Skip to main content

Mutations and Experimental Mutagenesis

  • Chapter
  • First Online:
Genetics of the Mouse

Abstract

The word mutation was coined in 1901 by Hugo De Vries to describe “sudden, spontaneous and drastic alterations in the hereditary material of Oenothera”, the evening primrose. Mutations occur in the genome of all living organisms and vary in importance, ranging from single base-pair changes to extensive chromosomal rearrangements. They can occur either in somatic or germ cells, at all stages of development, and are transmitted to daughter cells except when they cause death or a severe selective disadvantage.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Hugo de Vries also used the word “sport” to define the same sort of sudden genetic changes.

  2. 2.

    Resistance to the rodenticide warfarin is a good example of the mutations that occurred in wild populations, generating a selective advantage.

  3. 3.

    Chromosomal rearrangements such as translocations of all types, transpositions, deletions, duplications, inversions, etc. have been discussed in Chap. 3 (Cytogenetics) and 5 (The Mouse Genome).

  4. 4.

    Hermann J. Muller was awarded the Nobel Prize in Physiology or Medicine for the “discovery that mutations can be induced by X-rays”.

  5. 5.

    Here we write the codon sequences as they are read on the sense (5′ to 3′) strand of DNA. In these conditions, they read the same as the RNA codons (with the exception that T is replaced by U in mRNAs). However, it must be kept in mind that the mRNA transcripts are synthesized using the antisense strand of DNA (3′ to 5′) as a template.

  6. 6.

    The average spontaneous mutation rate at the DNA level has been estimated to be 2.2 × 10−9 per nucleotide per year in the human species (Kumar and Subramanian 2002).

  7. 7.

    This is referred as nonsense-mediated mRNA decay.

  8. 8.

    Four substitutions of the first nucleobase result in a synonymous codon (lysine or arginine codons). No substitution of the second nucleobase leads to a synonymous codon.

  9. 9.

    In mouse nuclear DNA, the G + C content is 41.70 %, indicating that codons making use of these two nucleotides are under-represented in this species.

  10. 10.

    Computations of the mutation rates were made on several interstrain F1 hybrids expected to be all heterozygous for one or several of the recessive coat color alleles and the corresponding wild-type allele. In such an F1 population, the mice with a non-wild-type phenotype are potential carriers of a new mutant allele. This was confirmed by setting up separate crosses.

  11. 11.

    These observations were made on the F1 progeny of a cross between a tester stock, known as PT stock, homozygous for seven fully penetrant recessive alleles, and mice homozygous for the wild-type alleles at the same seven loci.

  12. 12.

    On a total of 36 dominant mutations.

  13. 13.

    Since 1970, the gray (Gy) has replaced the rad as a unit of absorbed radiation in terms of energy per unit of mass. One gray corresponds to one joule of energy absorbed per kilogram of living matter. One Gy is equal to 100 rads.

  14. 14.

    The publication by Arnold et al. (2012) is a rich source of information calculated on a very large sample.

  15. 15.

    The choice of the strain must be considered with care depending on the future use of the mutant potentially discovered. If mutations are induced, it will definitely be important to identify the background strain in which the mutation occurred.

  16. 16.

    The Guthrie test (a bacterial assay) was routinely used for the neonatal diagnostic of phenylketonuria. It is now replaced either by an immunoassay or by a tandem mass spectrometry assay that measures the amino acid proportions.

  17. 17.

    An increase in the plasma level of creatine phosphokinase (CPK) in these F1 mice reveals some damage to the muscular tissue, and is often an indication of the likely occurrence of a new mdx allele.

  18. 18.

    In this type of experiment it is necessary to exclusively use mice of an inbred strain to enable the non-ambiguous characterization of the mutations potentially induced in the progeny by the mutagen.

  19. 19.

    The transposons were discovered and studied in maize by Nobel laureate B. McClintock, precisely because of their mutagenic activity.

References

  • Ames BN, Lee FD, Durston WE (1973) An improved bacterial test system for the detection and classification of mutagens and carcinogens. Proc Ntl Acad Sc USA 70:782–786

    Article  CAS  Google Scholar 

  • Antonarakis SE, Kazazian HH, Gitschier J, Hutter P, de Moerloose P, Morris MA (1995) Molecular etiology of factor VIII deficiency in hemophilia A. Adv Exp Med Biol 386:19–34

    Article  CAS  PubMed  Google Scholar 

  • Arnold CN, Barnes MJ, Berger M, Blasius AL, Brandl K, Croker B, Crozat K, Du X, Eidenschenk C, Georgel P, Hoebe K, Huang H, Jiang Z, Krebs P, La Vine D, Li X, Lyon S, Moresco EM, Murray AR, Popkin DL, Rutschmann S, Siggs OM, Smart NG, Sun L, Tabeta K, Webster V, Tomisato W, Won S, Xia Y, Xiao N, Beutler B (2012) ENU-induced phenovariance in mice: inferences from 587 mutations. BMC Res 5:577

    Article  CAS  Google Scholar 

  • Ashby J, Gorelick NJ, Shelby MD (1997) Mutation assays in male germ cells from transgenic mice: overview of study and conclusions. Mutat Res 388:111–122

    Article  CAS  PubMed  Google Scholar 

  • Auerbach C (1962) Mutation: an introduction to research on mutagenesis. Part I: methods. Oliver and Boyd, Edinburgh

    Google Scholar 

  • Auerbach C, Robson JM (1946) Chemical production of mutations. Nature 157:202

    Article  Google Scholar 

  • Augustin M, Sedlmeier R, Peters T, Huffstadt U, Kochmann E, Simon D, Schöniger M, Garke-Mayerthaler S, Laufs J, Mayhaus M, Franke S, Klose M, Graupner A, Kurzmann M, Zinser C, Wolf A, Voelkel M, Kellner M, Kilian M, Seelig S, Koppius A, Teubner A, Korthaus D, Nehls M, Wattler S (2005) Efficient and fast targeted production of murine models based on ENU mutagenesis. Mamm Genome 16:405–413

    Article  CAS  PubMed  Google Scholar 

  • Beier D (2000) Sequence-based analysis of mutagenized mice. Mamm Genome 11:594–597

    Article  CAS  PubMed  Google Scholar 

  • Beutler B, Du X, Xia Y (2007) Precis on forward genetics in mice. Nat Immunol 8:659–664

    Article  CAS  PubMed  Google Scholar 

  • Bode VC (1984) Ethylnitrosourea mutagenesis and the isolation of mutant alleles for specific genes located in the T region of mouse chromosome 17. Genetics 108:457–470

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bode VC, McDonald JD, Guénet JL, Simon D (1988) hph-1: a mouse mutant with hereditary hyperphenylalaninemia induced by ethylnitrosourea mutagenesis. Genetics 118:299–305

    CAS  PubMed Central  PubMed  Google Scholar 

  • Carlson CM, Dupuy AJ, Fritz S, Roberg-Perez KJ, Fletcher CF, Largaespada DA (2003) Transposon mutagenesis of the mouse germline. Genetics 165:243–256

    CAS  PubMed Central  PubMed  Google Scholar 

  • Chakrabarti L, Neal JT, Miles M, Martinez RA, Smith AC, Sopher BL, La Spada AR (2006) The Purkinje cell degeneration 5 J mutation is a single amino acid insertion that destabilizes Nna1 protein. Mamm Genome 17:103–110

    Article  CAS  PubMed  Google Scholar 

  • Chapman VM, Miller DR, Armstrong D, Caskey CT (1989) Recovery of induced mutations for X chromosome-linked muscular dystrophy in mice. Proc Natl Acd Sc USA 86:1292–1296

    Article  CAS  Google Scholar 

  • Charles DJ, Pretsch W (1987) Linear dose-response relationship of erythrocyte enzyme-activity mutations in offspring of ethylnitrosourea-treated mice. Mutat Res 176:81–91

    Article  CAS  PubMed  Google Scholar 

  • Coghill EL, Hugill A, Parkinson N, Davison C, Glenister P, Clements S, Hunter J, Cox RD, Brown SD (2002) A gene-driven approach to the identification of ENU mutants in the mouse. Nat Genet 30:255–256

    Article  PubMed  Google Scholar 

  • Concepcion D, Seburn KL, Wen G, Frankel WN, Hamilton BA (2004) Mutation rate and predicted phenotypic target sizes in ethylnitrosourea-treated mice. Genetics 168:953–959

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Copeland NG, Jenkins NA (2010) Harnessing transposons for cancer genes discovery. Nat Rev Cancer 10:696–706

    Article  CAS  PubMed  Google Scholar 

  • Cox RD, Hugill A, Shedlovsky A, Noveroske JK, Best S, Justice MJ, Lehrach H, Dove WF (1999) Contrasting effects of ENU induced embryonic lethal mutations of the quaking gene. Genomics 57:333–341

    Article  CAS  PubMed  Google Scholar 

  • Cutler G, Kassner PD (2008) Copy number variation in the mouse genome: implications for the mouse as a model organism for human disease. Cytogenet Genome Res 123:297–306

    Article  CAS  PubMed  Google Scholar 

  • Favor J (1986) The frequency of dominant cataract and recessive specific-locus mutations in mice derived from 80 or 160 mg ethylnitrosourea per kg body weight treated spermatogonia. Mutat Res 162:69–80

    Article  CAS  PubMed  Google Scholar 

  • Favor J (1994) Specific-locus mutations tests in germ cells of the mouse: an assessment of the screening procedures and the mutational events detected. In: Mattison DR, Olsham AF (eds) Male-mediated developmental toxicity. Plenum Press, New York, pp 23–36

    Chapter  Google Scholar 

  • Favor J, Sund M, Neuhauser-Klaus A, Ehling UH (1990) A dose-response analysis of ethylnitrosourea-induced recessive specific-locus mutations in treated spermatogonia of the mouse. Mutat Res 231:47–54

    Article  CAS  PubMed  Google Scholar 

  • Fernandez-Gonzalez A, La Spada AR, Treadaway J, Higdon JC, Harris BS, Sidman RL, Morgan JI, Zuo J (2002) Purkinje cell degeneration (pcd) phenotypes caused by mutations in the axotomy-induced gene, Nna1. Science 295:1904–1906

    Article  CAS  PubMed  Google Scholar 

  • Frazer KA, Eskin E, Kang HM, Bogue MA, Hinds DA, Beilharz EJ, Gupta RV, Montgomery J, Morenzoni MM, Nilsen GB, Pethiyagoda CL, Stuve LL, Johnson FM, Daly MJ, Wade CM, Cox DR (2007) A sequence-based variation map of 8.27 million SNPs in inbred mouse strains. Nature 448:1050–1053

    Article  CAS  PubMed  Google Scholar 

  • Furushima K, Jang CW, Chen DW, Xiao N, Overbeek PA, Behringer RR (2012) Insertional mutagenesis by a hybrid piggyBac and sleeping beauty transposon in the rat. Genetics 192:1235–1248

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Gilman JG (1972) Hemoglobin beta chain structural variation in mice: evolutionary and functional implications. Science 178:873–874

    Article  CAS  PubMed  Google Scholar 

  • Gondo Y (2008) Trends in large-scale mouse mutagenesis: from genetics to functional genomics. Nat Rev Genet 9:803–810

    Article  CAS  PubMed  Google Scholar 

  • Gondo Y, Fukumura R, Murata T, Makino S (2010) ENU-based gene-driven mutagenesis in the mouse: a next-generation gene-targeting system. Exp Anim 59:537–548

    Article  CAS  PubMed  Google Scholar 

  • Graur D (2003) Single-base mutation—in nature encyclopedia of the Human Genome Macmillan Publishers Ltd

    Google Scholar 

  • Green EL, Roderick TH (1966) Radiation genetics. In: Green EL (ed) Biology of the laboratory mouse. Dover Publications, New York, pp 165–185

    Google Scholar 

  • Hitotsumachi S, Carpenter DA, Russell WL (1985) Dose-repetition increases the mutagenic effectiveness of N-ethyl-N-nitrosourea in mouse spermatogonia. Proc Ntl Acd Sc USA 82:6619–6621

    Article  CAS  Google Scholar 

  • Hoebe K, Beutler B (2005) Unraveling innate immunity using large scale N-ethyl-N-nitrosourea mutagenesis. Tissue Antigens 65:395–401

    Article  CAS  PubMed  Google Scholar 

  • Hrabe de Angelis MH, Flaswinkel H, Fuchs H, Rathkolb B, Soewarto D, Marschall S, Heffner S, Pargent W, Wuensch K, Jung M, Reis A, Richter T, Alessandrini F, Jakob T, Fuchs E, Kolb H, Kremmer E, Schaeble K, Rollinski B, Roscher A et al (2000) Genome-wide, large-scale production of mutant mice by ENU mutagenesis. Nat Genet 25:444–447

    Article  CAS  PubMed  Google Scholar 

  • Ivics Z, Hackett PB, Plasterk RH, Izsvák Z (1997) Molecular reconstruction of sleeping beauty, a Tc1-like transposon from fish, and its transposition in human cells. Cell 91:501–510

    Article  CAS  PubMed  Google Scholar 

  • Ivics Z, Izsvák Z, Chapman KM, Hamra FK (2011) Sleeping beauty transposon mutagenesis of the rat genome in spermatogonial stem cells. Methods 53:356–365

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Johnson FM, Lewis SE (1981) Mutation-rate determinations based on electrophoretic analysis of laboratory mice. Mutat Res 82:125–135

    Article  CAS  PubMed  Google Scholar 

  • Justice MJ, Bode VC (1986) Induction of new mutations in a mouse t-haplotype using ethylnitrosourea mutagenesis. Genet Res 47:187–192

    Article  CAS  PubMed  Google Scholar 

  • Justice MJ, Bode VC (1990) ENU-induced allele of brachyury (Tkt1) exhibits a developmental lethal phenotype similar to the original brachyury (T) mutation. J Exp Zool 254:286–295

    Article  CAS  PubMed  Google Scholar 

  • Justice MJ, Zheng B, Woychik RP, Bradley A (1997) Using targeted large deletions and high-efficiency N-ethyl-N-nitrosourea mutagenesis for functional analyses of the mammalian genome. Methods 13:423–436

    Article  CAS  PubMed  Google Scholar 

  • Justice MJ, Noveroske JK, Weber JS, Zheng B, Bradley A (1999) Mouse ENU mutagenesis. Hum Mol Genet 8:1955–1963

    Article  CAS  PubMed  Google Scholar 

  • Justice MJ, Carpenter DA, Favor J, Neuhauser-Klaus A, Hrabé de Angelis M, Soewarto D, Moser A, Cordes S, Miller D, Chapman V, Weber JS, Rinchik EM, Hunsicker PR, Russell WL, Bode VC (2000) Effects of ENU dosage on mouse strains. Mamm Genome 11:484–488

    Article  CAS  PubMed  Google Scholar 

  • Keane TM, Goodstadt L, Danecek P, White MA, Wong K, Yalcin B, Heger A, Agam A, Slater G, Goodson M, Furlotte NA, Eskin E, Nellåker C, Whitley H, Cleak J, Janowitz D, Hernandez-Pliego P, Edwards A, Belgard TG, Oliver PL, McIntyre RE, Bhomra A, Nicod J, Gan X, Yuan W, van der Weyden L, Steward CA, Bala S, Stalker J, Mott R, Durbin R, Jackson IJ, Czechanski A, Guerra-Assunção JA, Donahue LR, Reinholdt LG, Payseur BA, Ponting CP, Birney E, Flint J, Adams DJ (2011) Mouse genomic variation and its effect on phenotypes and gene regulation. Nature 477:289–294

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Keays DA, Clark TG, Flint J (2006) Estimating the number of coding mutations in genotypic- and phenotypic-driven N-ethyl-N-nitrosourea (ENU) screens. Mamm Genome 17:230–238

    Article  CAS  PubMed  Google Scholar 

  • Kiernan AE, Erven A, Voegeling S, Peters J, Nolan P, Hunter J, Bacon Y, Steel KP, Brown SDM, Guénet JL (2002) ENU mutagenesis reveals a highly mutable locus on mouse chromosome 4 that affects ear morphogenesis. Mamm Genome 13:142–148

    Article  CAS  PubMed  Google Scholar 

  • Kile BT, Hentges KE, Clark AT, Nakamura H, Salinger AP, Liu B, Box N, Stockton DW, Johnson RL, Behringer RR, Bradley A, Justice MJ (2003) Functional genetic analysis of mouse chromosome 11. Nature 425:81–86

    Article  CAS  PubMed  Google Scholar 

  • Krawczak M, Ball EV, Cooper DN (1998) Neighboring-nucleotide effects on the rates of germ-line single-base-pair substitution in human genes. Am J Hum Genet 63:474–488

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kumar S, Subramanian S (2002) Mutation rates in mammalian genomes. Proc Natl Acad Sv USA 99:803–808

    Article  CAS  Google Scholar 

  • Largaespada DA (2009) Transposon mutagenesis in mice. Meth Mol Biol 530:379–390

    Article  CAS  Google Scholar 

  • Lewis MA, Quint E, Glazier AM, Fuchs H, De Angelis MH, Langford C, van Dongen S, Abreu-Goodger C, Piipari M, Redshaw N, Dalmay T, Moreno-Pelayo MA, Enright AJ, Steel KP (2009) An ENU-induced mutation of miR-96 associated with progressive hearing loss in mice. Nat Genet 41:614–618

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lewis SE (1991) The biochemical specific-locus test and a new multiple-endpoint mutation detection system: considerations for genetic risk assessment. Environ Mol Mut 18:303–306

    Article  CAS  Google Scholar 

  • Lewis SE, Barnett LB, Sadler BM, Shelby MD (1991) ENU mutagenesis in the mouse electrophoretic specific-locus test, 1. Dose-response relationship of electrophoretically-detected mutations arising from mouse spermatogonia treated with ethylnitrosourea. Mutat Res 249:311–315

    Article  CAS  PubMed  Google Scholar 

  • Lewis SE, Barnett LB, Shelby MD (1992) ENU mutagenesis in the mouse electrophoretic specific locus test. 2. Mutational studies of mature oocytes. Mutat Res 296:129–133

    Article  CAS  PubMed  Google Scholar 

  • Liu SM, Leibel RL, Chua SC Jr (1998) Partial duplication in the Leprdb-Pas mutation is a result of unequal crossing over. Mamm Genome 9:780–781

    Article  CAS  PubMed  Google Scholar 

  • Lu B, Geurts AM, Poirier C, Petit DC, Harrison W, Overbeek PA, Bishop CE (2007) Generation of rat mutants using a coat color-tagged sleeping beauty transposon system. Mamm Genome 8:338–346

    Article  Google Scholar 

  • Marshall RR, Raj AS, Grant FJ, Heddle JA (1983) The use of two-dimensional electrophoresis to detect mutations induced in mouse spermatogonia by ethylnitrosourea. Can J Genet Cytol 25:457–466

    Article  CAS  PubMed  Google Scholar 

  • Martin N, Jaubert J, Gounon P, Salido E, Haase G, Szatanik M, Guénet JL (2002) A missense mutation in Tbce causes progressive motor neuronopathy in mice. Nat Genet 32:443–447

    Article  CAS  PubMed  Google Scholar 

  • Mashimo T, Ohmori I, Ouchida M, Ohno Y, Tsurumi T, Miki T, Wakamori M, Ishihara S, Yoshida T, Takizawa A, Kato M, Hirabayashi M, Sasa M, Mori Y, Serikawa T (2010) A missense mutation of the gene encoding voltage-dependent sodium channel (Nav1.1) confers susceptibility to febrile seizures in rats. J Neurosci 30:5744–5753

    Article  CAS  PubMed  Google Scholar 

  • Massironi SM, Reis BL, Carneiro JG, Barbosa LB, Ariza CB, Santos GC, Guénet JL, Godard AL (2006) Inducing mutations in the mouse genome with the chemical mutagen ethylnitrosourea. Braz J Med Biol Res 39:1217–1226

    Google Scholar 

  • McDonald JD (1995) Using high-efficiency mouse germline mutagenesis to investigate complex biological phenomena: genetic diseases, behavior, and development. Proc Soc Exp Biol Med 209:303–308

    Article  CAS  PubMed  Google Scholar 

  • McDonald JD, Trischler M, Stoorvogel W, Ullrich O (1994) The PKU mouse project: its history, potential and implications. Acta Paediatr Suppl 407:122–123

    Article  CAS  PubMed  Google Scholar 

  • Menalled LB, Chesselet MF (2002) Mouse models of Huntington’s disease. Trends Pharmacol Sci 23:32–39

    Article  CAS  PubMed  Google Scholar 

  • Michaud EJ, Culiat CT, Klebig ML, Barker PE, Cain KT, Carpenter DJ, Easter LL, Foster CM, Gardner AW, Guo ZY, Houser KJ, Hughes LA, Kerley MK, Liu Z, Olszewski RE, Pinn I, Shaw GD, Shinpock SG, Wymore AM, Rinchik EM, Johnson DK (2005) Efficient gene-driven germ-line point mutagenesis of C57BL/6 J mice. BMC Genom 6:164

    Article  Google Scholar 

  • Mülhardt C, Fischer M, Gass P, Simon-Chazottes D, Guénet JL, Kuhse J, Betz H, Becker CM (1994) The spastic mouse: aberrant splicing of glycine receptor beta subunit mRNA caused by intronic insertion of L1 element. Neuron 13:1003–1015

    Article  PubMed  Google Scholar 

  • Muller HJ (1927) Artificial transmutation of the gene. Science 66:84–87

    Article  CAS  PubMed  Google Scholar 

  • Nadeau JH, Singer JB, Matin A, Lander ES (2000) Analysing complex genetic traits with chromosome substitution strains. Nat Genet 24:221–225

    Article  CAS  PubMed  Google Scholar 

  • Nolan P, Peters J, Strivens M, Rogers D, Hagan J, Spurr N, Gray IC, Vizor L, Brooker D, Whitehill E, Washbourne R, Hough T, Greenaway S, Hewitt M, Liu X, McCormack S, Pickford K, Selley R, Wells C, Tymowska-Lalanne Z et al (2000) A systematic genome-wide, phenotype-driven mutagenesis programme for gene function studies in the mouse. Nat Genet 25:440–443

    Article  CAS  PubMed  Google Scholar 

  • Noveroske JK, Weber JS, Justice MJ (2000) The mutagenic action of N-ethyl-N-nitrosourea in the mouse. Mamm Genome 11:478–483

    Article  CAS  PubMed  Google Scholar 

  • Oakberg EF, Crosthwait CD (1983) The effect of ethyl-, methyl- and hydroxyethyl-nitrosourea on the mouse testis. Mutat Res 108:337–344

    Article  CAS  PubMed  Google Scholar 

  • Perez CJ, Jaubert J, Guénet JL, Barnhart KF, Ross-Inta CM, Quintanilla VC, Aubin I, Brandon JL, Otto NW, DiGiovanni J, Gimenez-Conti I, Giulivi C, Kusewitt DF, Conti CJ, Benavides F (2010) Two hypomorphic alleles of mouse Ass1 as a new animal model of citrullinemia type I and other hyperammonemic syndromes. Am J Pathol 177:1958–1968

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Perez CJ, Dumas A, Vallières L, Guénet JL, Benavides F (2013) Several classical mouse inbred strains, including DBA/2, NOD/Lt, FVB/N, and SJL/J, carry a putative loss-of-function allele of Gpr84. J Hered 104:565–571

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Peters J, Ball ST, Andrews SJ (1986) The detection of gene mutations by electrophoresis, and their analysis. Prog Clin Biol Res 209B:367–374

    CAS  PubMed  Google Scholar 

  • Pillers DA, Weleber RG, Green DG, Rash SM, Dally GY, Howard PL, Powers MR, Hood DC, Chapman VM, Ray PN, Woodward WR (1999) Effects of dystrophin isoforms on signal transduction through neural retina: genotype-phenotype analysis of Duchenne muscular dystrophy mouse mutants. Mol Genet Metab 66:100–110

    Article  CAS  PubMed  Google Scholar 

  • Pretsch W, Favor J, Lehmacher W, Neuhauser-Klaus A (1994) Estimates of the radiation-induced mutation frequencies to recessive visible, dominant cataract and enzyme-activity alleles in germ cells of AKR, BALB/c, DBA/2 and (102xC3H)F1 mice. Mutagenesis 9:289–294

    Article  CAS  PubMed  Google Scholar 

  • Quint E, Steel KP (2003) Use of mouse genetics for studying inner ear development. Curr Top Dev Biol 57:45–83

    Article  CAS  PubMed  Google Scholar 

  • Quwailid MM, Hugill A, Dear N, Vizor L, Wells S, Horner E, Fuller S, Weedon J, McMath H, Woodman P, Edwards D, Campbell D, Rodger S, Carey J, Roberts A, Glenister P, Lalanne Z, Parkinson N, Coghill EL, McKeone R, Cox S, Willan J, Greenfield A, Keays D, Brady S, Spurr N, Gray I, Hunter J, Brown SDM, Cox RD (2004). A gene-driven ENU-based approach to generating an allelic series in any gene. Mamm Genome 15:585–591

    Google Scholar 

  • Rinchik EM, Carpenter DA (1999) N-ethyl-N-nitrosourea mutagenesis of a 6- to 11-cM subregion of the Fah-Hbb interval of mouse chromosome 7: Completed testing of 4557 gametes and deletion mapping and complementation analysis of 31 mutations. Genetics 152:373–383

    CAS  PubMed Central  PubMed  Google Scholar 

  • Runck AM, Moriyama H, Storz JF (2009) Evolution of duplicated β-globin genes and the structural basis of hemoglobin isoform differentiation in Mus. Mol Biol Evol 11:2521–2532

    Article  Google Scholar 

  • Runkel F, Hintze M, Griesing S, Michels M, Blanck B, Fukami K, Guénet JL, Franz T (2012) Alopecia in a viable phospholipase C delta 1 and phospholipase C delta 3 double mutant. PLoS ONE 7(6):e39203

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Russell LB, Russell WL (1996) Spontaneous mutations recovered as mosaics in the mouse specific-locus test. Proc Natl Acad Sci USA 93:13072–13077

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Russell LD, Ettlin RA, SinhaHikim AP, Clegg ED (1990) Histological and histopathological evaluation of the testis. Cache River Press, Clearwater

    Google Scholar 

  • Russell WL (1962) An augmenting effect of dose fractionation on radiation-induced mutation rate in mice. Proc. National Acad. Sc. USA 48:1724–1728

    Article  CAS  Google Scholar 

  • Russell WL (1963) The effect of radiation dose rate and fractionation on mutation in mice. In: Sobels F (ed) Repair from genetic radiation damage, vol 4. Pergamon Press, New York, p 205–217

    Google Scholar 

  • Russell WL, Kelly EM, Hunsicker PR, Bangham JW, Maddux SC, Phipps EL (1979) Specific locus test shows ethylnitrosourea to be the most potent mutagen in the mouse. Proc Ntl Acad Sc USA 76:5818–5819

    Article  CAS  Google Scholar 

  • Russell WL, Hunsicker PR, Carpenter DA, Cornett CV, Guinn GM (1982a) Effect of dose fractionation on the ethylnitrosourea induction of specific-locus mutations in mouse spermatogonia. Proc Ntal acad Sc USA 79:3592–3593

    Article  CAS  Google Scholar 

  • Russell WL, Hunsicker PR, Raymer GD, Steele MH, Stelzner KF, Thompson HM (1982b) Dose—response curve for ethylnitrosourea-induced specific-locus mutations in mouse spermatogonia. Proc Natl Acad Sc USA 79:3589–3591

    Article  CAS  Google Scholar 

  • Sakuraba Y, Sezutsu H, Takahasi KR, Tsuchihashi K, Ichikawa R, Fujimoto N, Kaneko S, Nakai Y, Uchiyama M, Goda N, Motoi R, Ikeda A, Karashima Y, Inoue M, Kaneda H, Masuya H, Minowa O, Noguchi H, Toyoda A, Sakaki Y, Wakana S, Noda T, Shiroishi T, Gondo Y (2005) Molecular characterization of ENU mouse mutagenesis and archives. Biochem Biophys Res Commun 336:609–616

    Article  CAS  PubMed  Google Scholar 

  • Schlager G, Dickie MM (1966) Spontaneous mutation rates at five coat-color loci in mice. Science 151:205–206

    Article  CAS  PubMed  Google Scholar 

  • Schlager G, Dickie MM (1967) Spontaneous mutation and mutation rates in the house mouse. Genetics 57:319–330

    CAS  PubMed Central  PubMed  Google Scholar 

  • Schmezer P, Eckert C (1999) Induction of mutations in transgenic animal models: BigBlue and Muta Mouse. Int Agency Res Cancer-Res Publ 146:367–394

    Google Scholar 

  • Shedlovsky A, Guénet JL, Johnson LL, Dove WF (1986) Induction of recessive lethal mutations in the T/t-H-2 region of the mouse genome by a point mutagen. Genet Res 47:135–142

    Article  CAS  PubMed  Google Scholar 

  • Shedlovsky A, King TR, Dove WF (1988) Saturation germline mutagenesis of the murine t region including a lethal allele at the quaking locus. Proc Ntl Acad Sc USA 85:180–184

    Article  CAS  Google Scholar 

  • Simon-Chazottes D, Tutois S, Kuehn M, Evans M, Bourgade F, Cook S, Davisson MT, Guénet JL (2006) Mutations in the gene encoding the low-density lipoprotein receptor LRP4 cause abnormal limb development in the mouse. Genomics 87:673–677

    Article  CAS  PubMed  Google Scholar 

  • Stoye JP, Fenner S, Greenoak GE, Moran C, Coffin JM (1988) Role of endogenous retroviruses as mutagens: the hairless mutation of mice. Cell 54:383–391

    Article  CAS  PubMed  Google Scholar 

  • Takahasi KR, Sakuraba Y, Gondo Y (2007) Mutational pattern and frequency of induced nucleotide changes in mouse ENU mutagenesis. BMC Mol Biol 8:52

    Article  PubMed Central  PubMed  Google Scholar 

  • Takeda J, Keng VW, Horie K (2007) Germline mutagenesis mediated by Sleeping Beauty transposon system in mice. Genome Biol 8(Suppl 1):S14

    Article  PubMed Central  PubMed  Google Scholar 

  • Takeda J, Izsvák Z, Ivics Z (2008) Insertional mutagenesis of the mouse germline with sleeping beauty transposition. Meth Mol Biol 435:109–125

    Article  CAS  Google Scholar 

  • Van Zeeland AA, Mohn GR, Mullenders LH, Natarajan AT, Nivard M, Simons JW, Venema J, Vogel EW, Vrieling H, Zdzienicka MZ et al (1989) Relationship between DNA-adduct formation, DNA repair, mutation frequency and mutation spectra. Annali dell’Instituto superiore di sanita (Ann 1st Super Sanita) Istituto Superiore di Sanita (ISDIS) 2003 25:223–228

    Google Scholar 

  • Vogel EW, Natarajan AT (1995) DNA damage and repair in somatic and germ cells in vivo. Mutat Res 330:183–208

    Article  CAS  PubMed  Google Scholar 

  • Vogel F, Rohrborn G (1970) Chemical mutagenesis in mammals and man. Springer, New York, p 519

    Google Scholar 

  • Wahnschaffe U, Bitsch A, Kielhorn J, Mangelsdorf I (2005a) Mutagenicity testing with transgenic mice. Part I: Comparison with the mouse bone marrow micronucleus test. J Carcinog 4:3

    Article  PubMed Central  PubMed  Google Scholar 

  • Wahnschaffe U, Bitsch A, Kielhorn J, Mangelsdorf I (2005b) Mutagenicity testing with transgenic mice. Part II: comparison with the mouse spot test. J Carcinog 4:4

    Article  PubMed Central  PubMed  Google Scholar 

  • Wilsbacher LD, Sangoram AM, Antoch MP, Takahashi JS (2000) The mouse clock locus: sequence and comparative analysis of 204 kb from mouse chromosome 5. Genome Res 10:1928–1940

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Yang H, Wang JR, Didion JP, Buus RJ, Bell TA, Welsh CE, Bonhomme F, Yu AH, Nachman NW, Pialek J et al (2011) Subspecific origin and haplotype diversity in the laboratory mouse. Nat Genet 43:648–655

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Youssoufian H, Antonarakis SE, Bell W, Griffin AM, Kazazian HH Jr (1988) Nonsense and missense mutations in hemophilia A: estimate of the relative mutation rate at CG dinucleotides. Am J Hum Genet 42:718–25

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zheng B, Sage M, Cai WW, Thompson DM, Tavsanli BC, Cheah YC, Bradley A (1999) Engineering a mouse balancer chromosome. Nat Genet 22:375–378

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean-Louis Guénet .

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Guénet, JL., Benavides, F., Panthier, JJ., Montagutelli, X. (2015). Mutations and Experimental Mutagenesis. In: Genetics of the Mouse. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-44287-6_7

Download citation

Publish with us

Policies and ethics