Skip to main content

Nanofabrication by Self-Assembly

  • Chapter
  • First Online:
Micro and Nano Fabrication

Abstract

Nanotechnology is the fabrication and application of devices (i.e., nanoelectromechanical systems—NEMS) with dimensions below 100 nm in at least one direction. It uses two radically different approaches, top–down and bottom–up processes. Top–down nanofabrication is similar to microfabrication, building patterned layers above each other. Bottom–up nanofabrication, on the other hand, takes advantage of molecular self-assembly, with molecules autonomously “growing” into nanostructures. Typical instances of self-assembly are self-assembled monolayers (SAMs), with the most prominent example, the assembly of thiolate compounds on gold. Directed self-assembly of nanoparticles combines self-organization and a patterning of a substrate to define areas where the self-assembly shall take place. Characteristic self-assembly building blocks are DNA scaffolds, carbon nanotubes (CNTs), and block polymers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Cui Z (2008) Nanofabrication. Springer Science + Business Media, New York

    Book  Google Scholar 

  2. Ozin GA, Hou K, Lotsch BV, Cademartiri L, Puzzo DP, Scotognella F, Ghadimi A, Thomson J (2009) Nanofabrication by self-assembly. Mater Today 5:12–23

    Article  Google Scholar 

  3. Langmuir I (2013) Biographical Nobelprize.org. Nobel Media AB. http://www.nobelprize.org/nobel_prizes/chemistry/laureates/1932/langmuir-bio.html. Accessed 6 December 2013

  4. Burr Blodgett K (2007) Hall of fame/inventor profile. http://www.invent.org/hall_of_fame/319.html. Accessed 6 December 2014

  5. Langmuir I, Blodgett KB (1935) Über einige neue Methoden zur Untersuchung von monomolekularen Filmen (About some new methods for the investigation of monomolecular films). Kolloid-Zeitschrift 73:257–263

    Article  Google Scholar 

  6. Prashar D (2012) Self-assembled monolayers—a review. Int J Tech Res 4:258–265

    Google Scholar 

  7. Bigelow WC, Pickett DL, Zisman WA (1946) Oleo-phobic monolayer. J Colloid Sci 1:513–538. doi:10.1016/0095-8522(46)90059-1

    Article  Google Scholar 

  8. Nuzzo RG, Allara DLJ (1983) Adsorption of bifunctional organic disulfides on gold surfaces. Am Chem Soc 105:4481–4483

    Article  Google Scholar 

  9. Iijima S (1991) Helical microtubules of graphitic carbon. Nat 354:56–58. doi:10.1038/354056a0

    Article  Google Scholar 

  10. Bethune DS, Klang CH, De Vries MS, Gorman G, Savoy R, Vazquez J, Beyers R (1993) Cobalt-catalyzed growth of carbon nanotubes with single-atomic-layer walls. Nat 363:605–607. doi:10.1038/363605a0

    Article  Google Scholar 

  11. Iijima S, Ichihashi T (1993) Single-shell carbon nanotubes of 1-nm diameter. Nat 363:603–605. doi:10.1038/363603a0

    Article  Google Scholar 

  12. Mintmire JW, Dunlap BI, White CT (1992) Are fullerene tubules metallic? Phys Rev Lett 68:631–634. doi:10.1103/PhysRevLett.68.631

    Article  Google Scholar 

  13. Zhirnov V, Herr DJC (2001) New frontiers: self-assembly and nanoelectronics. IEEE Comput 1:34–43

    Article  Google Scholar 

  14. Cademartiry L, Ozin GA (2009) Concepts of nanochemistry. Wiley VDH, Weinheim

    Google Scholar 

  15. Ligand (2013) The free dictionary. http://www.thefreedictionary.com/ligand

  16. Alkanes (2013) Hyperphysics. http://hyperphysics.phy-astr.gsu.edu/hbase/organic/alkane.html. Accessed 9 December 2013

  17. Thiol (2013) Princton University. http://www.princeton.edu/~achaney/tmve/wiki100k/docs/Thiol.html. Accessed 9 December 2013

  18. Frank P (2013) Self-assembled monolayers (SAMs) on gold surfaces. Seminar, Graz University of Technology. http://www.if.tugraz.at/workshops/presentation.php?202. Accessed 11 December 2013

  19. Ulman A (1996) Formation and structure of self-assembled monolayers. Chem Rev 96:1533–1554

    Article  Google Scholar 

  20. Motesharei K, Myles DC (1998) Molecular recognition on functionalized self-assembled monolayers of alkanethiols on gold. J Am Chem Soc 120:7328–7336

    Article  Google Scholar 

  21. Xia Y, Whitsides GM (1998) Soft lithography. Angew Chem Int Ed 37:550–575

    Article  Google Scholar 

  22. Juillerat F, Solak HH, Bowen P, Hofmann H (2005) Fabrication of large-area ordered arrays of nanoparticles on patterned substrates. Nanotechnol 16:1311–1316. doi:10.1088/0957-4484/16/8/055

    Article  Google Scholar 

  23. Anonymous (2004) The handy science answer book. Barnes and Noble Books, New York

    Google Scholar 

  24. Martel R, Schmidt T, Shea HR, Hertel T, Avouris Ph (1998) Single- and multi-wall carbon nanotube field-effect transistors. Appl Phys Lett 73:2447–2449

    Article  Google Scholar 

  25. Vijayaraghavan A, Blatt S, Weissenberger D, Oron-Carl M, Hennrich F, Gerthsen D, Hahn H, Krupke R (2007) Ultra-large-scale directed assembly of single-walled carbon nanotube devices. Nano Lett 7:1556–1560. doi:10.1021/nl0703727

    Article  Google Scholar 

  26. Dovidenko K, Rullan J, Moore R, Dunn KA, Geer RE, Heuchling F (2003) FIB-assisted Pt deposition for carbon nanotube integration and 3-D nanoengineering. Mat Res Soc Proc H7.7:739–745

    Google Scholar 

  27. Friedman RS, McAlpine MC, Ricketts DS, Ham D, Lieber CM (2005) High-speed integrated nanowire circuits. Nat 434:1085

    Article  Google Scholar 

  28. Khang DK, Jiang H, Huang Y, Rogers JA (2006) A stretchable form of single-crystal silicon for high-performance electronics on rubber substrates. Science 311:208–212

    Article  Google Scholar 

  29. Ruzette A-V, Leibler L (2005) Block copolymers in tomorrow’s plastics. Nat Mater 4:19–23

    Article  Google Scholar 

  30. Park C, Yoon J, Thomas EL (2003) Enabling nanotechnology with self assembled block copolymer patterns. Polym 44:6725–6760

    Article  Google Scholar 

  31. Photonic crystals and resonators (2012) ETH Zürich. http://www.photonics.ethz.ch/fileadmin/user_upload/optics/Courses/NanoOptics/crystals.pdf. Accessed 10 December 2013

  32. Burgos N, Paulis M, Montes M (2003) Preparation of Al2O3/Al monoliths by anodisation of aluminum as structured catalytic supports. J Mater Chem 13:1458–1467

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hans H. Gatzen .

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Gatzen, H.H., Saile, V., Leuthold, J. (2015). Nanofabrication by Self-Assembly. In: Micro and Nano Fabrication. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-44395-8_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-44395-8_8

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-44394-1

  • Online ISBN: 978-3-662-44395-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics