Skip to main content

Deposition Technologies

  • Chapter
  • First Online:
Micro and Nano Fabrication

Abstract

Deposition of thin-films used in MEMS and NEMS devices rely on a wide variety of technologies. Physical vapor deposition (PVD) uses physical effects like evaporation or ion bombardment to create thin-films on a substrate by forcing source atoms into a gaseous phase. Chemical vapor deposition (CVD) and similar processes create coatings by a chemical reaction of volatile species by using reaction processes defined by chemical reaction equations. While PVD and CVD are dry processes, for depositing conductive thin-films the substrate may be submerged in an electrically conductive liquid (an electrolyte) and subjected to electrochemical or chemical deposition. Spin-coating and spray-coating are two examples of technologies that lend themselves to creating organic films—a technology widely used in depositing photoresists in photolithography. Dip processes like solgel may be used for the creation of oxide coatings.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Heinrich Hertz was a brilliant scientist who passed away at the age of only 37. He is most famous for providing experimental proof for Maxwell’s Laws and converting Maxwell’s equations into a more practical form [20].

  2. 2.

    An electron volt (eV) is the amount of energy an electron gains when traveling through an electric potential of one volt. 1 electron volt = 1.6 × 10−19 joule [1].

  3. 3.

    English pronunciation: deh-BYE (rhymes with cry).

  4. 4.

    For more information about HARMST , see Chap. 7.

References

  1. Ohring M (2002) Material science of thin films, deposition and structure, 2nd edn. Academic Press, San Diego

    Google Scholar 

  2. Gad-el-Hak M (ed) (2006) The MEMS handbook, 2nd edn. CRC Press, Boca Raton

    Google Scholar 

  3. Goddard WA III, Brenner DW, Lyshevski SE, Iafrate GJ (eds) (2007) Handbook of nanoscience, engineering, and technology. CRC Press, Boca Raton

    Google Scholar 

  4. Madou M (2011) Fundamentals of microfabrication and nanotechnology, 3rd edn. CRC Press, Boca Raton

    Google Scholar 

  5. Martin PM (2010) Deposition technologies: an overview. In: Martin PM (ed) Handbook of deposition technologies for films and coatings, 3rd edn. Elsevier, Oxford

    Google Scholar 

  6. Vossen JL, Kern W (eds) (1991) Thin film processes II. Academic Press, San Diego

    Google Scholar 

  7. Deshpandey C, Bunshah P (1991) Evaporation processes. In: Vossen JL, Kern W (eds) Thin film processes II. Academic Press, San Diego

    Google Scholar 

  8. Shah SI, Jaffari GH, Yassitepe E, Ali B (2010) Evaporation: processes, bulk microstructures, and mechanical properties. In: Martin PM (ed) Handbook of deposition technologies for films and coatings, 3rd edn. Elsevier, Oxford

    Google Scholar 

  9. Parsons R (1991) Sputter deposition process. In: Vossen JL, Kern W (eds) Thin film processes II. Academic Press, San Diego

    Google Scholar 

  10. Depla D, Mahieu S, Greene JE (2010) Sputter deposition processes. In: Martin PM (ed) Handbook of deposition technologies for films and coatings, 3rd edn. Elsevier, Oxford

    Google Scholar 

  11. Jensen KF, Kern W (1991) Thermal chemical vapor deposition. In: Vossen JL, Kern W (eds) Thin film processes II. Academic Press, San Diego

    Google Scholar 

  12. Reif R, Kern W (1991) Plasma-enhanced chemical vapor deposition. In: Vossen JL, Kern W (eds) Thin film processes II. Academic Press, San Diego

    Google Scholar 

  13. Carlsson J-O, Martin PM (2010) Chemical vapor deposition. In: Martin PM (ed) Handbook of deposition technologies for films and coatings, 3rd edn. Elsevier, Oxford

    Google Scholar 

  14. Martinu L, Zabeida O, Klemberg-Sapieha JE (2010) Plasma-enhanced chemical vapor deposition of functional coatings. In: Martin PM (ed) Handbook of deposition technologies for films and coatings, 3rd edn. Elsevier, Oxford

    Google Scholar 

  15. Lowenheim FA (1978) Deposition of inorganic films from solutions. In: Vossen JL, Kern W (eds) Thin film processes. Academic Press, New York

    Google Scholar 

  16. Thompson LF, Willson CG, Bowden MJ (eds) (1994) Introduction to microlithography, 2nd edn. American Chemical Society, Washington

    Google Scholar 

  17. Klein LC (1991) Sol–gel coatings. In: Vossen JL, Kern W (eds) Thin film processes. Academic Press, New York

    Google Scholar 

  18. Faraday M (2013) BBC History. http://www.bbc.co.uk/history/historic_figures/faraday_michael.shtml. Accessed 02 Feb 2013

  19. Faraday Michael (1857) The Bakerian Lecture: Experimental relations of gold (and other metals) to light. Phil Trans R Soc Lond 147:145–181. doi:10.1098/rstl.1857.0011

    Article  Google Scholar 

  20. Lederman L (2006) The god particle: if the universe is the answer, what is the question?. Houghton Mifflin, New York

    Google Scholar 

  21. Eckert M (2010) Heinrich Hertz. Ellert & Richter, Hamburg

    Google Scholar 

  22. Nahrwold R (1887) Ueber Luftelectricität (About air electricity). Ann Phys 267:448–473. doi:10.1002/andp.18872670708

    Google Scholar 

  23. Kundt A (1888) Über die Brechungsexponenten der Metalle (About refractive indices of metals). Ann Physik 34:469–489. doi:10.1002/andp.18882700705

    Article  Google Scholar 

  24. Myoptica: Zeiss T (2012) Anti-reflective Coatings. http://www.myoptica.com/helpar.cfm. Accessed 27 July 2012

  25. Clausius R (2012). http://www.nndb.com/people/951/000100651/. Accessed 12 Dec 2012

  26. Benoit Paul Émile Clapeyron (1998) http://www-history.mcs.st-andrews.ac.uk/Biographies/Clapeyron.html. Accessed 12 December 2012

  27. van ′t Hoff JH (1902) Raoult Memorial Lecture. J Chem Soc Trans 81:969–981. doi:10.1039/CT9028100969

  28. Honig RE (1957) Water pressure data for the more common elements. David Sarnoff Research Center, Princeton NJ, USA 1957, http://www.powerstream.com/z/vapor-press2-big.png. Accessed 21 Sept 2012

  29. Christensen TM (2000) Physics of thin films (lecture notes). http://www.uccs.edu/~tchriste/courses/PHYS549/549lectures/evap.html. Accessed 12 Dec 2012

  30. RD Mathis Company (2012) Product information. http://www.rdmathis.com/prodinfo.htm. Accessed 12 Dec 2012

  31. Roberts Jr GC, Via GG (1967) Monitored evaporation. US patent 3,313,914

    Google Scholar 

  32. Standard Electron Beam Evaporator (2014) Dr. Eberl MBE Komponenten, Weil der Stadt, Germany

    Google Scholar 

  33. Optics Balzers (2012) Enabling innovative optical solutions. http://www.opticsbalzers.com/download_temp/oba_imagebroschuere_low.pdf. Accessed 06 Dec 2012

  34. Chow PP (1991) Molecular beam epitaxy. In: Vossen JL, Kern W (eds) Thin film processes II. Academic Press, San Diego

    Google Scholar 

  35. Biasiol G, Sorba L (2001) Molecular beam epitaxy: principles and applications. In: Fornari R, Sorba L (eds) Crystal growth of materials for energy production and energy-saving applications. Edizioni ETS, Pisa, Italy

    Google Scholar 

  36. Kern W, Bahn VS (1978) Chemical vapor deposition of inorganic films. In: Vossen JL, Kern W (eds) Thin film processes. Academic Press, New York

    Google Scholar 

  37. Adam H, Steckelmacher W (1994) Martin Knudsen. In: Redhead PA (ed) Vacuum science and technology: Pioneers of the 20th century. History of vacuum science and technology, vol 2. AIP Press, New York

    Google Scholar 

  38. Barron AR (2014) Molecular beam epitaxy. http://cnx.org/content/m25712/latest/. Accessed 26 March 2014

  39. Kreutz EW (1998) Pulsed laser deposition of ceramics—fundamentals and applications. Appl Surf Sci 127–129:606–613. doi:10.1016/S0169-4332(98)00107-X

    Article  Google Scholar 

  40. Andor Technology (2012) Pulsed laser deposition. http://www.andor.com/learning-academy/pulsed-laser-deposition-an-introduction-to-pulsed-laser-deposition. Accessed 12 December 2012

  41. PLD Plume (2014) Wikimedia commons. http://en.wikipedia.org/wiki/File:PLD_Plume.png. Accessed 26 March 2014

  42. Naval Research Lab Technology Transfer Office (2012) Pulsed laser deposition of ceramics. http://www.nrl.navy.mil/techtransfer/fs.php?fs_id=MAT19. Accessed 15 Dec 2012

  43. Anders A (2010) Unfiltered and filtered cathodic arc deposition. In: Martin PM (ed) Handbook of deposition technologies for films and coatings, 3rd edn. Elsevier, Oxford

    Google Scholar 

  44. Kinston E (2008) Joseph Priestley (1733–1804). Internet Encycl Philosophy. http://www.iep.utm.edu/priestly/. Accessed 15 Dec 2012

  45. Priestley J (1775) Experiments in which rings, consisting of all the prismatic colours, were made by electrical explosions on the surface of metals. In: The history and present state of electricity, vol II. London, pp 329–335

    Google Scholar 

  46. McEvoy JG (2013) Joseph Priestly. Encycl Britannica. http://www.britannica.com/EBchecked/topic/475975/Joseph-Priestly. Accessed 18 Jan 2013

  47. Boxman RL (2001) Early history of vacuum arc deposition. IEEE Trans Plasma Sci 29:759–761

    Article  Google Scholar 

  48. Wright AW (1877) On the production of transparent metallic films by the electrical discharge in exhausted tubes. Am J Sci Arts 13:49–55

    Article  Google Scholar 

  49. Thomas Alva Edison Biography (2012) Rutgers. http://edison.rutgers.edu/biogrphy.htm. Accessed 26 March 2014

  50. Edison TA (1892) Process of duplicating phonograms. US patent 484 582

    Google Scholar 

  51. Mattox DM (2003) The foundations of vacuum technology. Springer, Heidelberg

    Book  Google Scholar 

  52. Sir William Grove (1811–1896). http://www.corrosion-doctors.org/Biographies/GroveBio.htm. Accessed 15 Dec 2012

  53. Grove WR (1852) On the electrochemical polarity of gases. Phil Trans Roy Soc (Lond) B 142, p 87

    Google Scholar 

  54. Hinshelwood CN (1927) William Crookes, a Victorian man of science. http://www.chem.ox.ac.uk/icl/heyes/LanthAct/Biogs/Crookes.html. Accessed 15 Dec 2012

  55. Irving Langmuir—Biography (2012). Nobelprize.org. Nobel Media AB. http://www.nobelprize.org/nobel_prizes/chemistry/laureates/1932/langmuir-bio.html. Accessed 15 Dec 2012

  56. Plasma Physics–History. http://www-spof.gsfc.nasa.gov/Education/whplasma.html. Accessed 15 Dec 2012

  57. Langmuir I (1929) The interaction of electron and positive ion space charges in cathode sheaths. Phys Rev 33:954–989

    Article  Google Scholar 

  58. Rossnagel SM (1991) Glow discharge plasmas and sources for etching and deposition. In: Vossen JL, Kern W (eds) Thin film processes II. Academic Press, San Diego

    Google Scholar 

  59. Bogaerts A, Neyts E, Gijbels R, van der Mullen J (2002) Gas discharge plasmas and their applications (review). Spectrochimica Acta Part B 57:609–658

    Article  Google Scholar 

  60. Townsend, Sir John Searly Edward. Oxford Dictionary of National Biography. http://www.oxforddnb.com/view/printable/36541. Accessed 15 Dec 2012

  61. Paschen, Louis Carl Heinrich Friedrich (2008) Encyclopedia.com. http://www.encyclopedia.com/doc/1G2-2830903302.html. Accessed 28 March 2014

  62. Glow Discharges (2014) Glow discharge laboratory. http://www.glow-discharge.com/?Physical_background:Glow_Discharges. Accessed 28 March 2014

  63. NASA Science (2001) Definition of an electron volt. http://science.nasa.gov/science-news/science-at-nasa/2001/comment2_ast15jan_1/. Accessed 15 Dec 2012

  64. Peter Debye—Biographical (1966) Nobelprize.org. Nobel Media AB. http://www.nobelprize.org/nobel_prizes/chemistry/laureates/1936/debye-bio.html. Accessed 28 March 2014

  65. Sigmund P (1969) Theory of sputtering. I. Sputtering yield of amorphous and polycrystalline targets. Phys Rev 184:383–416

    Article  Google Scholar 

  66. Ginsburg E (2002) Sputtering. Intel. www.eng.tau.ac.il/~yosish/courses/vlsi/Sputtering1.ppt. Accessed 03 Dec 2012

  67. Maidhof H (1980) General information on the cathodic sputtering process. Application note, Leybold Heraeus, now Oerlikon Leybold Vacuum, Cologne, Germany

    Google Scholar 

  68. Small Sputtering. Application note. Leybold Heraeus, now Oerlikon Leybold Vacuum, Cologne, Germany

    Google Scholar 

  69. Sputtering Specifications. Mycralyn MEMS Foundry, Edmonton, AB (Canada). http://www.micralyne.com/thin-film-sputtering/. Accessed 15 Dec 2012

  70. Colligon JS (2004) Ion-assisted sputter deposition (review). Phil Trans R Soc Lond A 362:103–116. doi:10.1098/rsta.2003.1303

