Skip to main content

Mechanisms of Uptake and Interaction of Platinum Based Drugs in Eukaryotic Cells

  • Chapter
  • First Online:
Platinum Metals in the Environment

Abstract

The platinum group elements are significant compounds used in numerous fields of human life. Besides of often discussed toxic effect the platinum compounds show the therapeutic effects. Nowadays, platinum-based cytostatic are still the most frequently used drugs in oncology. Due to their proved medicinal purposes the behavior in the organism should to be intensively studied as well as their interactions with DNA and other important biological molecules. This review summarizes the recent results in the platinum drug field and discusses the behavior of platinum compounds in cells. The interaction of platinum and DNA with respect to the change of the DNA structure are also clarified.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abada P, Howell SB (2010) Regulation of Cisplatin cytotoxicity by cu influx transporters. Met Based Drugs 2010:1–9

    Article  Google Scholar 

  • Ali I, Wani WA, Saleem K et al (2013) Platinum compounds: a hope for future cancer chemotherapy. Anti-Cancer Agents Med Chem 13:296–306

    Article  Google Scholar 

  • Aller SG, Unger VM (2006) Projection structure of the human copper transporter CTR1 at 6-A resolution reveals a compact trimer with a novel channel-like architecture. Proc Natl Acad Sci U S A 103:3627–3632

    Article  Google Scholar 

  • Arnesano F, Banci L, Bertini I et al (2011) Probing the interaction of Cisplatin with the human copper chaperone Atox1 by solution and in-cell NMR spectroscopy. J Am Chem Soc 133:18361–18369

    Article  Google Scholar 

  • Arnesano F, Natile G (2008) “Platinum on the road”: interactions of antitumoral cisplatin with proteins. Pure Appl Chem 80:2715–2725

    Article  Google Scholar 

  • Arnesano F, Scintilla S, Natile G (2007) Interaction between platinum complexes and a methionine motif found in copper transport proteins. Angew Chem-Int Edit 46:9062–9064

    Article  Google Scholar 

  • Asharani PV, Xinyi N, Hande MP et al (2010) DNA damage and p53-mediated growth arrest in human cells treated with platinum nanoparticles. Nanomedicine 5:51–64

    Article  Google Scholar 

  • Banci L, Bertini I, Ciofi-Baffoni S et al (2005) An NMR study of the interaction between the human copper(I) chaperone and the second and fifth metal-binding domains of the Menkes protein. FEBS J 272:865–871

    Article  Google Scholar 

  • Blair BG, Larson C, Safaei R et al (2009) Copper transporter 2 regulates the cellular accumulation and cytotoxicity of cisplatin and carboplatin. Clin Cancer Res 15:4312–4321

    Article  Google Scholar 

  • Blanarova OV, Jelinkova I, Vaculova AH et al (2013) Higher anti-tumour efficacy of platinum(IV) complex LA-12 is associated with its ability to bypass M-phase entry block induced in oxaliplatin-treated human colon cancer cells. Cell Prolif 46:665–676

    Article  Google Scholar 

  • Burdon RH (1995) Superoxide and hydrogen-peroxide in relation to mammalian-cell proliferation. Free Radic Biol Med 18:775–794

    Article  Google Scholar 

  • Cohen SM, Lippard SJ (2001) Cisplatin: from DNA damage to cancer chemotherapy. Prog Nucl Res Mol Biol 67:93–130

    Article  Google Scholar 

  • Crowe A, Jackaman C, Beddoes KM et al (2013) Rapid copper acquisition by developing murine mesothelioma: decreasing bioavailable copper slows tumor growth, normalizes vessels and promotes T cell infiltration. PLoS ONE 8:1–14

    Google Scholar 

  • Crul M, van Waardenburg R, Beijnen JH et al (2002) DNA-based drug interactions of cisplatin. Cancer Treat Rev 28:291–303

    Article  Google Scholar 

  • Crundwell FK, Moats MS, Ramachandran V et al (2011) Extractive metallurgy of nickel, cobalt and platinum-group metals overview. Extractive metallurgy of nickel, cobalt and platinum-group metals. doi:10.1016/b978-0-08-096809-4.10001-2

    Google Scholar 

  • Dhahagani K, Mathan KS, Chakkaravarthi G et al (2014) Synthesis and spectral characterization of Schiff base complexes of Cu(II), Co(II), Zn(II) and VO(IV) containing 4-(4-aminophenyl)morpholine derivatives: Antimicrobial evaluation and anticancer studies. Spectr Acta Pt A-Mol Biomol Spectr 117:87–94

    Article  Google Scholar 

  • Eremia SAV, Vasilescu I, Radoi A et al (2013) Disposable biosensor based on platinum nanoparticles-reduced graphene oxide-laccase biocomposite for the determination of total polyphenolic content. Talanta 110:164–170

    Google Scholar 

  • Fikrova P, Stetina R, Hrnciarik M et al (2014) DNA crosslinks, DNA damage and repair in peripheral blood lymphocytes of non-small cell lung cancer patients treated with platinum derivatives. Oncol Rep 31:391–396

    Google Scholar 

  • Flora SJS, Shrivastava R, Mittal M (2013) Chemistry and pharmacological properties of some natural and synthetic antioxidants for heavy metal toxicity. Curr Med Chem 20:4540–4574

    Article  Google Scholar 

  • Florea AM, Büsselberg D (2011) Cisplatin as an anti-tumor drug: cellular mechanisms of activity, drug resistance and induced side effects. Cancers 3:1351–1371

    Article  Google Scholar 

  • Fu W, Li XH, Bao HL et al (2013) Synergistic effect of Bronsted acid and platinum on purification of automobile exhaust gases. Sci Rep 3:1–6

    Article  Google Scholar 

  • Furstner A (2009) Gold and platinum catalysis-a convenient tool for generating molecular complexity. Chem Soc Rev 38:3208–3221

    Article  Google Scholar 

  • Gabano E, Gama S, Mendes F et al (2013) Study of the synthesis, antiproliferative properties, and interaction with DNA and polynucleotides of cisplatin-like Pt(II) complexes containing carcinogenic polyaromatic amines. J Biol Inorg Chem 18:791–801

    Article  Google Scholar 

  • Galanski M, Jakupec MA, Keppler BK (2005) Update of the preclinical situation of anticancer platinum complexes: Novel design strategies and innovative analytical approaches. Curr Med Chem 12:2075–2094

    Article  Google Scholar 

  • Gheybi H, Niknejad H, Entezami AA (2014) Polymer-metal complex nanoparticles-containing cisplatin and amphiphilic block copolymer for anticancer drug delivery. Des Monomers Polym 17:334–344

    Article  Google Scholar 

  • Gitlin J, Lill R (2006) Special issue: cell biology of metals. Biochim Biophys Acta-Mol Cell Res 1763:577

    Article  Google Scholar 

  • Gitlin JD, Lill R (2012) Special issue: cell biology of metals. Biochim Biophys Acta-Mol Cell Res 1823:1405–1642

    Article  Google Scholar 

  • Gomez B, Palacios MA, Gomez M et al (2002) Levels and risk assessment for humans and ecosystems of platinum-group elements in the airborne particles and road dust of some European cities. Sci Total Environ 299:1–19

    Article  Google Scholar 

  • Graf N, Mokhtari TE, Papayannopoulos IA et al (2012) Platinum(IV)-chlorotoxin (CTX) conjugates for targeting cancer cells. J Inorg Biochem 110:58–63

    Article  Google Scholar 

  • Guerrero-Preston R, Ratovitski EA (2014) Cisplatin exposure of squamous cell carcinoma cells leads to modulation of the autophagic pathway. Autophagy: cancer, other pathologies, inflammation, immunity, infection, and aging, vol 1: Molecular mechanisms. Elsevier, San Diego. doi:10.1016/b978-0-12-405530-8.00017-0

  • Hagrman D, Goodisman J, Dabrowiak JC et al (2003) Kinetic study on the reaction of cisplatin with metallothionein. Drug Metab Dispos 31:916–923

    Article  Google Scholar 

  • Hall MD, Okabe M, Shen DW et al (2008) The role of cellular accumulation in determining sensitivity to platinum-based chemotherapy. In: Annual review of pharmacology and toxicology, vol 48. Annual Review of Pharmacology and Toxicology. Annual Reviews, Palo Alto, pp 495–535. doi:10.1146/annurev.pharmtox.48.080907.180426

  • Holzer AK, Howell SB (2006) The internalization and degradation of human copper transporter 1 following cisplatin exposure. Cancer Res 66:10944–10952

    Article  Google Scholar 

  • Hooda PS, Miller A, Edwards AC (2008) The plant availability of auto-cast platinum group elements. Environ Geochem Health 30:135–139

    Article  Google Scholar 

  • Howell SB, Safaei R, Larson CA et al (2010) Copper transporters and the cellular pharmacology of the platinum-containing cancer drugs. Mol Pharmacol 77:887–894

    Article  Google Scholar 

  • Ikeda S, Ohhata F, Miyoshi M et al (2000) Synthesis and reactions of palladium and platinum complexes bearing diphosphinidenecyclobutene ligands: a thermally stable catalyst for ethylene polymerization. Angew Chem-Int Edit 39:4512–4513

    Article  Google Scholar 

  • Ishikawa T, Aliosman F (1993) Glutathione-associated cis-diamminecichloroplatinum(II) metabolism and ATP-dependent efflux from leukemia-cells-molecular characterization of glutathione-platinum complex and its biological significance. J Biol Chem 268:20116–20125

    Google Scholar 

  • Itoh S, Kim HW, Nakagawa O et al (2008) Novel role of antioxidant-1 (Atox1) as a copper-dependent transcription factor involved in cell proliferation. J Biol Chem 283:9157–9167

    Article  Google Scholar 

  • Jarocka I, Gegotek A, Bielawska A et al (2013) Effect of novel dinuclear platinum(II) complexes on redox status of MOLT-4 leukemic cells. Toxicol Mech Methods 23:641–649

    Article  Google Scholar 

  • Kajita M, Hikosaka K, Iitsuka M et al (2007) Platinum nanoparticle is a useful scavenger of superoxide anion and hydrogen peroxide. Free Radic Res 41:615–626

    Article  Google Scholar 

  • Kalayda GV, Wagner CH, Buss I et al (2008) Altered localisation of the copper efflux transporters ATP7A and ATP7B associated with cisplatin resistance in human ovarian carcinoma cells. BMC Cancer 8:1–12

    Article  Google Scholar 

  • Kao C, Chao A, Tsai CL et al (2013) Phosphorylation of signal transducer and activator of transcription 1 reduces bortezomib-mediated apoptosis in cancer cells. Cell Death Dis 4:1–12

    Article  Google Scholar 

  • Katano K, Kondo A, Safaei R et al (2002) Acquisition of resistance to cisplatin is accompanied by changes in the cellular pharmacology of copper. Cancer Res 62:6559–6565

    Google Scholar 

  • Katano K, Safaei R, Samimi G et al (2004) Confocal microscopic analysis of the interaction between cisplatin and the copper transporter ATP7B in human ovarian carcinoma cells. Clin Cancer Res 10:4578–4588

    Article  Google Scholar 

  • Kim CW, Lu JN, Go SI et al (2013) p53 restoration can overcome cisplatin resistance through inhibition of Akt as well as induction of Bax. Int J Oncol 43:1495–1502

    Google Scholar 

  • Kim W-K, Kim J-C, Park H-J et al (2012) Platinum nanoparticles reduce ovariectomy-induced bone loss by decreasing osteoclastogenesis. Exp Mol Med 44:432–439

    Article  Google Scholar 

  • Knipp M, Karotki AV, Chesnov S et al (2007) Reaction of Zn(7)Metallothionein with cis- and trans- Pt(N-donor)(2)Cl(2) anticancer complexes: trans-Pt(II) complexes retain their N-donor ligands. J Med Chem 50:4075–4086

    Article  Google Scholar 

  • Komatsu M, Sumizawa T, Mutoh M et al (2000) Copper-transporting P-type adenosine triphosphatase (ATP7B) is associated with cisplatin resistance. Cancer Res 60:1312–1316

    Google Scholar 

  • Konieczny P, Goralczyk AG, Szmyd R et al (2013) Effects triggered by platinum nanoparticles on primary keratinocytes. Int J Nanomed 8:3963–3975

    Google Scholar 

  • Larson CA, Adams PL, Jandial DD et al (2010) The role of the N-terminus of mammalian copper transporter 1 in the cellular accumulation of cisplatin. Biochem Pharmacol 80:448–454

    Article  Google Scholar 

  • Lin XZ, Yan J, Tang DM (2013) ERK kinases modulate the activation of PI3 kinase related kinases (PIKKs) in DNA damage response. Histol Histopath 28:1547–1554

    Google Scholar 

  • Liu YM, Lu XD, Nguyen S et al (2013) Epoxyeicosatrienoic acids prevent cisplatin-induced renal apoptosis through a p38 mitogen-activated protein kinase-regulated mitochondrial pathway. Mol Pharmacol 84:925–934

    Article  Google Scholar 

  • Malina J, Natile G, Brabec V (2013) Spontaneous translocation of antitumor oxaliplatin, its enantiomeric analogue, and cisplatin from one strand to another in double-helical DNA. Chem Eur J 19:11984–11991

    Article  Google Scholar 

  • Manikandan M, Hasan N, Wu HF (2013) Platinum nanoparticles for the photothermal treatment of Neuro 2A cancer cells. Biomaterials 34:5833–5842

    Article  Google Scholar 

  • Marullo R, Werner E, Degtyareva N et al (2013) Cisplatin induces a mitochondrial-ROS response that contributes to cytotoxicity depending on mitochondrial redox status and bioenergetic functions. PLoS ONE 8:1–15

    Article  Google Scholar 

  • Monneret C (2011) Platinum anticancer drugs. From serendipity to rational design. Annal Pharm Franc 69:286–295

    Article  Google Scholar 

  • Mukhopadhyay R, Dubey P, Sarkar S (2005) Structural changes of DNA induced by mono- and binuclear cancer drugs. J Struct Biol 150:277–283

    Article  Google Scholar 

  • Muller PAJ, Klomp LWJ (2009) ATOX1: A novel copper-responsive transcription factor in mammals? Int J Biochem Cell Biol 41:1233–1236

    Article  Google Scholar 

  • Muscella A, Vetrugno C, Fanizzi FP et al (2013) A new platinum(II) compound anticancer drug candidate with selective cytotoxicity for breast cancer cells. Cell Death Dis 4:1–10

    Article  Google Scholar 

  • Oberoi HS, Nukolova NV, Kabanov AV et al (2013) Nanocarriers for delivery of platinum anticancer drugs. Adv Drug Deliv Rev 65:1667–1685

    Article  Google Scholar 

  • Ozcan MF, Dizdar O, Dincer N et al (2013) Low ERCC1 expression is associated with prolonged survival in patients with bladder cancer receiving platinum-based neoadjuvant chemotherapy. Urol Oncol-Semin Orig Investig 31:1709–1715

    Article  Google Scholar 

  • Palm-Espling ME, Lundin C, Bjorn E et al (2014) Interaction between the anticancer drug cisplatin and the copper chaperone Atox1 in human melanoma cells. Protein Pept Lett 21:63–68

    Article  Google Scholar 

  • Palm ME, Weise CF, Lundin C et al (2011) Cisplatin binds human copper chaperone Atox1 and promotes unfolding in vitro. Proc Natl Acad Sci USA 108:6951–6956

    Article  Google Scholar 

  • Pelletier H, Sawaya MR, Wolfle W et al (1996) A structural basis for metal ion mutagenicity and nucleotide selectivity in human DNA polymerase beta. Biochemistry 35:12762–12777

    Article  Google Scholar 

  • Pereira L, Igea A, Canovas B et al (2013) Inhibition of p38 MAPK sensitizes tumour cells to cisplatin-induced apoptosis mediated by reactive oxygen species and JNK. EMBO Mol Med 5:1759–1774

    Article  Google Scholar 

  • Petris MJ, Smith K, Lee J et al (2003) Copper-stimulated endocytosis and degradation of the human copper transporter, hCtr1. J Biol Chem 278:9639–9646

    Article  Google Scholar 

  • Piskulov M, Chiu C (2013) Kunming-PM’2012 5th international conference “Platinum metals in the modern industry, hydrogen energy and life maintenance of the future”. Platin Met Rev 57:143–147

    Article  Google Scholar 

  • Popenoe EA, Schmaeler MA (1979) Interaction of human DNA polymerase β with ions of copper, lead, and cadmium. Arch Biochem Biophys 196:109–120

    Article  Google Scholar 

  • Postel-Vinay S, Bajrami I, Friboulet L et al (2013) A high-throughput screen identifies PARP1/2 inhibitors as a potential therapy for ERCC1-deficient non-small cell lung cancer. Oncogene 32:5377–5387

    Article  Google Scholar 

  • Ravindra K, Bencs L, Van Grieken R (2004) Platinum group elements in the environment and their health risk. Sci Total Environ 318:1–43

    Article  Google Scholar 

  • Reedijk J (1999) Why does cisplatin reach guanine-N7 with competing S-donor ligands available in the cell? Chem Rev 99:2499–2510

    Article  Google Scholar 

  • Ruggiero A, Trombatore G, Triarico S et al (2013) Platinum compounds in children with cancer: toxicity and clinical management. Anticancer Drugs 24:1007–1019

    Article  Google Scholar 

  • Safaei R, Maktabi MH, Blair BG et al (2009) Effects of the loss of Atox1 on the cellular pharmacology of cisplatin. J Inorg Biochem 103:333–341

    Article  Google Scholar 

  • Samimi G, Safaei R, Katano K et al (2004) Increased expression of the copper efflux transporter ATP7A mediates resistance to cisplatin, carboplatin, and oxaliplatin in ovarian cancer cells. Clin Cancer Res 10:4661–4669

    Article  Google Scholar 

  • Sawyer TK (2006) Chemical biology and drug design: three-dimensional, dynamic, and mechanistic nature of two multidisciplinary fields. Chem Biol Drug Des 67:196–200

    Article  Google Scholar 

  • Sharma R, Rawal RK, Malhotra M et al (2013) Design, synthesis and in-vitro cytotoxicity of novel platinum (II) complexes with phthalate as the leaving group. Lett Drug Des Discov 10:872–878

    Article  Google Scholar 

  • Shoeib T, Sharp BL (2013) Monomeric cisplatin complexes with glutathione: coordination modes and binding affinities. Inorg Chim Acta 405:258–264

    Article  Google Scholar 

  • Sikorova L, Licbinsky R, Adamec V (2011) Platinum group elements from automobile catalysts in the environment. Chem Listy 105:361–366

    Google Scholar 

  • Siriviriyanun A, Imae T, Nagatani N (2013) Electrochemical biosensors for biocontaminant detection consisting of carbon nanotubes, platinum nanoparticles, dendrimers, and enzymes. Anal Biochem 443:169–171

    Article  Google Scholar 

  • Song Y, Suntharalingam K, Yeung JS et al (2013) Synthesis and characterization of Pt(IV) fluorescein conjugates to Investigate Pt(IV) intracellular transformations. Bioconjugate Chem 24:1733–1740

    Article  Google Scholar 

  • Stiborova M, Poljakova J, Eckschlager T et al (2010) DNA and histone deacetylases as targets for neuroblastoma treatment. Interdiscip Toxicol 3:47–52

    Article  Google Scholar 

  • Strausak D, Howie MK, Firth SD et al (2003) Kinetic analysis of the interaction of the copper chaperone Atox1 with the metal binding sites of the Menkes protein. J Biol Chem 278:20821–20827

    Article  Google Scholar 

  • Suzuki C, Daigo Y, Kikuchi T et al (2003) Identification of COX17 as a therapeutic target for non-small cell lung cancer. Cancer Res 63:7038–7041

    Google Scholar 

  • Todd RC, Lippard SJ (2009) Inhibition of transcription by platinum antitumor compounds. Metallomics 1:280–291

    Article  Google Scholar 

  • Wahab R, Yang YB, Umar A et al (2012) Platinum quantum dots and their cytotoxic effect towards myoblast cancer cells (C2C12). J Biomed Nanotechnol 8:424–431

    Article  Google Scholar 

  • Walker JM, Tsivkovskii R, Lutsenko S (2002) Metallochaperone Atox1 transfers copper to the NH2-terminal domain of the Wilson’s disease protein and regulates its catalytic activity. J Biol Chem 277:27953–27959

    Article  Google Scholar 

  • Wang F, Jiao P, Qi M et al (2010) Turning tumor-promoting copper into an anti-cancer weapon via high-throughput chemistry. Curr Med Chem 17:2685–2698

