Skip to main content

Magnetic Ions in Group II–VI Semiconductors

  • Chapter
  • First Online:
X-Ray Absorption Spectroscopy of Semiconductors

Part of the book series: Springer Series in Optical Sciences ((SSOS,volume 190))

  • 2235 Accesses

Abstract

The group II–VI materials include a number of technologically important systems ranging from IR detection materials (Hg\(_{1-\mathrm{x}}\)Cd\(_\mathrm{x}\)Te), to X-ray detectors (Cd\(_{1-\mathrm{x}}\)Zn\(_\mathrm{x}\)Te), and the versatile ZnO. With the advent of interest in magnetic semiconductors for possible spintronics application, doping the II–VI compounds with transition metals was seen as potential route to such materials. EXAFS and XANES have proven very useful in characterizing such materials. They can determine the location and valence of the dopants, and are sensitive to potential second phase formation. This chapter looks at the application of XAS methods to a variety of magnetically doped II–VI systems over the last 30 years.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. P. Norton, HgCdTe infrared detectors. Opto-electron. Rev. 10, 159–174 (2002)

    Google Scholar 

  2. U. Ozgur, Y.I. Alivov, C. Liu, A. Teke, M.A. Reshchikov, S. Dogan, V. Avrutin, S.J. Cho, H. Morkoc, A comprehensive review of ZnO materials and devices. J. Appl. Phys. 98, 041103–041301 (2005)

    Article  Google Scholar 

  3. J.K. Furdyna, Diluted magnetic semiconductors. J. Appl. Phys. 64, R29–R64 (1988)

    Article  ADS  Google Scholar 

  4. A.H. MacDonald, P. Schiffer, N. Samarth, Ferromagnetic semiconductors: moving beyond (Ga, Mn)As. Nat. Mater. 4, 195–202 (2005)

    Article  ADS  Google Scholar 

  5. T. Dietl, H. Ohno, F. Matsukura, J. Cibert, D. Ferrand, Zener model description of ferromagnetism in zinc-blende magnetic semiconductors. Science 287, 1019–1022 (2000)

    Article  ADS  Google Scholar 

  6. F. Pan, C. Song, X.J. Liu, Y.C. Yang, F. Zeng, Mater. Sci. Eng. R62, 1–35 (2008)

    Article  Google Scholar 

  7. S.A. Wolf, D.D. Awschalom, R.A. Buhrman, J.M. Daughton, S. von Molnár, M.L. Roukes, A.Y. Chtchelkanova, D.M. Treger, Spintronics: a spin-based electronics vision for the future. Science 294, 1488–1495 (2001)

    Article  ADS  Google Scholar 

  8. N. Samarth, Ferromagnetic semiconductors: ruled by a magnetic-rich minority. Nat. Mater. 6, 403–404 (2007)

    Article  ADS  Google Scholar 

  9. K.A. Yates, A.J. Behan, J.R. Neal, D.S. Score, H.J. Blythe, G.A. Gehring, S.M. Heald, W.R. Branford, L.F. Cohen, Spin-polarized transport current in n-type codoped ZnO thin films measured by Andreev spectroscopy. Phys. Rev. B 80, 245207 (2009)

    Article  ADS  Google Scholar 

  10. F. Baudelet, X-ray Magnetic Circular Dichroism in Neutron and X-ray Spectroscopy, ed. by F. Hippert et al. (Springer, Dordrecht, 2006), pp. 103–130

    Google Scholar 

  11. J.C. Mikkelsen Jr., J.B. Boyce, Atomic-scale structure of random solid solutions: extended X-ray-absorption fine-structure study of Ga\(_{1-{\rm x}}\)In\(_{\rm x}\)As. Phys. Rev. Lett. 49, 1412–1415 (1982)

    Google Scholar 

  12. A. Balzarotti, N. Motta, A. Kisiel, M. Zimnal-Starnawska, M.T. Czyyk, M. Podgórny, Model of the local structure of random ternary alloys: experiment versus theory. Phys. Rev. B 31, 7526–7539 (1985)

    Article  ADS  Google Scholar 

  13. A. Balzarotti, Lattice distortions around atomic substitutions in II–VI alloys. Phys. B+C 146, 150–175 (1987)

    Google Scholar 

  14. R.A. Mayanovic, W.F. Pong, B.A. Bunker, X-ray-absorption fine-structure studies of Hg\(_{1-{\rm x}}\)Cd\(_{\rm x}\)Te and Hg\(_{1-{\rm x}}\)Mn\(_{\rm x}\)Te bond lengths: bond relaxation and structural stability of ternary alloys. Phys. Rev. B 42, 11174–11182 (1990)

    Google Scholar 

  15. R.J. Iwanowski, K. ławniczak-Jabłońska, I. Winter, J. Hormes, EXAFS studies of local atomic structure in Zn\(_{1-x}\) Mn\(_{x}\)S. Solid State Commun. 97, 879–885 (1996)

    Article  ADS  Google Scholar 

  16. B.V. Robouch, A. Kisiel, J. Konior, Statistical model for atomic distances and site occupation in zinc-blende diluted magnetic semiconductors (DMSs). J. Alloy Compd. 340, 13–26 (2002)

    Article  Google Scholar 

  17. H. Saito, W. Zaets, S. Yamagata, Y. Suzuki, K. Ando, Ferromagnetism in II-VI diluted magnetic semiconductor Zn\(_{1-x}\) Cr \(_{x}\) Te. J. Appl. Phys. 91, 8085–8087 (2002)

    Article  ADS  Google Scholar 

  18. H. Saito, V. Zayets, S. Yamagata, K. Ando, Room-temperature ferromagnetism in a II-VI diluted magnetic semiconductor Zn\(_{1-x}\) Cr\(_{x}\) Te. Phys. Rev. Lett. 90, 207202 (2003)

    Article  ADS  Google Scholar 

  19. W.-H. Xie, B.-G. Liu, Half-metallic ferromagnetism in ternary transition-metal compounds based on ZnTe and CdTe semiconductors. J. Appl. Phys. 96, 3559–3561 (2004)

    Article  ADS  Google Scholar 

  20. K. Shinji, O. Nobuhiko, N. Nozomi, K. Tatsumi, M. Stéphane, T. Kôki, Growth and magnetic properties of novel ferromagnetic semiconductor (Zn, Cr) Te. Sci. Technol. Adv. Mater. 6, 558 (2005)

    Article  Google Scholar 

  21. H. Kobayashi, Y. Nishio, K. Kanazawa, S. Kuroda, M. Mitome, Y. Bando, Structural analysis of the phase separation in magnetic semiconductor (Zn, Cr)Te. Phys. B: Condens. Matter 407, 2947–2949 (2012)

    Article  ADS  Google Scholar 

  22. S. Kuroda, N. Nishizawa, K. Takita, M. Mitome, Y. Bando, K. Osuch, T. Dietl, Origin and control of high-temperature ferromagnetism in semiconductors. Nat. Mater. 6, 440–446 (2007)

    Article  ADS  Google Scholar 

  23. T.C. Kaspar, S.M. Heald, C.M. Wang, J.D. Bryan, T. Droubay, V. Shutthanandan, S. Thevuthasan, D.E. McCready, A.J. Kellock, D.R. Gamelin, S.A. Chambers, Negligible magnetism in excellent structural quality Cr\(_{x}\) Ti\(_{1-x}\) O\(_{2}\) anatase: contrast with high-T\(_{C}\) ferromagnetism in structurally defective Cr\(_{x}\) Ti\(_{1-x}\) O\(_{2}\). Phys. Rev. Lett. 95, 217203 (2005)

    Article  ADS  Google Scholar 

  24. K. Sato, H. Katayama-Yoshida, Material design for transparent ferromagnets with ZnO-based magnetic semiconductors. Jpn. J. Appl. Phys. 39 L555 (2000)

    Google Scholar 

  25. K. Ueda, H. Tabata, T. Kawai, Magnetic and electric properties of transition-metal-doped ZnO films. Appl. Phys. Lett. 79, 988–990 (2001)

    Article  ADS  Google Scholar 

  26. S.A. Chambers, Ferromagnetism in doped thin-film oxide and nitride semiconductors and dielectrics. Surf. Sci. Rep. 61, 345–381 (2006)

    Article  ADS  Google Scholar 

  27. J.M.D. Coey, Dilute magnetic oxides. Curr. Opin. Solid State Mater. 10, 83 (2006)

    Article  ADS  Google Scholar 

  28. S.J. Pearton, D.P. Norton, M.P. Ivill, A.F. Hebard, J.M. Zavada, W.M. Chen, I.A. Buyanova, Ferromagnetism in transition-metal doped ZnO. J. Electron. Mater. 36, 462–471 (2007)

    Article  ADS  Google Scholar 

  29. J.H. Park, M.G. Kim, H.M. Jang, S. Ryu, Y.M. Kim, Co-metal clustering as the origin of ferromagnetism in Co-doped ZnO thin films. Appl. Phys. Lett. 84, 1338 (2004)

    Article  ADS  Google Scholar 

  30. S. Deka, R. Pasricha, P.A. Joy, Experimental comparison of the structural, magnetic, electronic, and optical properties of ferromagnetic and paramagnetic polycrystalline Zn \(_{1-x}\)Co\(_{x}\)O (x=0, 0.05, 0.1). Phys. Rev. B 74, 033201 (2006)

    Article  ADS  Google Scholar 

  31. T.C. Kaspar, T. Droubay, S.M. Heald, M.H. Engelhard, P. Nachimuthu, S.A. Chambers, Hidden ferromagnetic secondary phases in cobalt-doped ZnO epitaxial thin films. Phys. Rev. B 77, 201303(R) (2008)

    Article  ADS  Google Scholar 

  32. K. Rode, R. Mattan, A. Anane, V. Cros, E. Jacquet, J.-P. Contour, F. Petroff, A. Fert, M.-A. Arrio, P. Sainctavit, P. Bencok, F. Wilhelm, N.B. Brookes, A. Rogalev, Magnetism of (Zn, Co)O thin films probed by x-ray absorption spectroscopies. Appl. Phys. Lett. 92, 012509 (2008)

    Article  ADS  Google Scholar 

  33. A.R. Han, S.-J. Hwang, Y. Zhao, Y.-U. Kwon, X-ray absorption spectroscopic and magnetic characterization of cobalt-doped zinc oxide nanocrystals prepared by the molten-salt method. J. Magn. Magn. Mater. 320, 1591 (2008)

    Article  ADS  Google Scholar 

  34. T.C. Kaspar, T. Droubay, Y. Li, S.M. Heald, P. Nachimuthu, C.M. Wang, V. Shutthanandan, C.A. Johnson, D.R. Gamelin, S.A. Chambers, Lack of ferromagnetism in n-type cobalt-doped ZnO epitaxial thin films. New J. Phys. 10, 055010 (2008)

    Article  ADS  Google Scholar 

  35. M. Venkatesan, C.B. Fitzgerald, J.G. Lunney, J.M.D. Coey, Phys. Rev. Lett. 93, 177206 (2004)

    Article  ADS  Google Scholar 

  36. C. Song, K.W. Geng, F. Zeng, X.B. Wang, Y.X. Shen, F. Pan, Y.N. Xie, T. Liu, H.T. Zhou, Z. Fan, Phys. Rev. B 73, 024405 (2006)

    Article  ADS  Google Scholar 

  37. P. Sati, R. Hayn, R. Kuzian, S. Regnier, S. Schafer, A. Stepanov, C. Morhain, C. Deparis, M. Laugt, M. Goiran, Z. Golacki, Phys. Rev. Lett. 96, 017203 (2006)

    Article  ADS  Google Scholar 

  38. K.R. Kittilstved, D.A. Schwartz, A.C. Tuan, S.M. Heald, S.A. Chambers, D.R. Gamelin, Direct kinetic correlation of carriers and ferromagnetism in Co2+: ZnO. Phys. Rev. Lett. 97, 037203 (2006)

    Article  ADS  Google Scholar 

  39. H.-J. Lee, S.H. Choi, C.R. Cho, H.K. Kim, S.-Y. Jeong, The formation of precipitates in the ZnCoO system. Europhys. Lett. 72, 76 (2005)

    Article  ADS  Google Scholar 

  40. A. Ney, M. Opel, T.C. Kaspar, V. Ney, S. Ye, K. Ollefs, T. Kammermeier, S. Bauer, K.W. Nielsen, S.T.B. Goennenwein, M.H. Engelhard, S. Zhou, K. Potzger, J. Simon, W. Mader, S.M. Heald, J.C. Cezar, F. Wilhelm, A. Rogalev, R. Gross, S.A. Chambers, Advanced spectroscopic synchrotron techniques to unravel the intrinsic properties of dilute magnetic oxides: the case of Co:ZnO. New J. Phys. 12, 013020 (2010)

    Article  ADS  Google Scholar 

  41. S.M. Heald, T. Kaspar, T. Droubay, V. Shutthanandan, S. Chambers, A. Mokhtari, A.J. Behan, H.J. Blythe, J.R. Neal, A.M. Fox, G.A. Gehring, X-ray absorption fine structure and magnetization characterization of the metallic Co component in Co-doped ZnO thin films. Phys. Rev. B (Condens. Matter Mater. Phys.) 79, 075202–075211 (2009)

    Article  ADS  Google Scholar 

  42. J.M.D. Coey, M. Venkatesan, C.B. Fitzgerald, Donor impurity band exchange in dilute ferromagnetic oxides. Nat. Mater. 4, 173–179 (2005)

    Article  ADS  Google Scholar 

  43. T. Fukumura, Z. Jin, A. Ohtomo, H. Koinuma, M. Kawasaki, An oxide-diluted magnetic semiconductor: Mn-doped ZnO. Appl. Phys. Lett. 75, 3366–3368 (1999)

    Article  ADS  Google Scholar 

  44. T. Fukumura, Z. Jin, M. Kawasaki, T. Shono, T. Hasegawa, S. Koshihara, H. Koinuma, Magnetic properties of Mn-doped ZnO. Appl. Phys. Lett. 78, 958–960 (2001)

    Article  ADS  Google Scholar 

  45. C.N.R. Rao, F.L. Deepak, Absence of ferromagnetism in Mn- and Co-doped ZnO. J. Mater. Chem. 15, 573–578 (2005)

    Article  Google Scholar 

  46. T.C. Droubay, D.J. Keavney, T.C. Kaspar, S.M. Heald, C.M. Wang, C.A. Johnson, K.M. Whitaker, D.R. Gamelin, S.A. Chambers, Correlated substitution in paramagnetic Mn2+-doped ZnO epitaxial films. Phys. Rev. B 79, 155203 (2009)

    Article  ADS  Google Scholar 

  47. W. Yan, Z. Sun, Q. Liu, Z. Li, Z. Pan, J. Wang, S. Wei, D. Wang, Y. Zhou, X. Zhang, Zn vacancy induced room-temperature ferromagnetism in Mn-doped ZnO. Appl. Phys. Lett. 91, 062113–062113 (2007)

    Article  ADS  Google Scholar 

  48. S.J. Han, J.W. Song, C.H. Yang, S.H. Park, J.H. Park, Y.H. Jeong, K.W. Rhie, A key to room-temperature ferromagnetism in Fe-doped ZnO: Cu. Appl. Phys. Lett. 81, 4212–4214 (2002)

    Article  ADS  Google Scholar 

  49. J.H. Shim, T. Hwang, S. Lee, J.H. Park, S.-J. Han, Y.H. Jeong, Origin of ferromagnetism in Fe- and Cu-codoped ZnO. Appl. Phys. Lett. 86, 082503–082503 (2005)

    Article  ADS  Google Scholar 

  50. X.X. Wei, C. Song, K.W. Geng, F. Zeng, B. He, F. Pan, Local Fe structure and ferromagnetism in Fe-doped ZnO films. J. Phys.: Condens. Matter 18, 7471 (2006)

    ADS  Google Scholar 

  51. H. Liu, J. Yang, Z. Hua, Y. Liu, L. Yang, Y. Zhang, J. Cao, Cu-doping effect on structure and magnetic properties of Fe-doped ZnO powders. Mater. Chem. Phys. 125, 656–659 (2011)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steve M. Heald .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Heald, S.M. (2015). Magnetic Ions in Group II–VI Semiconductors. In: Schnohr, C., Ridgway, M. (eds) X-Ray Absorption Spectroscopy of Semiconductors. Springer Series in Optical Sciences, vol 190. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-44362-0_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-44362-0_16

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-44361-3

  • Online ISBN: 978-3-662-44362-0

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics