Skip to main content

Transgenesis and Genome Manipulations

  • Chapter
  • First Online:
Genetics of the Mouse

Abstract

In the early 1980s, the expression of transgenic animals was proposed to define animals having foreign DNA sequences stably and deliberately inserted into their genome through human intermediaries. With time and the advent of new techniques, this concept has progressively evolved, and nowadays, it is probably more appropriate to consider that transgenic animals are animals whose genetic characteristics have been altered using one of the techniques of genetic engineering. Whatever the definition, transgenic animals belong to the category of genetically modified or genetically engineered organisms (GMOs).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    For this reason, the technique is sometimes designated “pronuclear transgenesis.

  2. 2.

    The genetic elements regulating gene expression are sometimes numerous and not always located in the close vicinity of structural genes. This explains (at least in part) why cloned structural genes, when used as transgenes, are sometimes regulated differently from the same genes in their natural, native environment (see Chap. 5). This point is inherent to transgenesis by in ovo injection and must always be kept in mind.

  3. 3.

    In situ hybridization with labeled cDNAs is another way of analyzing the expression profile of a given gene.

  4. 4.

    The phage-transfected bacteria with mutations in the lacI gene form blue plaques, whereas bacteria with a non-mutated lacI form colorless plaques in tests with the Big Blue® strain. With the Muta™Mouse strain, the basic principle is similar but the color of the plaques depends upon the experimental conditions.

  5. 5.

    The first of the two alleles resulting from a transgenic insertion at the Formin locus (Fmn-Chr 5) has been known for a long time under the name of limb deformity (ld).

  6. 6.

    Well before the development of ES cells, another kind of cell, the embryonal carcinoma or EC cells, was used by oncologists and geneticists for investigating the genetics of cell–tissue differentiation. These cells were derived from spontaneous or experimentally induced testicular or ovarian teratocarcinomas (Stevens 1960). They were cultured in vitro, in the form of stable undifferentiated cell lines and then transplanted into mice of the same strain (syngeneic transplantation). Most of these cell lines, once engrafted, were able to differentiate into a variety of tissue (nervous tissue, bone, fat tissue, muscle, etc.), and some even proved able to participate in the formation of a chimeric organism (Papaioannou et al. 1975). They had, however, major drawbacks for the study of tissue differentiation: They were malignant and became rapidly aneuploid, and accordingly, they could not be used for the production of chimeric mice with germ line transmission.

  7. 7.

    Induced pluripotent stem cells (iPSCs) are pluripotent cells derived from adult somatic cells after forced re-expression of some specific genes that are normally inactive. Such cells have been established in many species including human and mice. These iPSCs have many characteristics in common with ES cells and are being used in many experiments (for example, in the area of regenerative medicine). However, they have no obvious advantages over the long-established ES cells for the production of transgenic mice, and accordingly, they will not be considered in this chapter.

  8. 8.

    The two strains C57BL/6N (ES cells) and C57BL/6J (genome sequence) are not completely identical, and recent estimates indicate a difference of ~1–2 % (SNPs) at the genome level (see Chap. 9).

  9. 9.

    Mutations at the mouse Hprt locus probably occurred spontaneously in the past but were not recorded due to the complete absence of symptoms in the affected mice. We will never know for sure.

  10. 10.

    The observation of differences (sometimes dramatic) in the symptomatology associated with a human syndrome and those observed in mice affected by mutations in the same orthologous gene is common. This, however, does not affect the value of the model.

  11. 11.

    For their discoveries of the principles for introducing specific gene modifications in mice by the use of embryonic stem cells Drs. Mario Capecchi, Martin Evans, and Oliver Smithies were awarded the Nobel Prize in Medicine or Physiology in 2007.

  12. 12.

    The definition of knock-in also applies to the targeted insertion (and substitution) of any coding sequence at a particular locus of an organism. In these conditions, and in most instances, the inserted coding sequence is controlled by the regulatory regions of the targeted gene.

  13. 13.

    The HPRT mini-gene is a selection cassette that is unique, since selection may be applied for its presence or absence.

  14. 14.

    Hprt - cells cannot grow in HAT medium because aminopterin blocks the endogenous synthesis of both purines and pyrimidines.

  15. 15.

    Mice of this type are not transgenic animals sensu stricto because they do not have any exogenous DNA sequences “stably inserted into their genome.” However, they are still GMOs.

  16. 16.

    In short, the main difference between a knock-out and a knock-in allele is that, in the case of a knock-in, the gene product is different from the normal allele but still has a function, even if the function in question is totally unrelated to the function of the original allele. In the case of a knock-out, the gene has simply been made inoperative.

  17. 17.

    According to the official nomenclature rules, the symbol for this mutation should be Polb tm1.1Rsky. This was the first targeted mutagenesis at this locus in Rajewsky’s laboratory.

  18. 18.

    This explains why, with such molecular tools, any kind of chromosomal rearrangement can be engineered in vitro. In the past, these chromosomal rearrangements were occasionally collected in the progenies of mice after irradiation in the post-meiotic stages (see Chap. 3).

  19. 19.

    Trapping cassettes have also been designed with a marker gene or a selectable gene coupled to a suitable promoter but lacking a downstream polyadenylation signal. In this case, the transcript was also a hybrid molecule, utilizing the 3′ sequences of the host gene to acquire a poly (A) tail.

  20. 20.

    With, however, some handling fees.

  21. 21.

    Some domestic species (the rat in particular), present phenotypes that have not yet been documented in the mouse; this is why it would be important that the genetic arsenal that has been developed for the mouse be replicated in these other species.

  22. 22.

    A specific ZFN binds with 3 bp at the DNA level. Since there is a great variety of such motifs, a judicious selection of 3–6 of them allows the targeting of a 9–18-bp DNA domain, which is highly specific. Libraries of ready-made ZFNs are also available which allow the targeting of virtually any sequence in the mouse genome.

  23. 23.

    This comment concerning the time necessary to produce a knockout mutation in the mouse genome by using the ZFN strategy, although reduced, must nevertheless be compared with the time necessary to purchase, when available, an ES cell line harboring the same ready-made knockout, when the latter is available in a repository such as KOMP (https://www.komp.org/).

  24. 24.

    CRISPR is an acronym for clusters of regularly interspaced short palindromic repeats.

  25. 25.

    To paraphrase the title of an interesting review on the subject one could say that, nowadays, geneticists have at their disposition “a mouse for all reasons” (International Mouse Knockout Consortium 2007).

References

  • Abiola O, Angel JM, Avner P, Bachmanov AA, Belknap JK, Bennett B, Blankenhorn EP, Blizard DA, Bolivar V, Brockmann GA, Buck KJ, Bureau JF, Casley WL, Chesler EJ, Cheverud JM, Churchill GA, Cook M, Crabbe JC, Crusio WE, Darvasi A, de Haan G, Dermant P, Doerge RW, Elliot RW, Farber CR, Flaherty L, Flint J, Gershenfeld H, Gibson JP, Gu J, Gu W, Himmelbauer H, Hitzemann R, Hsu HC, Hunter K, Iraqi FF, Jansen RC, Johnson TE, Jones BC, Kempermann G, Lammert F, Lu L, Manly KF, Matthews DB, Medrano JF, Mehrabian M, Mittlemann G, Mock BA, Mogil JS, Montagutelli X, Morahan G, Mountz JD, Nagase H, Nowakowski RS, O’Hara BF, Osadchuk AV, Paigen B, Palmer AA, Peirce JL, Pomp D, Rosemann M, Rosen GD, Schalkwyk LC, Seltzer Z, Settle S, Shimomura K, Shou S, Sikela JM, Siracusa LD, Spearow JL, Teuscher C, Threadgill DW, Toth LA, Toye AA, Vadasz C, Van Zant G, Wakeland E, Williams RW, Zhang HG, Zou F; Complex Trait Consortium. (2003) The nature and identification of quantitative trait loci: a community’s view. Nature Review Genetics 4:911–916

    Google Scholar 

  • Adams JM, Harris AW, Pinkert CA, Corcoran LM, Alexander WS, Cory S, Palmiter RD, Brinster RL (1985) The c-myc oncogene driven by immunoglobulin enhancers induces lymphoid malignancy in transgenic mice. Nature 318:533–538

    CAS  PubMed  Google Scholar 

  • Babinet C, Cohen-Tannoudji M (2001) Genome engineering via homologous recombination in mouse embryonic stem (ES) cells: an amazingly versatile tool for the study of mammalian biology. Anais da Academia Brasileira de Ciencias 73:365–383

    CAS  PubMed  Google Scholar 

  • Ballester M, Castelló Anna, Ibáñez E, Sánchez A, Folch JM (2004) Real-time quantitative PCR-based system for determining transgene copy number in transgenic animals. BioTechniques 37:610–613

    Google Scholar 

  • Baron U, Bujard H (2000) Tet repressor-based system for regulated gene expression in eukaryotic cells: principles and advances. Methods Enzymol 327:401–421

    CAS  PubMed  Google Scholar 

  • Becker S, de Angelis MH, Beckers J (2006) Use of chemical mutagenesis in mouse embryonic stem cells. Methods Mol Biol 329:397–407

    CAS  PubMed  Google Scholar 

  • Bradley A, Anastassiadis K, Ayadi A, Battey JF, Bell C, Birling MC, Bottomley J, Brown SD, Bürger A, Bult CJ, Bushell W, Collins FS, Desaintes C, Doe B, Economides A, Eppig JT, Finnell RH, Fletcher C, Fray M, Frendewey D, Friedel RH, Grosveld FG, Hansen J, Hérault Y, Hicks G, Hörlein A, Houghton R, Hrabé de Angelis M, Huylebroeck D, Iyer V, de Jong PJ, Kadin JA, Kaloff C, Kennedy K, Koutsourakis M, Lloyd KC, Marschall S, Mason J, McKerlie C, McLeod MP, von Melchner H, Moore M, Mujica AO, Nagy A, Nefedov M, Nutter LM, Pavlovic G, Peterson JL, Pollock J, Ramirez-Solis R, Rancourt DE, Raspa M, Remacle JE, Ringwald M, Rosen B, Rosenthal N, Rossant J, Ruiz Noppinger P, Ryder E, Schick JZ, Schnütgen F, Schofield P, Seisenberger C, Selloum M, Simpson EM, Skarnes WC, Smedley D, Stanford WL, Stewart AF, Stone K, Swan K, Tadepally H, Teboul L, Tocchini-Valentini GP, Valenzuela D, West AP, Yamamura K, Yoshinaga Y, Wurst W (2012) The mammalian gene function resource: the International Knockout Mouse Consortium. Mamm Genome 23:580–586

    Google Scholar 

  • Breitman ML, Clapoff S, Rossant J, Tsui LC, Glode LM, Maxwell IH, Bernstein A (1987) Genetic ablation: targeted expression of a toxin gene causes microphthalmia in transgenic mice. Science 238:1563–1565

    CAS  PubMed  Google Scholar 

  • Breitman ML, Bryce DM, Giddens E, Clapoff S, Goring D, Tsui LC, Klintworth GK, Bernstein A (1989) Analysis of lens cell fate and eye morphogenesis in transgenic mice ablated for cells of the lens lineage. Development 106:457–463

    CAS  PubMed  Google Scholar 

  • Brinster RL, Chen HY, Trumbauer M, Senear AW, Warren R, Palmiter RD (1981) Somatic expression of herpes thymidine kinase in mice following injection of a fusion gene into eggs. Cell 27:223–231

    CAS  PubMed  Google Scholar 

  • Brinster RL, Allen JM, Behringer RR, Gelinas RE, Palmiter RD (1988) Introns increase transcriptional efficiency in transgenic mice. Proc Natl Acad Sci USA 85:836–840

    CAS  PubMed Central  PubMed  Google Scholar 

  • Carbery ID, Ji D, Harrington A, Brown V, Weinstein EJ, Liaw L, Cui X (2010) Targeted genome modification in mice using zinc-finger nucleases. Genetics 186:451–459

    CAS  PubMed Central  PubMed  Google Scholar 

  • Capecchi MR (1989) Altering the genome by homologous recombination. Science 244:1288–1292

    CAS  PubMed  Google Scholar 

  • Cecconi F, Meyer BI (2000) Gene trap: a way to identify novel genes and unravel their biological function. FEBS Lett 480:63–71

    CAS  PubMed  Google Scholar 

  • Chen Y, Yee D, Dains K, Chatterjee A, Cavalcoli J, Schneider E, Om J, Woychik RP, Magnuson T (2000) Genotype-based screen for ENU-induced mutations in mouse embryonic stem cells. Nat Genet 24:314–317

    CAS  PubMed  Google Scholar 

  • Costantini F, Lacy E (1981) Introduction of a rabbit beta-globin gene into the mouse germline. Nature 294:92–94

    CAS  PubMed  Google Scholar 

  • Cui X, Ji D, Fisher DA, Wu Y, Briner DM, Weinstein EJ (2011) Targeted integration in rat and mouse embryos with zinc-finger nucleases. Nat Biotechnol 29:64–67

    CAS  PubMed  Google Scholar 

  • DeChiara TM (2001) Gene targeting in ES cells. Methods Mol Biol 158:19–45

    CAS  PubMed  Google Scholar 

  • Dorner M, Horwitz JA, Robbins JB, Barry WT, Feng Q, Mu K, Jones CT, Schoggins JW, Catanese MT, Burton DR, Law M, Rice CM, Ploss A (2011) A genetically humanized mouse model for hepatitis C virus infection. Nature 474:208–211

    CAS  PubMed Central  PubMed  Google Scholar 

  • Duboule D (1998) Vertebrate Hox gene regulation: clustering and/or colinearity? Curr Opin Gene Develop 8:514–518

    CAS  Google Scholar 

  • Evans MJ, Kaufman MH (1981) Establishment in culture of pluripotential cells from mouse embryos. Nature 292:154–156

    CAS  PubMed  Google Scholar 

  • Evans MJ, Carlton MB, Russ AP (1997) Gene trapping and functional genomics. Trends Genet 13:370–374

    CAS  PubMed  Google Scholar 

  • Feil S, Valtcheva N, Feil N (2009) Inducible Cre mice methods. Mol Biol 530:343–363

    CAS  Google Scholar 

  • Filippov MA, Hormuzdi SG, Fuchs EC, Monyer H, Robertson E, Bradley A, Kuehn M, Evans M (2003) A reporter allele for investigating connexin 26 gene expression in the mouse brain. Eur J Neurosci 18:3183–3192

    PubMed  Google Scholar 

  • Friedel RH, Plump A, Lu X, Spilker K, Jolicoeur C, Wong K, Venkatesh TR, Yaron A, Hynes M, Chen B, Okada A, McConnell SK, Rayburn H, Tessier-Lavigne M (2005) Gene targeting using a promoterless gene trap vector (“targeted trapping”) is an efficient method to mutate a large fraction of genes. Proc Natl Acad Sci U S A 102:13188–13193

    CAS  PubMed Central  PubMed  Google Scholar 

  • Friedrich G, Soriano P (1991) Promoter traps in embryonic stem cells: a genetic screen to identify and mutate developmental genes in mice. Genes Dev 5:1513–1523

    CAS  PubMed  Google Scholar 

  • Furth PA, St Onge L, Böger H, Gruss P, Gossen M, Kistner A, Bujard H, Hennighausen L (1994) Temporal control of gene expression in transgenic mice by a tetracycline-responsive promoter. Proc Natl Acad Sci USA 91:9302–9306

    Google Scholar 

  • Gaj T, Gersbach CA, Barbas CF III (2013) ZFN, TALEN, and CRISPR/Cas-based methods for genome engineering. Trends Biotechnol 31:397–405

    Google Scholar 

  • Geurts AM, Cost GJ, Freyvert Y, Zeitler B, Miller JC, Choi VM, Jenkins SS, Wood A, Cui X, Meng X, Vincent A, Lam S, Michalkiewicz M, Schilling R, Foeckler J, Kalloway S, Weiler H, Ménoret S, Anegon I, Davis GD, Zhang L, Rebar EJ, Gregory PD, Urnov FD, Jacob HJ, Buelow R (2009) Knockout rats via embryo microinjection of zinc-finger nucleases. Science 325:433

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gomes-Pereira M, Cooper TA, Gourdon G (2011) Myotonic dystrophy mouse models: towards rational therapy development. Trends Mol Med 17:506–517

    CAS  PubMed  Google Scholar 

  • Gordon JW, Ruddle FH (1981) Integration and stable germline transmission of genes injected into mouse pronuclei. Science 214:1244–1246

    CAS  PubMed  Google Scholar 

  • Goring DR, Rossant J. Clapoff S, Breitman ML, Tsui LC (1987) In situ detection of beta-galactosidase in lenses of transgenic mice with a gamma-crystallin/lacZ gene. Science 235:456–458

    Google Scholar 

  • Gossen M, Bujard H (1992) Tight control of gene expression in mammalian cells by tetracycline-responsive promoters. Proc Natl Acad Sci USA 89:5547–5551

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gossler A, Doetschman T, Korn R, Serfling E, Kemler R (1986) Transgenesis by means of blastocystderivedembryonic stem cell lines. Proc Natl Acad Sci USA 83:9065–9069

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gossler A, Joyner AL, Rossant J, Skarnes WC (1989) Mouse embryonic stem cells and reporter constructs to detect developmentally regulated genes. Science 244:463–465

    CAS  PubMed  Google Scholar 

  • Gridley T, Gray DA, Orr-Weaver T, Soriano P, Barton DE, Francke U, Jaenisch R (1990) Molecular analysis of the Mov 34 mutation: transcript disrupted by proviral integration in mice is conserved in Drosophila. Development 109:235–242

    CAS  PubMed  Google Scholar 

  • Gu H, Marth JD, Orban PC, Mossmann H, Rajewsky K (1994) Deletion of a DNA polymerase betagene segment in T cells using cell type-specific gene targeting. Science 265:103–106

    CAS  PubMed  Google Scholar 

  • Guan C, Ye C, Yang X, Gao J (2010) A review of current large-scale mouse knockout efforts. Genesis 48:73–85

    CAS  PubMed  Google Scholar 

  • Hammes A, Schedl A (2000) Generation of transgenic mice from plasmids, BACs and YACs. In: Jackson IJ, Abbott CM (eds) Mouse genetics and transgenesis: a practical approach. Oxford University Press, New York, pp 217–245

    Google Scholar 

  • Hanahan D, Wagner EF, Palmiter RD (2007) The origins of oncomice: a history of the first transgenic mice genetically engineered to develop cancer. Genes Dev 21:2258–2270

    CAS  PubMed  Google Scholar 

  • Hansen J, Floss T, Van Sloun P, Fuchtbauer EM, Vauti F, Arnold HH, Schnutgen F, Wurst W, von Melchner H, Ruiz P (2003) A large-scale, gene-driven mutagenesis approach for the functional analysis of the mouse genome. Proc Natl Acad Sc USA 100:9918–9922

    CAS  Google Scholar 

  • Harbers K, Jahner D, Jaenisch R (1981) Microinjection of cloned retroviral genomes into mouse zygotes: integration and expression in the animal. Nature 293:540–542

    CAS  PubMed  Google Scholar 

  • Hasty P, Ramirez-Solis R, Krumlauf R, Bradley A (1991) Introduction of a subtle mutation into theHox-2.6 locus in embryonic stem cells. Nature 350:243–246

    CAS  PubMed  Google Scholar 

  • Hasty P, Abuin A, Bradley A (2000) Gene targeting, principles, and practice in mammalian cells. In: Joyner AL (ed) Gene targeting: a practical approach. Oxford University Press, New York, pp 1–36

    Google Scholar 

  • He Y, Chen H, Quon MJ, Reitman M (1995) The mouse obese gene. Genomic organization, promoter activity, and activation by CCAAT/enhancer-binding protein alpha. J Biol Chem 270:28887–28891

    CAS  PubMed  Google Scholar 

  • Heintz N (2001) BAC to the future: the use of BAC transgenic mice for neuroscience research. Nat Rev Neurosci 2:861–870

    CAS  PubMed  Google Scholar 

  • Herault Y, Duchon A, Velot E, Maréchal D, Brault V (2012) The in vivo Down syndrome genomic library in mouse. Prog Brain Res 197:169–197

    CAS  PubMed  Google Scholar 

  • Hitz C, Steuber-Buchberger P, Delic S, Wurst W, Kühn R (2009) Generation of shRNA transgenic mice. Methods Mol Biol 530:101–129

    CAS  PubMed  Google Scholar 

  • Hogan B, Beddington R, Costantini F, Lacy E (1994) Manipulating the mouse embryo: a laboratory manual, 2nd edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor

    Google Scholar 

  • Hooper ML (1992) Embryonal stem cells. Harwood Academic, Chur 147 pp

    Google Scholar 

  • Hooper M, Hardy K, Handyside A, Hunter S, Monk M (1987) HPRT-deficient (Lesch-Nyhan) mouse embryos derived from germline colonization by cultured cells. Nature 326:292–295

    CAS  PubMed  Google Scholar 

  • Horii T, Arai Y, Yamazaki M, Morita S, Kimura M, Itoh M, Abe Y, Hatada I (2014) Validation of microinjection methods for generating knockout mice by CRISPR/Cas-mediated genome engineering. Sci Rep 4:4513. doi:10.1038/srep04513

    PubMed  Google Scholar 

  • Houdebine LM (2003) Animal transgenesis and cloning. Wiley, New York

    Google Scholar 

  • Huxley C, Passage E, Manson A, Putzu G, Figarella-Branger D, Pellissier JF, Fontes M (1996) Construction of a mouse model of Charcot-Marie-Tooth disease type 1A by pronuclear injection of human YAC DNA. Hum Mol Genet 5:563–569

    CAS  PubMed  Google Scholar 

  • International Mouse Knockout Consortium, Collins FS, Rossant J, Wurst W (2007) A mouse for all reasons. Cell 128:9–13

