC, Ramalho A, Pais AACC, Sousa JJS (2008) Films based on chitosan polyelectrolyte complexes for skin drug delivery: development and characterization. J Membr Sci 320:268–279

    Article  CAS  Google Scholar 

  • Sintov AC, Krimberk I, Daniel D, Hannan T, Sohn Z, Levin G (2003) Radiofrequency-driven skin microchanneling as a new way for electrically assisted transdermal delivery of hydrophilic drugs. J Control Release 89:311–320

    Article  CAS  PubMed  Google Scholar 

  • Sludden J, Uchegbu IF, Schatzlein AG (2000) The encapsulation of bleomycin within chitosan based polymeric vesicles does not alter its biodistribution. J Pharm Pharmacol 52:377–382

    Article  CAS  PubMed  Google Scholar 

  • Stauffer SR, Peppas NA (1992) Poly(vinyl alcohol) hydrogels prepared by freezing-thawing cyclic processing. Polymers 33(18):3932–3936

    Article  CAS  Google Scholar 

  • Taveira SF, Nomizo A, Lopez RFV (2009) Effect of the iontophoresis of a chitosan gel on doxorubicin skin penetration and cytotoxicity. J Control Release 134:35–40

    Article  CAS  PubMed  Google Scholar 

  • Thacharodi D, Rao KP (1995) Development and in vitro evaluation of chitosan-based transdermal drug delivery systems for the controlled delivery of propranolol hydrochloride. Biomaterials 16:145–148

    Article  CAS  PubMed  Google Scholar 

  • Thong HY, Zhai H, Maibach HI (2007) Percutaneous penetration enhancers: an overview. Skin Pharmacol Physiol 20(6):272–282

    Article  PubMed  Google Scholar 

  • Timmer MD, Jo S, Wang C, Ambrose CG, Mikos AG (2002) Characterization of the cross-linked structure of fumarate-based degradable polymer networks. Macromolecules 35:4373–4379

    Article  CAS  Google Scholar 

  • Uchegbu IF, Schatzlein AG, Tetley L, Gray AI, Sludden J, Siddique S, Mosha E (1998) Polymeric chitosan-based vesicles for drug deliver. J Pharm Pharmacol 50:453–458

    Article  CAS  PubMed  Google Scholar 

  • Wang C, Steward RJ, Kopecek J (1999) Hybrid hydrogels assembled from synthetic polymers and coiled-coil protein domains. Nature 397:417–420

    Article  CAS  PubMed  Google Scholar 

  • Watanabe T, Ohtsuka A, Murase N, Barth P, Gersonde K (1996) NMR studies on water and polymer diffusion in dextran gels. Influence of potassium ions on microstructure formation and gelation mechanism. Magn Reson Med 35:697

    Article  CAS  PubMed  Google Scholar 

  • Wichterle O, Lim D (1960) Hydrophilic gels for biological use. Nature 185:117–118

    Article  Google Scholar 

  • Wohlrab J, Kreft B, Tamke B (2011) Skin tolerability of transdermal patches. Expert Opin Drug Deliv 8(7):939–948

    Article  CAS  PubMed  Google Scholar 

  • Xiao C, Zhou G (2003) Synthesis and properties of degradable poly(vinyl alcohol) hydrogel. Polym Degrad Stab 81(2):297–301

    Article  CAS  Google Scholar 

  • Zu Y, Zhang Y, Zhao X, Shan C, Zu S, Wang K et al (2012) Preparation and characterization of chitosan–polyvinyl alcohol blend hydrogels for the controlled release of nano-insulin. Int J Biol Macromol 50:82–87

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Teresa Cerchiara .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Cerchiara, T., Bigucci, F., Luppi, B. (2015). Hydrogel Vehicles for Hydrophilic Compounds. In: Dragicevic, N., Maibach, H. (eds) Percutaneous Penetration Enhancers Chemical Methods in Penetration Enhancement. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-45013-0_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-45013-0_20

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-45012-3

  • Online ISBN: 978-3-662-45013-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics