Mechanisms of Uptake and Interaction of Platinum Based Drugs in Eukaryotic Cells

  • Lukas Nejdl
  • Jiri Kudr
  • Iva Blazkova
  • Dagmar Chudobova
  • Sylvie Skalickova
  • Branislav Ruttkay-Nedecky
  • Vojtech Adam
  • Rene KizekEmail author
Part of the Environmental Science and Engineering book series (ESE)


The platinum group elements are significant compounds used in numerous fields of human life. Besides of often discussed toxic effect the platinum compounds show the therapeutic effects. Nowadays, platinum-based cytostatic are still the most frequently used drugs in oncology. Due to their proved medicinal purposes the behavior in the organism should to be intensively studied as well as their interactions with DNA and other important biological molecules. This review summarizes the recent results in the platinum drug field and discusses the behavior of platinum compounds in cells. The interaction of platinum and DNA with respect to the change of the DNA structure are also clarified.


Platinum Group Element Platinum Complex Platinum Compound Platinum Drug Ammine Ligand 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The financial support from the projects NanoBioMetalNet CZ.1.07/2.4.00/31.0023 is highly acknowledged.


  1. Abada P, Howell SB (2010) Regulation of Cisplatin cytotoxicity by cu influx transporters. Met Based Drugs 2010:1–9CrossRefGoogle Scholar
  2. Ali I, Wani WA, Saleem K et al (2013) Platinum compounds: a hope for future cancer chemotherapy. Anti-Cancer Agents Med Chem 13:296–306CrossRefGoogle Scholar
  3. Aller SG, Unger VM (2006) Projection structure of the human copper transporter CTR1 at 6-A resolution reveals a compact trimer with a novel channel-like architecture. Proc Natl Acad Sci U S A 103:3627–3632CrossRefGoogle Scholar
  4. Arnesano F, Banci L, Bertini I et al (2011) Probing the interaction of Cisplatin with the human copper chaperone Atox1 by solution and in-cell NMR spectroscopy. J Am Chem Soc 133:18361–18369CrossRefGoogle Scholar
  5. Arnesano F, Natile G (2008) “Platinum on the road”: interactions of antitumoral cisplatin with proteins. Pure Appl Chem 80:2715–2725CrossRefGoogle Scholar
  6. Arnesano F, Scintilla S, Natile G (2007) Interaction between platinum complexes and a methionine motif found in copper transport proteins. Angew Chem-Int Edit 46:9062–9064CrossRefGoogle Scholar
  7. Asharani PV, Xinyi N, Hande MP et al (2010) DNA damage and p53-mediated growth arrest in human cells treated with platinum nanoparticles. Nanomedicine 5:51–64CrossRefGoogle Scholar
  8. Banci L, Bertini I, Ciofi-Baffoni S et al (2005) An NMR study of the interaction between the human copper(I) chaperone and the second and fifth metal-binding domains of the Menkes protein. FEBS J 272:865–871CrossRefGoogle Scholar
  9. Blair BG, Larson C, Safaei R et al (2009) Copper transporter 2 regulates the cellular accumulation and cytotoxicity of cisplatin and carboplatin. Clin Cancer Res 15:4312–4321CrossRefGoogle Scholar
  10. Blanarova OV, Jelinkova I, Vaculova AH et al (2013) Higher anti-tumour efficacy of platinum(IV) complex LA-12 is associated with its ability to bypass M-phase entry block induced in oxaliplatin-treated human colon cancer cells. Cell Prolif 46:665–676CrossRefGoogle Scholar
  11. Burdon RH (1995) Superoxide and hydrogen-peroxide in relation to mammalian-cell proliferation. Free Radic Biol Med 18:775–794CrossRefGoogle Scholar
  12. Cohen SM, Lippard SJ (2001) Cisplatin: from DNA damage to cancer chemotherapy. Prog Nucl Res Mol Biol 67:93–130CrossRefGoogle Scholar
  13. Crowe A, Jackaman C, Beddoes KM et al (2013) Rapid copper acquisition by developing murine mesothelioma: decreasing bioavailable copper slows tumor growth, normalizes vessels and promotes T cell infiltration. PLoS ONE 8:1–14Google Scholar
  14. Crul M, van Waardenburg R, Beijnen JH et al (2002) DNA-based drug interactions of cisplatin. Cancer Treat Rev 28:291–303CrossRefGoogle Scholar
  15. Crundwell FK, Moats MS, Ramachandran V et al (2011) Extractive metallurgy of nickel, cobalt and platinum-group metals overview. Extractive metallurgy of nickel, cobalt and platinum-group metals. doi:10.1016/b978-0-08-096809-4.10001-2Google Scholar
  16. Dhahagani K, Mathan KS, Chakkaravarthi G et al (2014) Synthesis and spectral characterization of Schiff base complexes of Cu(II), Co(II), Zn(II) and VO(IV) containing 4-(4-aminophenyl)morpholine derivatives: Antimicrobial evaluation and anticancer studies. Spectr Acta Pt A-Mol Biomol Spectr 117:87–94CrossRefGoogle Scholar
  17. Eremia SAV, Vasilescu I, Radoi A et al (2013) Disposable biosensor based on platinum nanoparticles-reduced graphene oxide-laccase biocomposite for the determination of total polyphenolic content. Talanta 110:164–170Google Scholar
  18. Fikrova P, Stetina R, Hrnciarik M et al (2014) DNA crosslinks, DNA damage and repair in peripheral blood lymphocytes of non-small cell lung cancer patients treated with platinum derivatives. Oncol Rep 31:391–396Google Scholar
  19. Flora SJS, Shrivastava R, Mittal M (2013) Chemistry and pharmacological properties of some natural and synthetic antioxidants for heavy metal toxicity. Curr Med Chem 20:4540–4574CrossRefGoogle Scholar
  20. Florea AM, Büsselberg D (2011) Cisplatin as an anti-tumor drug: cellular mechanisms of activity, drug resistance and induced side effects. Cancers 3:1351–1371CrossRefGoogle Scholar
  21. Fu W, Li XH, Bao HL et al (2013) Synergistic effect of Bronsted acid and platinum on purification of automobile exhaust gases. Sci Rep 3:1–6CrossRefGoogle Scholar
  22. Furstner A (2009) Gold and platinum catalysis-a convenient tool for generating molecular complexity. Chem Soc Rev 38:3208–3221CrossRefGoogle Scholar
  23. Gabano E, Gama S, Mendes F et al (2013) Study of the synthesis, antiproliferative properties, and interaction with DNA and polynucleotides of cisplatin-like Pt(II) complexes containing carcinogenic polyaromatic amines. J Biol Inorg Chem 18:791–801CrossRefGoogle Scholar
  24. Galanski M, Jakupec MA, Keppler BK (2005) Update of the preclinical situation of anticancer platinum complexes: Novel design strategies and innovative analytical approaches. Curr Med Chem 12:2075–2094CrossRefGoogle Scholar
  25. Gheybi H, Niknejad H, Entezami AA (2014) Polymer-metal complex nanoparticles-containing cisplatin and amphiphilic block copolymer for anticancer drug delivery. Des Monomers Polym 17:334–344CrossRefGoogle Scholar
  26. Gitlin J, Lill R (2006) Special issue: cell biology of metals. Biochim Biophys Acta-Mol Cell Res 1763:577CrossRefGoogle Scholar
  27. Gitlin JD, Lill R (2012) Special issue: cell biology of metals. Biochim Biophys Acta-Mol Cell Res 1823:1405–1642CrossRefGoogle Scholar
  28. Gomez B, Palacios MA, Gomez M et al (2002) Levels and risk assessment for humans and ecosystems of platinum-group elements in the airborne particles and road dust of some European cities. Sci Total Environ 299:1–19CrossRefGoogle Scholar
  29. Graf N, Mokhtari TE, Papayannopoulos IA et al (2012) Platinum(IV)-chlorotoxin (CTX) conjugates for targeting cancer cells. J Inorg Biochem 110:58–63CrossRefGoogle Scholar
  30. Guerrero-Preston R, Ratovitski EA (2014) Cisplatin exposure of squamous cell carcinoma cells leads to modulation of the autophagic pathway. Autophagy: cancer, other pathologies, inflammation, immunity, infection, and aging, vol 1: Molecular mechanisms. Elsevier, San Diego. doi: 10.1016/b978-0-12-405530-8.00017-0
  31. Hagrman D, Goodisman J, Dabrowiak JC et al (2003) Kinetic study on the reaction of cisplatin with metallothionein. Drug Metab Dispos 31:916–923CrossRefGoogle Scholar
  32. Hall MD, Okabe M, Shen DW et al (2008) The role of cellular accumulation in determining sensitivity to platinum-based chemotherapy. In: Annual review of pharmacology and toxicology, vol 48. Annual Review of Pharmacology and Toxicology. Annual Reviews, Palo Alto, pp 495–535. doi: 10.1146/annurev.pharmtox.48.080907.180426
  33. Holzer AK, Howell SB (2006) The internalization and degradation of human copper transporter 1 following cisplatin exposure. Cancer Res 66:10944–10952CrossRefGoogle Scholar
  34. Hooda PS, Miller A, Edwards AC (2008) The plant availability of auto-cast platinum group elements. Environ Geochem Health 30:135–139CrossRefGoogle Scholar
  35. Howell SB, Safaei R, Larson CA et al (2010) Copper transporters and the cellular pharmacology of the platinum-containing cancer drugs. Mol Pharmacol 77:887–894CrossRefGoogle Scholar
  36. Ikeda S, Ohhata F, Miyoshi M et al (2000) Synthesis and reactions of palladium and platinum complexes bearing diphosphinidenecyclobutene ligands: a thermally stable catalyst for ethylene polymerization. Angew Chem-Int Edit 39:4512–4513CrossRefGoogle Scholar
  37. Ishikawa T, Aliosman F (1993) Glutathione-associated cis-diamminecichloroplatinum(II) metabolism and ATP-dependent efflux from leukemia-cells-molecular characterization of glutathione-platinum complex and its biological significance. J Biol Chem 268:20116–20125Google Scholar
  38. Itoh S, Kim HW, Nakagawa O et al (2008) Novel role of antioxidant-1 (Atox1) as a copper-dependent transcription factor involved in cell proliferation. J Biol Chem 283:9157–9167CrossRefGoogle Scholar
  39. Jarocka I, Gegotek A, Bielawska A et al (2013) Effect of novel dinuclear platinum(II) complexes on redox status of MOLT-4 leukemic cells. Toxicol Mech Methods 23:641–649CrossRefGoogle Scholar
  40. Kajita M, Hikosaka K, Iitsuka M et al (2007) Platinum nanoparticle is a useful scavenger of superoxide anion and hydrogen peroxide. Free Radic Res 41:615–626CrossRefGoogle Scholar
  41. Kalayda GV, Wagner CH, Buss I et al (2008) Altered localisation of the copper efflux transporters ATP7A and ATP7B associated with cisplatin resistance in human ovarian carcinoma cells. BMC Cancer 8:1–12CrossRefGoogle Scholar
  42. Kao C, Chao A, Tsai CL et al (2013) Phosphorylation of signal transducer and activator of transcription 1 reduces bortezomib-mediated apoptosis in cancer cells. Cell Death Dis 4:1–12CrossRefGoogle Scholar
  43. Katano K, Kondo A, Safaei R et al (2002) Acquisition of resistance to cisplatin is accompanied by changes in the cellular pharmacology of copper. Cancer Res 62:6559–6565Google Scholar
  44. Katano K, Safaei R, Samimi G et al (2004) Confocal microscopic analysis of the interaction between cisplatin and the copper transporter ATP7B in human ovarian carcinoma cells. Clin Cancer Res 10:4578–4588CrossRefGoogle Scholar
  45. Kim CW, Lu JN, Go SI et al (2013) p53 restoration can overcome cisplatin resistance through inhibition of Akt as well as induction of Bax. Int J Oncol 43:1495–1502Google Scholar
  46. Kim W-K, Kim J-C, Park H-J et al (2012) Platinum nanoparticles reduce ovariectomy-induced bone loss by decreasing osteoclastogenesis. Exp Mol Med 44:432–439CrossRefGoogle Scholar
  47. Knipp M, Karotki AV, Chesnov S et al (2007) Reaction of Zn(7)Metallothionein with cis- and trans- Pt(N-donor)(2)Cl(2) anticancer complexes: trans-Pt(II) complexes retain their N-donor ligands. J Med Chem 50:4075–4086CrossRefGoogle Scholar
  48. Komatsu M, Sumizawa T, Mutoh M et al (2000) Copper-transporting P-type adenosine triphosphatase (ATP7B) is associated with cisplatin resistance. Cancer Res 60:1312–1316Google Scholar
  49. Konieczny P, Goralczyk AG, Szmyd R et al (2013) Effects triggered by platinum nanoparticles on primary keratinocytes. Int J Nanomed 8:3963–3975Google Scholar
  50. Larson CA, Adams PL, Jandial DD et al (2010) The role of the N-terminus of mammalian copper transporter 1 in the cellular accumulation of cisplatin. Biochem Pharmacol 80:448–454CrossRefGoogle Scholar
  51. Lin XZ, Yan J, Tang DM (2013) ERK kinases modulate the activation of PI3 kinase related kinases (PIKKs) in DNA damage response. Histol Histopath 28:1547–1554Google Scholar
  52. Liu YM, Lu XD, Nguyen S et al (2013) Epoxyeicosatrienoic acids prevent cisplatin-induced renal apoptosis through a p38 mitogen-activated protein kinase-regulated mitochondrial pathway. Mol Pharmacol 84:925–934CrossRefGoogle Scholar
  53. Malina J, Natile G, Brabec V (2013) Spontaneous translocation of antitumor oxaliplatin, its enantiomeric analogue, and cisplatin from one strand to another in double-helical DNA. Chem Eur J 19:11984–11991CrossRefGoogle Scholar
  54. Manikandan M, Hasan N, Wu HF (2013) Platinum nanoparticles for the photothermal treatment of Neuro 2A cancer cells. Biomaterials 34:5833–5842CrossRefGoogle Scholar
  55. Marullo R, Werner E, Degtyareva N et al (2013) Cisplatin induces a mitochondrial-ROS response that contributes to cytotoxicity depending on mitochondrial redox status and bioenergetic functions. PLoS ONE 8:1–15CrossRefGoogle Scholar
  56. Monneret C (2011) Platinum anticancer drugs. From serendipity to rational design. Annal Pharm Franc 69:286–295CrossRefGoogle Scholar
  57. Mukhopadhyay R, Dubey P, Sarkar S (2005) Structural changes of DNA induced by mono- and binuclear cancer drugs. J Struct Biol 150:277–283CrossRefGoogle Scholar
  58. Muller PAJ, Klomp LWJ (2009) ATOX1: A novel copper-responsive transcription factor in mammals? Int J Biochem Cell Biol 41:1233–1236CrossRefGoogle Scholar
  59. Muscella A, Vetrugno C, Fanizzi FP et al (2013) A new platinum(II) compound anticancer drug candidate with selective cytotoxicity for breast cancer cells. Cell Death Dis 4:1–10CrossRefGoogle Scholar
  60. Oberoi HS, Nukolova NV, Kabanov AV et al (2013) Nanocarriers for delivery of platinum anticancer drugs. Adv Drug Deliv Rev 65:1667–1685CrossRefGoogle Scholar
  61. Ozcan MF, Dizdar O, Dincer N et al (2013) Low ERCC1 expression is associated with prolonged survival in patients with bladder cancer receiving platinum-based neoadjuvant chemotherapy. Urol Oncol-Semin Orig Investig 31:1709–1715CrossRefGoogle Scholar
  62. Palm-Espling ME, Lundin C, Bjorn E et al (2014) Interaction between the anticancer drug cisplatin and the copper chaperone Atox1 in human melanoma cells. Protein Pept Lett 21:63–68CrossRefGoogle Scholar
  63. Palm ME, Weise CF, Lundin C et al (2011) Cisplatin binds human copper chaperone Atox1 and promotes unfolding in vitro. Proc Natl Acad Sci USA 108:6951–6956CrossRefGoogle Scholar
  64. Pelletier H, Sawaya MR, Wolfle W et al (1996) A structural basis for metal ion mutagenicity and nucleotide selectivity in human DNA polymerase beta. Biochemistry 35:12762–12777CrossRefGoogle Scholar
  65. Pereira L, Igea A, Canovas B et al (2013) Inhibition of p38 MAPK sensitizes tumour cells to cisplatin-induced apoptosis mediated by reactive oxygen species and JNK. EMBO Mol Med 5:1759–1774CrossRefGoogle Scholar
  66. Petris MJ, Smith K, Lee J et al (2003) Copper-stimulated endocytosis and degradation of the human copper transporter, hCtr1. J Biol Chem 278:9639–9646CrossRefGoogle Scholar
  67. Piskulov M, Chiu C (2013) Kunming-PM’2012 5th international conference “Platinum metals in the modern industry, hydrogen energy and life maintenance of the future”. Platin Met Rev 57:143–147CrossRefGoogle Scholar
  68. Popenoe EA, Schmaeler MA (1979) Interaction of human DNA polymerase β with ions of copper, lead, and cadmium. Arch Biochem Biophys 196:109–120CrossRefGoogle Scholar
  69. Postel-Vinay S, Bajrami I, Friboulet L et al (2013) A high-throughput screen identifies PARP1/2 inhibitors as a potential therapy for ERCC1-deficient non-small cell lung cancer. Oncogene 32:5377–5387CrossRefGoogle Scholar
  70. Ravindra K, Bencs L, Van Grieken R (2004) Platinum group elements in the environment and their health risk. Sci Total Environ 318:1–43CrossRefGoogle Scholar
  71. Reedijk J (1999) Why does cisplatin reach guanine-N7 with competing S-donor ligands available in the cell? Chem Rev 99:2499–2510CrossRefGoogle Scholar
  72. Ruggiero A, Trombatore G, Triarico S et al (2013) Platinum compounds in children with cancer: toxicity and clinical management. Anticancer Drugs 24:1007–1019CrossRefGoogle Scholar
  73. Safaei R, Maktabi MH, Blair BG et al (2009) Effects of the loss of Atox1 on the cellular pharmacology of cisplatin. J Inorg Biochem 103:333–341CrossRefGoogle Scholar
  74. Samimi G, Safaei R, Katano K et al (2004) Increased expression of the copper efflux transporter ATP7A mediates resistance to cisplatin, carboplatin, and oxaliplatin in ovarian cancer cells. Clin Cancer Res 10:4661–4669CrossRefGoogle Scholar
  75. Sawyer TK (2006) Chemical biology and drug design: three-dimensional, dynamic, and mechanistic nature of two multidisciplinary fields. Chem Biol Drug Des 67:196–200CrossRefGoogle Scholar
  76. Sharma R, Rawal RK, Malhotra M et al (2013) Design, synthesis and in-vitro cytotoxicity of novel platinum (II) complexes with phthalate as the leaving group. Lett Drug Des Discov 10:872–878CrossRefGoogle Scholar
  77. Shoeib T, Sharp BL (2013) Monomeric cisplatin complexes with glutathione: coordination modes and binding affinities. Inorg Chim Acta 405:258–264CrossRefGoogle Scholar
  78. Sikorova L, Licbinsky R, Adamec V (2011) Platinum group elements from automobile catalysts in the environment. Chem Listy 105:361–366Google Scholar
  79. Siriviriyanun A, Imae T, Nagatani N (2013) Electrochemical biosensors for biocontaminant detection consisting of carbon nanotubes, platinum nanoparticles, dendrimers, and enzymes. Anal Biochem 443:169–171CrossRefGoogle Scholar
  80. Song Y, Suntharalingam K, Yeung JS et al (2013) Synthesis and characterization of Pt(IV) fluorescein conjugates to Investigate Pt(IV) intracellular transformations. Bioconjugate Chem 24:1733–1740CrossRefGoogle Scholar
  81. Stiborova M, Poljakova J, Eckschlager T et al (2010) DNA and histone deacetylases as targets for neuroblastoma treatment. Interdiscip Toxicol 3:47–52CrossRefGoogle Scholar
  82. Strausak D, Howie MK, Firth SD et al (2003) Kinetic analysis of the interaction of the copper chaperone Atox1 with the metal binding sites of the Menkes protein. J Biol Chem 278:20821–20827CrossRefGoogle Scholar
  83. Suzuki C, Daigo Y, Kikuchi T et al (2003) Identification of COX17 as a therapeutic target for non-small cell lung cancer. Cancer Res 63:7038–7041Google Scholar
  84. Todd RC, Lippard SJ (2009) Inhibition of transcription by platinum antitumor compounds. Metallomics 1:280–291CrossRefGoogle Scholar
  85. Wahab R, Yang YB, Umar A et al (2012) Platinum quantum dots and their cytotoxic effect towards myoblast cancer cells (C2C12). J Biomed Nanotechnol 8:424–431CrossRefGoogle Scholar
  86. Walker JM, Tsivkovskii R, Lutsenko S (2002) Metallochaperone Atox1 transfers copper to the NH2-terminal domain of the Wilson’s disease protein and regulates its catalytic activity. J Biol Chem 277:27953–27959CrossRefGoogle Scholar
  87. Wang F, Jiao P, Qi M et al (2010) Turning tumor-promoting copper into an anti-cancer weapon via high-throughput chemistry. Curr Med Chem 17:2685–2698CrossRefGoogle Scholar
  88. Wang XH, Du XB, Li HY et al (2011) The effect of the extracellular domain of human copper transporter (hCTR1) on cisplatin activation. Angew Chem-Int Edit 50:2706–2711CrossRefGoogle Scholar
  89. Wang YJ, Li XZ (2012) Health risk of platinum group elements from automobile catalysts. In: Changgen F, Shengcai L (eds) 2012 International symposium on safety science and technology, vol 45. Procedia Engineering. Elsevier Science Bv, Amsterdam, pp 1004–1009. doi: 10.1016/j.proeng.2012.08.273
  90. Xu DC, Min YZ, Cheng QQ et al (2013) Chemical and cellular investigations of trans-ammine-pyridine-dichlorido-platinum(II), the likely metabolite of the antitumor active cis-diammine-pyridine-chorido-platinum(II). J Inorg Biochem 129:15–22CrossRefGoogle Scholar
  91. Yamasaki M, Makino T, Masuzawa T et al (2011) Role of multidrug resistance protein 2 (MRP2) in chemoresistance and clinical outcome in oesophageal squamous cell carcinoma. Br J Cancer 104:707–713CrossRefGoogle Scholar
  92. Yang L, Wang GC, Liu YJ (2013) An acetylcholinesterase biosensor based on platinum nanoparticles-carboxylic graphene-nafion-modified electrode for detection of pesticides. Anal Biochem 437:144–149CrossRefGoogle Scholar
  93. Yasui K, Takashima H, Miyagawa M et al (2013) Selective accumulation of platinum and formation of platinum-DNA adducts in hepatocellular carcinoma after transarterial chemoembolization with miriplatin. Hepatol Res 43:1093–1099Google Scholar
  94. Ye MX, Zhao YL, Li Y et al (2012) Curcumin reverses cis-platin resistance and promotes human lung adenocarcinoma A549/DDP cell apoptosis through HIF-1 alpha and caspase-3 mechanisms. Phytomedicine 19:779–787CrossRefGoogle Scholar
  95. Zaman GJR, Lankelma J, Vantellingen O et al (1995) Role of glutathione in the export of compounds from cells by the multidrug-resistance-associated protein. Proc Natl Acad Sci USA 92:7690–7694CrossRefGoogle Scholar
  96. Zereini F, Alt F, Messerschmidt J et al (2005) Concentration and distribution of heavy metals in urban airborne particulate matter in Frankfurt am main, Germany. Environ Sci Technol 39:2983–2989CrossRefGoogle Scholar
  97. Zereini F, Wiseman C, Puttmann W (2007) Changes in palladium, platinum, and rhodium concentrations, and their spatial distribution in soils along a major highway in Germany from 1994 to 2004. Environ Sci Technol 41:451–456CrossRefGoogle Scholar
  98. Zhang GX, Hu WB, Du ZF et al (2011) A comparative study on interactions of cisplatin and ruthenium arene anticancer complexes with metallothionein using MALDI-TOF-MS. Int J Mass Spectrom 307:79–84CrossRefGoogle Scholar
  99. Zhou Z, Cao JX, Li SY et al (2013) p53 Suppresses E2F1-dependent PLK1 expression upon DNA damage by forming p53-E2F1-DNA complex. Exp Cell Res 319:3104–3115CrossRefGoogle Scholar
  100. Zitka O, Huska D, Krizkova S et al (2007) Study of binding of platinum based cytostatics to DNA structure; Influence of glutathione. Tumor Biol 28:123–123CrossRefGoogle Scholar
  101. Zitka O, Kominkova M, Skalickova S et al (2013) Single amino acid change in metallothionein metal-binding cluster influences interaction with cisplatin. Int J Electrochem Sci 8:2625–2634Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Lukas Nejdl
    • 1
  • Jiri Kudr
    • 1
  • Iva Blazkova
    • 1
  • Dagmar Chudobova
    • 1
  • Sylvie Skalickova
    • 1
  • Branislav Ruttkay-Nedecky
    • 1
    • 2
  • Vojtech Adam
    • 1
    • 2
  • Rene Kizek
    • 1
    • 2
    Email author
  1. 1.Department of Chemistry and BiochemistryMendel University in BrnoBrnoCzech Republic
  2. 2.Central European Institute of TechnologyBrno University of TechnologyBrnoCzech Republic

Personalised recommendations