    Google Scholar 

  • Jackson IJ, Abbott CM (2000) Mouse genetics and transgenesis: a practical approach. Oxford University Press, Oxford

    Google Scholar 

  • Jaenisch R (1976) Germ line integration and Mendelian transmission of the exogenous Moloney leukemia virus. Proc Natl Acad Sci USA 73:1260–1264

    CAS  PubMed Central  PubMed  Google Scholar 

  • Jaenisch R (1988) Transgenic animals. Science 240:1468–1474

    CAS  PubMed  Google Scholar 

  • Jaenisch R, Jahner D, Nobis P, Simon I, Lohler J, Harbers K, Grotkopp D (1981) Chromosomal position and activation of retroviral genomes inserted into the germline of mice. Cell 24:519–529

    CAS  PubMed  Google Scholar 

  • Jakobovits A, Moore AL, Green LL, Vergara GJ, Maynard-Currie CE, Austin HA, Klapholz S (1993) Germline transmission and expression of a human-derived yeast artificial chromosome. Nature 362:255–258

    CAS  PubMed  Google Scholar 

  • Joung JK, Sander JD (2013) TALENs: a widely applicable technology for targeted genome editing. Nat Rev Mol Cell Biol 14:49–55

    CAS  PubMed Central  PubMed  Google Scholar 

  • Katsuki M, Sato M, Kimura M, Yokoyama M, Kobayashi K, Nomura T (1988) Conversion of normal behavior to shiverer by myelin basic protein antisense cDNA in transgenic mice. Science 241:593–595

    CAS  PubMed  Google Scholar 

  • Kim H, Kim JS (2014) A guide to genome engineering with programmable nucleases. Nat Rev Genet 15:321–334

    CAS  PubMed  Google Scholar 

  • Kistner A, Gossen M, Zimmermann F, Jerecic J, Ullmer C, Lübbert H, Bujard H (1996) Doxycycline-mediated quantitative and tissue-specific control of gene expression in transgenic mice. Proc Natl Acad Sci USA 93:10933–10938

    CAS  PubMed Central  PubMed  Google Scholar 

  • Koentgen F, Suess G, Naf D (2010) Engineering the mouse genome to model human disease for drug discovery. Methods Mol Biol 602:55–77

    CAS  PubMed  Google Scholar 

  • Koike S, Taya C, Kurata T, Abe S, Ise I, Yonekawa H, Nomoto A (1991) Transgenic mice susceptible to poliovirus. Proc Natl Acad Sci USA 88:951–955

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kuehn MR, Bradley A, Robertson EJ, Evans MJ (1987) A potential animal model for Lesch–Nyhan syndrome through introduction of HPRT mutations into mice. Nature 326:295–298

    CAS  PubMed  Google Scholar 

  • Kuhn R, Schwenk F, Aguet M, Rajewsky K (1995) Inducible gene targeting in mice. Science 269:1427–1429

    CAS  PubMed  Google Scholar 

  • Lakso M, Sauer B, Mosinger B Jr, Lee EJ, Manning RW, Yu SH, Mulder KL, Westphal H (1992) Targeted oncogene activation by site-specific recombination in transgenic mice. Proc Natl Acad Sci USA 89:6232–6236

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lecuit M, Vandormael-Pournin S, Lefort J, Huerre M, Gounon P, Dupuy C, Babinet C, Cossart P (2001) A transgenic model for listeriosis: role of internalin in crossing the intestinal barrier. Science 292:1722–1725

    CAS  PubMed  Google Scholar 

  • Lee JT, Jaenisch R (1996) A method for high efficiency YAC lipofection into murine embryonic stem cells. Nucleic Acids Res 24:5054–5055

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lichtman JW, Livet J, Sanes JR (2008) A technicolour approach to the connectome. Nat Rev Neurosci 9:417–422

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lira SA, Kinloch RA, Mortillo S, Wassarman PM (1990) An upstream region of the mouse ZP3 gene directs expression of firefly luciferase specifically to growing oocytes in transgenic mice. Proc Natl Acad Sci USA 87:7215–7219

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lithner CU, Hedberg MM, Nordberg A (2011) Transgenic mice as a model for Alzheimer’s disease. Curr Alzheimer Res 8:818–831

    CAS  PubMed  Google Scholar 

  • Lowe LA, Yamada S, Kuehn MR (2001) Genetic dissection of nodal function in patterning the mouse embryo. Development 128:1831–1843

    CAS  PubMed  Google Scholar 

  • Martin GR, Stevens ME, Bissada N, Nasir J, Kanazawa I, Disteche CM, Rubin EM, Hayden MR (1981) Isolation of a pluripotent cell line from early mouse embryos cultured in medium conditioned by teratocarcinoma stem cells. Proc Natl Acad Sci USA 78:7634–7638

    CAS  PubMed Central  PubMed  Google Scholar 

  • Martin N, Jaubert J, Gounon P, Salido E, Haase G, Szatanik M, Guénet JL (2002) A missense mutation in Tbce causes progressive motor neuronopathy in mice. Nat Genet 32:443–447

    CAS  PubMed  Google Scholar 

  • Mashimo T (2014) Gene targeting technologies in rats: zinc finger nucleases, transcription activator-like effector nucleases, and clustered regularly interspaced short palindromic repeats. Dev Growth Differ 56:46–52

    CAS  PubMed  Google Scholar 

  • Mashimo T, Kaneko T, Sakuma T, Kobayashi J, Kunihiro Y, Voigt B, Yamamoto T, Serikawa T (2013) Efficient gene targeting by TAL effector nucleases coinjected with exonucleases in zygotes. Sci Rep 3:1253. doi:10.1038/srep01253