    Article  Google Scholar 

  71. Johnson PC (1991) The cathodic arc deposition of thin films. In: Vossen JL, Kern W (eds) Thin film processes II. Academic Press, San Diego

    Google Scholar 

  72. Takikawa H, Tanoue H (2007) Review of cathodic arc deposition for preparing droplet-free thin films. IEEE Trans Plasm Sci 35:992–999

    Article  Google Scholar 

  73. Martin PM (2012) Guides to vacuum processing: filtered cathodic arc deposition. http://www.jh-vac.com/image/pdf/filtered%20cathodic%20arc%20deposition.pdf. Accessed 6 Dec 2012

  74. Aksenov quarter torus filter (2012) Wikimedia Commons. http://en.wikipedia.org/wiki/File:AksenovQuaterTorusFilter.jpg. Accessed 15 Dec 2012

  75. Bogy DB, Yun X, Knapp BJ (1994) Enhancement of head-disc interface durability by using diamond-like carbon overcoats on the sliders’ rails. IEEE Trans Magn 2:369–374

    Article  Google Scholar 

  76. Anders A, Fong W, Kulkarni A, Francis W, Ryan FW, Bhatia CS (2001) Ultrathin diamond-like carbon films deposited by filtered carbon vacuum arcs. IEEE Plasm Sci 5:1–25

    Google Scholar 

  77. DLC Coatings, Diamonex DLC, Allentown PA. http://www.diamonex.com/products/dlc-coatings/?gclid=CJmHsfmznbQCFdG6zAod000ABQ. Accessed 15 Dec 2012

  78. Allendorf M (1998) From Bunsen to VLSI—150 years of growth in chemical vapor deposition. Electrochem Soc Interface (Springer) 1998:1–3

    Google Scholar 

  79. Industrial Carbon. http://www.most.gov.mm/techuni/media/ChT_06014_16.pdf. Accessed 06 Dec 2012

  80. Pakkala A, Putkonen M (2010) Atomic layer deposition. In: Martin PM (ed) Handbook of deposition technologies for films and coatings, 3rd edn. Elsevier, Oxford

    Google Scholar 

  81. Kern W, Ban VS (1978) Chemical vapor deposition of inorganic thin films. In: Vossen JL, Kern W (eds) Thin film processes. Academic Press, New York

    Google Scholar 

  82. Mond L, Langer C, Quincke F (1890) Action of carbon monoxide on nickel. J Chem Soc Trans 57:749–753. doi:10.1039/CT8905700749

    Article  Google Scholar 

  83. Editors Encycl Britannica (2013) Ludwig Mond. Encycl Britannica. http://www.britannica.com/EBchecked/topic/389055/Ludwig-Mond. Accessed 18 Jan 2013

  84. Crowther JG (2012) J Willard Gibbs. Encycl Britannica. http://www.britannica.com/EBchecked/topic/233207/J-Willard-Gibbs. Accessed 29 March 2014

  85. Editors Encycl Britannica (2014) Enthalpy. Encycl Britannica. http://www.britannica.com/EBchecked/topic/188914/enthalpy. 29 March 2014

  86. Drake GWF (2014) Entropy. Encycl Britannica. http://www.britannica.com/EBchecked/topic/189035/entropy. Accessed 29 March 2014

  87. Sirtl E, Hunt LP, Sawyer DH (1974) High temperature reactions in the silicon–hydrogen–chlorine system. J Electrochem Soc 121:919–925

    Article  Google Scholar 

  88. Ellingham diagrams (2013) MIT, Cambridge, MA. http://web.mit.edu/2.813/www/readings/Ellingham_diagrams.pdf. Accessed 19 Jan 2013

  89. Ellingham Harald Johann Thomas (2013) AIM25 http://www.aim25.ac.uk/cgi-bin/vcdf/detail?coll_id=2625&inst_id=3&nv1=search&nv2=. Accessed 19 January 2013

  90. Adolf Eugen Fick (1852–1937) Science museum. http://www.sciencemuseum.org.uk/broughttolife/people/adolfeugenfick.aspx. Accessed 14 Jan 2013

  91. Rundle PC (1968) The epitaxial growth of silicon in vertical reactors. Int J Electronics 24:405–413

    Article  Google Scholar 

  92. The Arrhenius Equation (2013) Shodor. http://www.shodor.org/unchem/advanced/kin/arrhenius.html. Accessed 17 Jan 2013

  93. Svante Arrhenius—Biography (2013) Nobelprize.org. Nobel Media AB. http://www.nobelprize.org/nobel_prizes/chemistry/laureates/1903/arrhenius-bio.html. Accessed 17 January 2013

  94. Kern W (1989) Chemical vapor deposition. In: Levy R, Levi RA (eds) Microelectronic materials and processes. Kluwer, Dordrecht

    Google Scholar 

  95. Sze SM, Ng KK (2006) Physics of semiconductor devices. Wiley, Hoboken

    Book  Google Scholar 

  96. Ruska WS (1987) Microelectronic processing. McGraw-Hill, New York

    Google Scholar 

  97. Büttgenbach S (1994) Mikromechanik, 2nd edn. Teubner Studienbücher Angewandte Physik (Teubner textbooks of applied physics). B.G. Teubner, Stuttgart

    Google Scholar 

  98. Reinberg AR (1974) The hydrogen content of plasma-deposited silicon nitride. The Electrochem Soc Ext Abstr 74-1 # 6

    Google Scholar 

  99. Oxford Instruments (2013) Plasma enhanced chemical vapour deposition. http://www.oxford-instruments.com/products/etching-deposition-and-growth/plasma-etch-deposition/pecvd. Accessed 17 Jan 2013

  100. Oxford Instruments (2013) Basic PECVD plasma processes (SiH based). www.ndl.narl.org.tw/cht/doc/3-1-1-0/T19/T19_B1.pdf. Accessed 17 Jan 2013

  101. Mackencie KD, Johnson DJ, DeVre MW, Westerman RJ, Reelfs BH (2005) Stress control of Si-based PECVD dielectrics. In: 207th Electrochemical society meeting, proceedings of symposium silicon nitride and silicon dioxide thin insulating films and other emerging dielectrics VIII, PV2005-01, pp 148–159

    Google Scholar 

  102. Oxford Instruments (2013) Inductively coupled plasma chemical Vapour deposition (ICP CVD). http://www.oxford-instruments.com/products/etching-deposition-and-growth/plasma-etch-deposition/icp-cvd. Accessed 17 Jan 2013

  103. Oxford Instruments (2013) ICP PECVD application note. http://www.oxfordplasma.de/technols/dpicpecr.htm. Accessed 23 Jan 2013

  104. Oxford Instruments (2001) Application note PDT-06

    Google Scholar 

  105. Thomas O (2010) Inductively coupled plasma chemical vapour deposition (ICP-CVD)—White paper. Oxford Instruments Plasma Technology, Bristol

    Google Scholar 

  106. Roy SK (1988) Laser chemical vapour deposition. Bull Mater Sci 11:129–135

    Article  Google Scholar 

  107. Eden JG (1991) Photochemical vapor deposition. In: Vossen JL, Kern W (eds) Thin film processes II. Academic Press, San Diego

    Google Scholar 

  108. Terrill RE, Church KH, Moon M (1998) Laser chemical vapor deposition for microelectronics production. IEEE Aerosp Conf 1:377–382

    Google Scholar 

  109. CVD Equipment Corporation (2013) Storage and gas delivery cabinets for UHP processes. http://www.products.cvdequipment.com/products/gascabinet/. Accessed 22 Jan 2013

  110. CVD Equipment Corporation (2013) Exhaust gas conditioning system. http://www.products.cvdequipment.com/products/gascondsys/

  111. Boyd SB (2012) Life cycle assessment of semiconductors. Springer, New York

    Book  Google Scholar 

  112. Handbook Committee (1992) ASM Handbook, vol 10: materials characterization, 3rd printing. ASM International

    Google Scholar 

  113. Pinna N, Knez M (eds) (2012) Atomic Layer deposition of nanostructured materials. Wiley-VCH, Weinheim

    Google Scholar 

  114. Profijt HB, Potts SE, van de Sanden MCM, Kessels WMM (2011) Plasma-assisted atomic layer deposition: basics, opportunities, and challenges. J Vac Sci Technol A 29:050801. doi:10.1116/1.3609974

  115. Puurunen RL (2005) Surface chemistry of atomic layer deposition: A case study for the trimethylaluminum/water process. J Appl Phys 97:121301. doi:10.1063/1.1940727

    Article  Google Scholar 

  116. Suntola T (2004) Thirty years of ALD. http://www.sci.fi/~suntola/Presentations/2004%20HY,%2030%20years%20of%20ALD.pdf. Accessed 19 Jan 2013

  117. Su JR (2012) Introduction to atomic layer deposition (ALD). National Chiao Tung University, Hsinchu, Taiwan. http://rdweb.adm.nctu.edu.tw/modules/mod_table/files/2011011710065875-4-0.pdf. Accessed 19 Jan 2013

  118. Kessels E, Hodson Ch, Sharp T, Peter A (2012) Latest advances in plasma techniques for ALD. Oxford Instruments Plasma Technology, Bristol