    Article  Google Scholar 

  • Wang XH, Du XB, Li HY et al (2011) The effect of the extracellular domain of human copper transporter (hCTR1) on cisplatin activation. Angew Chem-Int Edit 50:2706–2711

    Article  Google Scholar 

  • Wang YJ, Li XZ (2012) Health risk of platinum group elements from automobile catalysts. In: Changgen F, Shengcai L (eds) 2012 International symposium on safety science and technology, vol 45. Procedia Engineering. Elsevier Science Bv, Amsterdam, pp 1004–1009. doi:10.1016/j.proeng.2012.08.273

  • Xu DC, Min YZ, Cheng QQ et al (2013) Chemical and cellular investigations of trans-ammine-pyridine-dichlorido-platinum(II), the likely metabolite of the antitumor active cis-diammine-pyridine-chorido-platinum(II). J Inorg Biochem 129:15–22

    Article  Google Scholar 

  • Yamasaki M, Makino T, Masuzawa T et al (2011) Role of multidrug resistance protein 2 (MRP2) in chemoresistance and clinical outcome in oesophageal squamous cell carcinoma. Br J Cancer 104:707–713

    Article  Google Scholar 

  • Yang L, Wang GC, Liu YJ (2013) An acetylcholinesterase biosensor based on platinum nanoparticles-carboxylic graphene-nafion-modified electrode for detection of pesticides. Anal Biochem 437:144–149

    Article  Google Scholar 

  • Yasui K, Takashima H, Miyagawa M et al (2013) Selective accumulation of platinum and formation of platinum-DNA adducts in hepatocellular carcinoma after transarterial chemoembolization with miriplatin. Hepatol Res 43:1093–1099

    Google Scholar 

  • Ye MX, Zhao YL, Li Y et al (2012) Curcumin reverses cis-platin resistance and promotes human lung adenocarcinoma A549/DDP cell apoptosis through HIF-1 alpha and caspase-3 mechanisms. Phytomedicine 19:779–787

    Article  Google Scholar 

  • Zaman GJR, Lankelma J, Vantellingen O et al (1995) Role of glutathione in the export of compounds from cells by the multidrug-resistance-associated protein. Proc Natl Acad Sci USA 92:7690–7694

    Article  Google Scholar 

  • Zereini F, Alt F, Messerschmidt J et al (2005) Concentration and distribution of heavy metals in urban airborne particulate matter in Frankfurt am main, Germany. Environ Sci Technol 39:2983–2989

    Article  Google Scholar 

  • Zereini F, Wiseman C, Puttmann W (2007) Changes in palladium, platinum, and rhodium concentrations, and their spatial distribution in soils along a major highway in Germany from 1994 to 2004. Environ Sci Technol 41:451–456

    Article  Google Scholar 

  • Zhang GX, Hu WB, Du ZF et al (2011) A comparative study on interactions of cisplatin and ruthenium arene anticancer complexes with metallothionein using MALDI-TOF-MS. Int J Mass Spectrom 307:79–84

    Article  Google Scholar 

  • Zhou Z, Cao JX, Li SY et al (2013) p53 Suppresses E2F1-dependent PLK1 expression upon DNA damage by forming p53-E2F1-DNA complex. Exp Cell Res 319:3104–3115

    Article  Google Scholar 

  • Zitka O, Huska D, Krizkova S et al (2007) Study of binding of platinum based cytostatics to DNA structure; Influence of glutathione. Tumor Biol 28:123–123

    Article  Google Scholar 

  • Zitka O, Kominkova M, Skalickova S et al (2013) Single amino acid change in metallothionein metal-binding cluster influences interaction with cisplatin. Int J Electrochem Sci 8:2625–2634

    Google Scholar 

Download references

Acknowledgements

The financial support from the projects NanoBioMetalNet CZ.1.07/2.4.00/31.0023 is highly acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rene Kizek .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Nejdl, L. et al. (2015). Mechanisms of Uptake and Interaction of Platinum Based Drugs in Eukaryotic Cells. In: Zereini, F., Wiseman, C. (eds) Platinum Metals in the Environment. Environmental Science and Engineering(). Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-44559-4_25

Download citation

Publish with us

Policies and ethics