    PubMed Central  PubMed  Google Scholar 

  • Meisler MH (1992) Insertional mutation of ‘classical’ and novel genes in transgenic mice. Trends Genet 8:341–344

    CAS  PubMed  Google Scholar 

  • Messing A, Behringer RR, Slapak JR, Lemke G, Palmiter RD, Brinster RL (1990) Insertional mutation at the ld locus (again!) in a line of transgenic mice. Mouse Genome 87:107

    PubMed Central  PubMed  Google Scholar 

  • Misteli T, Spector D (1997) Applications of the green fluorescent protein in cell biology and biotechnology. Nat Biotechnol 15:961–964

    CAS  PubMed  Google Scholar 

  • Munroe RJ, Bergstrom RA, Zheng QY, Libby B, Smith R, John SW, Schimenti KJ, Browning VL, Schimenti JC (2000) Mouse mutants from chemically mutagenized embryonic stem cells. Nat Genet 24:318–321

    CAS  PubMed Central  PubMed  Google Scholar 

  • Munroe RJ, Schimenti JC (2009) Mutagenesis of mouse embryonic stem cells with ethylmethanesulfonate. Methods Mol Biol 530:131–138

    CAS  PubMed  Google Scholar 

  • Nagy A (2000) Cre recombinase: the universal reagent for genome tailoring. Genesis 26:99–109

    CAS  PubMed  Google Scholar 

  • Nagy A, Gertsenstein M, Vintersten K, Behringer R (2003) Manipulating the mouse embryo, a laboratory manual, 3rd edn. Cold Spring Harbor Press, New York

    Google Scholar 

  • Nicolas JF, Rubenstein JL (1988) Retroviral vectors. Biotechnology 10:493–513

    CAS  PubMed  Google Scholar 

  • O’Doherty A, Ruf S, Mulligan C, Hildreth V, Errington ML, Cooke S, Sesay A, Modino S, Vanes L, Hernandez D, Linehan JM, Sharpe PT, Brandner S, Bliss TV, Henderson DJ, Nizetic D, Tybulewicz VL, Fisher EM (2005) An aneuploid mouse strain carrying human chromosome 21 with Down syndrome phenotypes. Science 309:2033–2037

    PubMed Central  PubMed  Google Scholar 

  • Overbeek PA, Chepelinsky AB, Khillan JS, Piatigorsky J, Westphal H (1985) Lens-specific expression and developmental regulation of the bacterial chloramphenicol acetyltransferase gene driven by the murine alpha A-crystallin promoter in transgenic mice. Proc Natl Acad Sci USA 82:7815–7819

    CAS  PubMed Central  PubMed  Google Scholar 

  • Overbeek PA, Gorlov IP, Sutherland RW, Houston JB, Harrison WR, Boettger-Tong HL, Bishop CE, Agoulnik AI (2001) A transgenic insertion causing cryptorchidism in mice. Genesis 30:26–35

    CAS  PubMed  Google Scholar 

  • Palmiter RD, Brinster RL, Hammer RE, Trumbauer ME, Rosenfeld MG, Birnberg NC, Evans RM (1982) Dramatic growth of mice that develop from eggs microinjected with metallothionein–growth hormone fusion genes. Nature 300:611–615

    CAS  PubMed  Google Scholar 

  • Papaioannou VE, McBurney M, Gardner RL, Evans MJ (1975) The fate of teratocarcinoma cells injected into early mouse embryos. Nature 258:70–73

    CAS  PubMed  Google Scholar 

  • Passamaneck YJ, Di Gregorio A, Papaioannou VE, Hadjantonakis AK (2006) Live imaging of fluorescent proteins in chordate embryos: from ascidians to mice. Microsc Res Tech 69:160–167

    PubMed  Google Scholar 

  • Pennisi E (2013) The CRISPR craze. Science 341:833–836

    CAS  PubMed  Google Scholar 

  • Pereira R, Khillan JS, Helminen HJ, Hume EL, Prockop DJ (1993) Transgenic mice expressing a partially deleted gene for type I procollagen (COL1A1). A breeding line with a phenotype of spontaneous fractures and decreased bone collagen and mineral. J Clin Invest 91:709–716

    CAS  PubMed Central  PubMed  Google Scholar 

  • Pichel JG, Lakso M, Westphal H (1993) Timing of SV40 oncogene activation by site-specific recombination determines subsequent tumor progression during murine lens development. Oncogene 8:3333–3342

    CAS  PubMed  Google Scholar 

  • Li, P, Tong, C, Mehrian-Shai R, Jia L, Wu N, Yan Y, Maxson RE, Schulze EN, Song H, Hsieh C-L, Pera MF, Ying Q-L (2008) Germline competent embryonic stem cells derived from rat blastocysts. Cell 135:1299–1310

    Google Scholar 

  • Rémy S, Tesson L, Ménoret S, Usal C, Scharenberg AM, Anegon I (2010) Zinc-finger nucleases: a powerful tool for genetic engineering of animals. Transgenic Res 19:363–371

    PubMed  Google Scholar 

  • Robertson E, Bradley A, Kuehn M, Evans M (1986) Germline transmission of genes introduced into cultured pluripotential cells by retroviral vector. Nature 323:445–448

    CAS  PubMed  Google Scholar 

  • Rossant J, Nutter LM, Gertsenstein M (2011) Engineering the embryo. Proc Natl Acad Sci USA 108:7659–7660

    CAS  PubMed Central  PubMed  Google Scholar 

  • Rueda N, Flórez J, Martínez-Cué C (2013) Apoptosis in Down’s syndrome: lessons from studies of human and mouse models. Apoptosis 18:121–134

    PubMed  Google Scholar 

  • Ryan TM, Townes TM, Reilly MP, Asakura T, Palmiter RD, Brinster RL, Behringer RR (1990) Human sickle hemoglobin in transgenic mice. Science 247:566–568

    CAS  PubMed  Google Scholar 

  • Sauer B (1993) Manipulation of transgenes by site-specific recombination: use of Cre recombinase. Methods Enzymol 225:890–900

    CAS  PubMed  Google Scholar 

  • Schedl A, Beermann F, Thies E, Montoliu L, Kelsey G, Schutz G (1992) Transgenic mice generated by pronuclear injection of a yeast artificial chromosome. Nucleic Acids Res 20:3073–3077

    CAS  PubMed Central  PubMed  Google Scholar 

  • Schedl A, Larin Z, Montoliu L, Thies E, Kelsey G, Lehrach H, Schutz G (1993) A method for the generation of YAC transgenic mice by pronuclear microinjection. Nucleic Acids Res 21:4783–4787

    CAS  PubMed Central  PubMed  Google Scholar 

  • Schonig K, Bujard H (2003) Generating conditional mouse mutants via tetracycline-controlled gene expression. In: Hofker M, van Deursen J (eds) Transgenic mouse methods and protocols. Humana Press, Totowa, pp 69–104

    Google Scholar 

  • Selfridge J, Pow AM, McWhir J, Magin TM, Melton DW (1992) Gene targeting using a mouse HPRT minigene/HPRT-deficient embryonic stem cell system: inactivation of the mouse ERCC-1 gene. Somat Cell Mol Genet 18:325–336

    CAS  PubMed  Google Scholar 

  • Simon-Chazottes D, Tutois S, Kuehn M, Evans M, Bourgade F, Cook S, Davisson MT, Guénet JL (2006) Mutations in the gene encoding the low-density lipoprotein receptor LRP4 cause abnormal limb development in the mouse. Genomics 87:673–677

    CAS  PubMed  Google Scholar 

  • Simon-Chazottes D, Frenkiel MP, Montagutelli X, Guénet JL, Desprès P, Panthier JJ (2011) Transgenic expression of full-length 2′, 5′-oligoadenylate synthetase 1b confers to BALB/c mice resistance against West Nile virus-induced encephalitis. Virology 417:147–153

    CAS  PubMed  Google Scholar 

  • Scherbik SV, Kluetzman K, Perelygin AA, Brinton MA (2007) Knock-in of the Oas1b(r) allele into a flavivirus-induced disease susceptible mouse generates the resistant phenotype. Virology 368:232–237

    Google Scholar 

  • Skarnes WC, Auerbach BA, Joyner AL (1992) A gene trap approach in mouse embryonic stem cells: the lacZ reported is activated by splicing, reflects endogenous gene expression, and is mutagenic in mice. Genes Dev 6:903–918

    CAS  PubMed  Google Scholar 

  • Skarnes WC, Rosen B, West AP, Koutsourakis M, Bushell W, Iyer V, Mujica AO, Thomas M, Harrow J, Cox T, Jackson D, Severin J, Biggs P, Fu J, Nefedov M, de Jong PJ, Stewart AF, Bradley A (2011) A conditional knockout resource for the genome-wide study of mouse gene function. Nature 474:337–342

    CAS  PubMed Central  PubMed  Google Scholar 

  • Smith DJ, Zhu Y, Zhang J, Cheng JF, Rubin EM (1995) Construction of a panel of transgenic mice containing a contiguous 2-Mb set of YAC/P1 clones from human chromosome 21q22.2. Genomics 27:425–434

    CAS  PubMed  Google Scholar 

  • Smithies O, Gregg RG, Boggs SS, Koralewski MA, Kucherlapati RS (1985) Insertion of DNA sequences into the human chromosomal betaglobin locus by homologous recombination. Nature 317:230–234

    CAS  PubMed  Google Scholar 

  • Stacey A, Bateman J, Choi T, Mascara T, Cole W, Jaenisch R (1988) Perinatal lethal osteogenesis imperfecta in transgenic mice bearing an engineered mutant pro-alpha-1(I) collagen gene. Nature 332:131–136

    CAS  PubMed  Google Scholar 

  • Stacey A, Schnieke A, McWhir J, Cooper J, Colman A, Melton DW (1994) Use of double-replacement gene targeting to replace the murine alpha-lactalbumin gene with its human counterpart in embryonic stem cells and mice. Mol Cell Biol 14:1009–1016

    CAS  PubMed Central  PubMed  Google Scholar 

  • Stanford WL, Cohn JB, Cordes SP (2001) Gene-trap mutagenesis: past, present and beyond. Nat Rev Gene 2:756–768

    CAS  Google Scholar 

  • Stevens LC (1960) Embryonic potency of embryoid bodies derived from a transplantable testicular teratoma of the mouse. Dev Biol 2:285–297

    CAS  PubMed  Google Scholar 

  • Stryke D, Kawamoto M, Huang CC, Johns SJ, King LA, Harper CA, Meng EC, Lee RE, Yee A, L’Italien L, Chuang PT, Young SG, Skarnes WC, Babbitt PC, Ferrin TE (2003) BayGenomics: a resource of insertional mutations in mouse embryonic stem cells. Nucleic Acids Res 31:278–281

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sung YH, Baek IJ, Kim DH, Jeon J, Lee J, Lee K, Jeong D, Kim JS, Lee HW (2013) Knockout mice created by TALEN-mediated gene targeting. Nat Biotechnol 31:23–24

    CAS  PubMed  Google Scholar 

  • Tesson L, Usal C, Ménoret S, Leung E, Niles BJ, Remy S, Santiago Y, Vincent AI, Meng X, Zhang L, Gregory PD, Anegon I, Cost GJ (2011) Knockout rats generated by embryo microinjection of TALENs. Nat Biotechnol 29:695–696

    CAS  PubMed  Google Scholar 

  • Thomas KR, Capecchi MR (1987) Site-directed mutagenesis by gene targeting in mouse embryo derived stem cells. Cell 51:503–512

    CAS  PubMed  Google Scholar 

  • Utomo AR, Nikitin AY, Lee WH (1999) Temporal, spatial, and cell type-specific control of Cre-mediated DNA recombination in transgenic mice. Nat Biotechnol 17:1091–1096

    CAS  PubMed  Google Scholar 

  • Valancius V, Smithies O (1991) Testing an ‘in-out’ targeting procedure for making subtle genomic modifications in mouse embryonic stem cells. Mol Cell Biol 11:1402–1408

    CAS  PubMed Central  PubMed  Google Scholar 

  • Van Keuren ML, Gavrilina GB, Filipiak WE, Zeidler MG, Saunders TL (2009) Generating transgenic mice from bacterial artificial chromosomes: transgenesis efficiency, integration and expression outcomes. Transgenic Res 18:769–785

    CAS  PubMed Central  PubMed  Google Scholar 

  • Vitale-Cross L, Amornphimoltham P, Fisher G, Molinolo AA, Gutkind JS (2004) Conditional expression of K-ras in an epithelial compartment that includes the stem cells is sufficient to promote squamous cell carcinogenesis. Cancer Res 64:8804–8807

    CAS  PubMed  Google Scholar 

  • Vivian JL, Chen Y, Yee D, Schneider E, Magnuson T (2002) An allelic series of mutations in Smad2 and Smad4 identified in a genotype-based screen of N-ethyl-N-nitrosourea-mutagenized mouse embryonic stem cells. Proc Natl Acad Sci USA 99:15542–15547

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wagner EF, Stewart TA, Mintz B (1981a) The human beta-globin gene and a functional viral thymidine kinase gene in developing mice. Proc Natl Acad Sci USA 78:5016–5020

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wagner TE, Hoppe PC, Jollick JD, Scholl DR, Hodinka RL, Gault JB (1981b) Microinjection of a rabbit beta-globin gene into zygotes and its subsequent expression in adult mice and their offspring. Proc Natl Acad Sci USA 78:6376–6380

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wahnschaffe U, Bitsch A, Kielhorn J, Mangelsdorf I (2005a) Mutagenicity testing with transgenic mice. Part I: Comparison with the mouse bone marrow micronucleus test. J Carcinog 4:3

    PubMed Central  PubMed  Google Scholar 

  • Wahnschaffe U, Bitsch A, Kielhorn J, Mangelsdorf I (2005b) Mutagenicity testing with transgenic mice. Part II: Comparison with the mouse spot test. J Carcinog 4:4

    PubMed Central  PubMed  Google Scholar 

  • Wang H, Yang H, Shivalila CS, Dawlaty MM, Cheng AW, Zhang F, Jaenisch R (2013) One-step generation of mice carrying mutations in multiple genes by CRISPR/Cas-mediated genome engineering. Cell 153:910–918

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wei C, Liu J, Yu Z, Zhang B, Gao G, Jiao R (2013) TALEN or Cas9—rapid, efficient and specific choices for genome modifications. J Genet Genomics 40:281–289

    CAS  PubMed  Google Scholar 

  • Wiznerowicz M, Trono D (2005) Harnessing HIV for therapy, basic research and biotechnology. Trends Biotechnol 23:42–47

    CAS  PubMed  Google Scholar 

  • Wong EA, Capecchi MR (1986) Analysis of homologous recombination in cultured mammalian cells in transient expression and stable transformation assays. Somatic Cell Mol Gene 12:63–72

    CAS  Google Scholar 

  • Woychik RP, Stewart TA, Davis LG, D’Eustachio P, Leder P (1985) An inherited limb deformity created by insertional mutagenesis in a transgenic mouse. Nature 318:36–40

    CAS  PubMed  Google Scholar 

  • Yang H, Wang H, Shivalila CS, Cheng AW, Shi L, Jaenisch R (2013) One-step generation of mice carrying reporter and conditional alleles by CRISPR/Cas-mediated genome engineering. Cell 154:1370–1379

    CAS  PubMed Central  PubMed  Google Scholar 

  • Yu T, Li Z, Jia Z, Clapcote SJ, Liu C, Li S, Asrar S, Pao A, Chen R, Fan N, Carattini-Rivera S, Bechard AR, Spring S, Henkelman RM, Stoica G, Matsui S, Nowak NJ, Roder JC, Chen C, Bradley A, Yu YE (2010) A mouse model of Down syndrome trisomic for all human chromosome 21 syntenic regions. Hum Mol Genet 19:2780–2791

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zhang F, Wen Y, Guo X (2014) CRISPR/Cas9 for genome editing: progress, implications and challenges. Hum Mol Genet. Apr 7. [Epub ahead of print]

    Google Scholar 

  • Zhang Y, Proença R, Maffei M, Barone M, Leopold L, Friedman JM (1994) Positional cloning of the mouse obese gene and its human homologue. Nature 372:425–432

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean-Louis Guénet .

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Guénet, JL., Benavides, F., Panthier, JJ., Montagutelli, X. (2015). Transgenesis and Genome Manipulations. In: Genetics of the Mouse. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-44287-6_8

Download citation

Publish with us

Policies and ethics