    Google Scholar 

  119. Granneman E, Fischer P, Pierreux D, Terhorst H, Zagwijn P (2007) Batch ALD: Characteristics, comparison with single wafer ALD, and examples. Surf Coat Technol 201:8899–8907

    Article  Google Scholar 

  120. Caro J (2013) Precursor composition. PCI, Leibniz Universität Hannover, Germany

    Google Scholar 

  121. Oxford Instruments (2013) Atomic layer deposition (ALD). http://www.oxford-instruments.com/products/etching-deposition-and-growth/plasma-etch-deposition/atomic-layer-deposition. Accessed 19 Jan 2013

  122. Alasaarela T, Korn D, Alloatti L, Säynätjoki A, Tervonen A, Palmer R, J. Leuthold J, Freude W, Honkanen S (2011) Reduced propagation loss in silicon strip and slot waveguides coated by atomic layer deposition. Opt Express 19, 12:11529–11538. http://dx.doi.org/10.1364/OE.19.011529

  123. Howson RP (1994) The reactive sputtering of oxides and nitrides. Pure Appl Chem 66:1311–1318

    Article  Google Scholar 

  124. Hollars DR, Rosenblum MP, Peterson CT (2002) Sputtering apparatus and process for high rate coating. US patent 6,488.824. http://www.google.com/patents?hl=en&lr=&vid=USPAT6365010&id=s8MKAAAAEBAJ&oi=fnd&dq=Dual+Rotary+Magnetron+Coating&printsec=abstract#v=onepage&q=Dual%20Rotary%20Magnetron%20Coating&f=false. Accessed 5 Feb 2013

  125. Olsson MK, Macák K, Graf W (1999) Reactive d.c. sputter deposited Al2O3 films: large-area coatings for industrial applications. Surf Coat Technol 122:202–207

    Article  Google Scholar 

  126. Hollars DR (2001) Optical films by reactive sputtering. In: Proc 48th AVS international symposium, San Francisco

    Google Scholar 

  127. Thompson LF (1994) Resist processing. In: Thompson LF, Willson GC, Bowden MJ (eds) Introduction into microlithography, 2nd edn. American Chemical Society, Washington

    Google Scholar 

  128. MEMS Thin Film Deposition Processes (2013) MEMSnet®. http://www.memsnet.org/mems/processes/deposition.html. Accessed 02 Feb 2013

  129. Spin Coating Theory (2013) IEEE components, packaging and manufacturing technology society. http://www.cpmt.org/mm/pkglab/theory/spin_theory.html. Accessed 02 Feb 2013

  130. Paik J-A, Fan S-K, Chang H, Kim Ch-J, Wu MC, Dunn B (2004) Development of spin coated mesoporous oxide films for MEMS Structures. J Electroceram 13:423–428

    Article  Google Scholar 

  131. Cooper KA, Hamel C, Whitney B (2007) Conformal photoresist coating for high aspect ratio features. In: Proceedings of the IWLPC. http://www.suss.com/fileadmin/user_upload/technical_publications/WP_Conformal_Photoresist_Coatings_for_High_Aspect_Ratio_Features_09.pdf. Accessed 02 Feb 2013

  132. Süss MicroTec (2013) Enabling GYRSET coating technology. http://www.suss.com/en/products-solutions/products/spin-spray-coater-developer/options/enabling-gyrset-coating-technology.html. Accessed 04 Feb 2013

  133. Pham NP, Boellard E, Sarro PM, Burghartz JN (2002) Spin, spray coating and electrodeposition of photoresist for MEMS structures—a comparison. Proc SAFE 2002, pp 81–85

    Google Scholar 

  134. Pham NP, Scholtes TL, Klerk R, Wieder B, Sarro PM, Burghartz JN (2001) Direct spray coating of photoresist for MEMS applications. doi:10.1117/12.442960

  135. Pham NP, Burghartz JN, Sarro PM (2005) Spray coating of photoresist for pattern transfer on high topography surfaces. J Micromech Microeng 15:691–697

    Article  Google Scholar 

  136. Pabo EF, Kurotaki H, Lindner P, Matthias T, Kettner P (2011) Advances in spray coating technologies for MEMS, 3DICs and additional applications. In: Proceeding of the IEEE 13th EPTC, pp 349–353

    Google Scholar 

  137. Dip Coating (2013) YTC America Inc. http://www.ytca.com/dip_coating. Accessed 6 Feb 2013

  138. Satcher J (2005) Novel materials for chemistry. Sci Technol Rev 5. https://www.llnl.gov/str/May05/Satcher.html. Accessed 6 Feb 2013

  139. Caro J (2013) PCI. Leibniz Universität Hannover, Germany

    Google Scholar 

  140. Schlesinger M, Paunovic M (eds) (2010) Modern Electroplating. Wiley, Hoboken

    Google Scholar 

  141. Ritzdorf T (2009) Electrochemical deposition processes and tools. In: Shacham-Diamand Y, Osaka T, Datta M, Ohba T (eds) Advanced nanoscale ULSI interconnects: fundamentals and applications. Springer, New York

    Google Scholar 

  142. The Baghdad Batteries (2013) Ancient Wisdom. http://www.ancient-wisdom.co.uk/baghdadbatteries.htm. Accessed 02 Feb 2013

  143. National Museum Baghdad: 10 years later (2013) Archeology. http://www.archaeology.org/exclusives/articles/779-national-museum-baghdad-looting-iraq. Accessed 1 April 2014

  144. Shukla AK, Kumar TP (2008) Pillars of modern electrochemistry: a brief history. Electrochem Encycl. http://electrochem.cwru.edu/encycl/art-p05-pillars-of-ec.htm. Accessed 2 Feb 2013

  145. Schlesinger M (2013) Electroplating. Electrochem Encycl. http://electrochem.cwru.edu/encycl/art-e01-electroplat.htm, Accessed 14 Feb 2013

  146. Editors Encycl Britannica (2013) Faraday’s laws of electrolysis. Encycl Britannica. http://www.britannica.com/EBchecked/topic/201755/Faradays-laws-of-electrolysis. Accessed 2 Feb 2013

  147. Datta M, Landolt D (2000) Fundamental aspects and applications of electrochemical microfabrication. Electrochim Acta 45:2535–2558

    Article  Google Scholar 

  148. Paunovic M, Schlesinger M, Snyder DD (2010) Fundamental considerations. In: Schlesinger M, Paunovic M (eds) Modern Electroplating. Wiley, Hoboken

    Google Scholar 

  149. Helmenstine AM (2013) Nernst equation: electrochemistry calculations using the Nernst equation. About.com. http://chemistry.about.com/od/electrochemistry/a/nernstequation.htm. Accessed 16 Feb 2013

  150. Walther Nernst—Biography (2013) Nobelprize.org. Nobel Media AB. http://www.nobelprize.org/nobel_prizes/chemistry/laureates/1920/nernst-bio.html. Accessed 19 Feb 2013

  151. Millazzo G, Caroli S (1978) Tables of standard electrode potentials. Wiley, New York

    Google Scholar 

  152. Kopeliovich D (2013) Electroplating alloys. Subst Technol. http://www.substech.com/dokuwiki/doku.php?id=electroplating_alloys. Accessed 26 Feb 2013

  153. Romankiv LT, Krongelb S (2012) The thin film magnetic head—early inventions and their ongoing impact on magnetic storage and electrochemistry. In: Krongelb S, Bonhote C, Brankovic SR, Gatzen HH, Hesketh P, Kitamo Y, Osaka T, Schwarzacher W, Zangari G (eds) Magnetic materials, processes, and devices 12. Electrochemical Society, Pennington

    Google Scholar 

  154. Powers JV, Romankiv LT (1972) Electroplating cell including means to agitate the electrolyte in laminar flow. US patent 3,652,442

    Google Scholar 

  155. Ritzdorf T (2010) Manufacturing tools. In: Schlesinger M, Paunovic M (eds) Modern electroplating. Wiley, Hoboken

    Google Scholar 

  156. Tabakovic I, Riemer S, Tabakovic K, Sun M, Kief M (2006) Mechanism of Saccharin transformation to metal sulfides and effect of inclusions on corrosion susceptibility of electroplated CoFe magnetic films. J Electrochem Soc 153:C586–C593. http://jes.ecsdl.org/content/153/8/C586.full.pdf+html. Accessed 26 Feb 2013

  157. Bhandari A, Hearne SJ, Sheldon BW, Soni SK (2009) Microstructural origins of saccharin-induced stress reduction in electrodeposited Ni. J Electrochem Soc 156:D279

    Google Scholar 

  158. Vittal R, Gomathi H, Kim K-J (2006) Surfactants in electrochemistry and in the modification of electrodes. Adv Colloid Interface Sci 119:155–168. http://www.sciencedirect.com/science/article/pii/S0001868605001120. Accessed 26 Feb 2013

  159. Edelstein D, Heidenreich J, Goldblatt R, Cote W, Uzoh C, Lustig N, Roper P, McDevitt T, Motsiff W, Simon A, Dukovic J, Wachnik R, Rathore H, Schulz R, Su L, Luce C, Slattery J (1997) Full copper wiring in a sub-0.25 µm CMOS ULSI technology. In: Proceedings of the IEEE IEDM, pp 773–776

    Google Scholar 

  160. Khan M, Kim MS (2011) Damascene process and chemical mechanical. planarization. Department of Electrical and Computer Engineering. http://www.ece.umd.edu/class/enee416/GroupActivities/Damascene%20Presentation.pdf. Accessed 05 March 2013

  161. Zangari G (2012) Microelectromechanical Systems. In: Schlesinger M, Paunovic M (eds) Modern Electroplating. Wiley, Hoboken

    Google Scholar 

  162. Krongelb S, Bonhote C, Brankovic SR, Gatzen HH, Hesketh P, Kitamo Y, Osaka T, Schwarzacher W, Zangari G (eds) (2012) Magnetic materials, processes, and devices 12. The Electrochemical Society, Pennington

    Google Scholar 

  163. Biskeborn RG, Czarnecki WS, Decad GM, Fontana RE, Iben IE, Liang J, Lo C, Randall L, Rice P, Ting A, Topuria T (2012) Linear magnetic tape heads and contact recording. In: Krongelb S, Bonhote C, Brankovic SR, Gatzen HH, Hesketh P, Kitamo Y, Osaka T, Schwarzacher W, Zangari G (eds) Magnetic materials, processes, and devices 12. The Electrochemical Society, Pennington

    Google Scholar 

  164. Gatzen HH (2012) Magnetic micro and nano actuator systems. In: Krongelb S, Bonhote C, Brankovic SR, Gatzen HH, Hesketh P, Kitamo Y, Osaka T, Schwarzacher W, Zangari G (eds) Magnetic materials, processes, and devices 12. The Electrochemical Society, Pennington

    Google Scholar 

  165. Schwarzacher W (2006) Electrodeposition, a technology with a future. Electrochem Soc Interface Springer:32–35

    Google Scholar 

  166. Lechtman H (1984) Pre-columbian surface metallurgy. Sci Am 6:56–63

    Article  Google Scholar 

  167. Electrophoresis (2013) TheFreeDictionary. http://www.thefreedictionary.com/electrophoresis. Accessed 28 Feb 2013

  168. Besra L, Liu M (2007) A review on fundamentals and applications of electrophoretic deposition (EPD). Prog Mater Sci 52:1–61

    Article  Google Scholar 

  169. Stieda L (1889) Reuss, Ferdinand Friedrich von. Allgemeine Deutsche Biographie 28:305–307. http://www.deutsche-biographie.de/sfz76266.html. Accessed 28 Feb 2013

  170. Electrophoretic Coating Technologies Explained! (2013) Electrophoretic.com. http://electrophoretic.com/site/index.php. Accessed 28 Feb 2013

  171. Ansdell DA (1999) Automotive paints. In: Lambourne R, Strivens TA (eds) Paint and surface coatings: theory and practice, 2nd edn. Woodhead, Cambridge

    Google Scholar 

  172. A Brief History of E-coat (2013) Clearclad. http://www.clearclad.com/clearclad_resources/ecoat.htm. Accessed 28 Feb 2013

  173. Bakos P (1973) Electrophoretic photoresist composition and a methode of forming etch resistant masks. US patent 3,738,835

    Google Scholar 

  174. EPD Paining (2013) Wikimedia commons. http://en.wikipedia.org/wiki/File:EDP_painting.png. Accessed 6 March 2013

  175. Electrodeposited Photoresists for Wafer Applications (2011) MicroChem Corp. www.microchem.com/ED%20Resists%20for%20Wafer%20Applications.ppt. Accessed 6 March 2013

  176. Holze R (2014) Zeta-potential. Thieme Römpp online. http://roempp.thieme.de/roempp4.0/do/data/RD-26-00249. Accessed 28 May 2014

  177. Foster JD, White RM (2002) Electrophoretic deposition of the piezoelectric polymer P(VDF-TrFE). In: Proceedings of 201st meeting of the electrochemical society, Philadelphia. http://www.electrochem.org/dl/ma/201/pdfs/1548.pdf. Accessed 6 March 2013

  178. Korobova N, Vodopyanov V, Timoshenkov S (2012) Design and fabrication of piezoelectric MEMS. In: Proceedings of the SPIE 8700, international conference micro- and nano-electronics. http://proceedings.spiedigitallibrary.org/proceeding.aspx?articleid=1555683. Accessed 6 March 2013

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hans H. Gatzen .

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Gatzen, H.H., Saile, V., Leuthold, J. (2015). Deposition Technologies. In: Micro and Nano Fabrication. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-44395-8_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-44395-8_3

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-44394-1

  • Online ISBN: 978-3-662-44395-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics