Skip to main content

Ionic Liquids as Alternative Solvents for Extraction of Natural Products

  • Chapter
  • First Online:
Alternative Solvents for Natural Products Extraction

Part of the book series: Green Chemistry and Sustainable Technology ((GCST))

Abstract

Ionic liquids (ILs) have been proved as promising substituents of the flammable, volatile, and toxic organic solvents in numerous processes. This chapter considers the role of ILs in the extraction of natural products from their native sources and represents a comprehensive overview on the recent achievements in the IL-assisted solid-liquid extractions of secondary metabolites from plant matrices. By analyzing the similarities and differences between the ILs and molecular solvents, important factors that influence the extraction efficiency are discussed, and some general conclusions regarding the advantages and disadvantages of the use of ILs are emphasized. The effect of the IL structure on the extraction efficiency and the possible extraction mechanism and the approaches for both IL recycling and solute recovery after extraction are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Cragg GM, Newman DJ (2013) Natural products: a continuing source of novel drug leads. Biochim Biophys Acta 1830:3670–3695

    Article  CAS  Google Scholar 

  2. Brusotti G, Cesari I, Dentamaro A et al (2014) Isolation and characterization of bioactive compounds from plant resources: the role of analysis in the ethnopharmacological approach. J Pharm Biomed Anal 87:218–228

    Article  CAS  Google Scholar 

  3. Azmir J, Zaidul ISM, Rahman MM et al (2013) Techniques for extraction of bioactive compounds from plant materials: a review. J Food Eng 117:426–436

    Article  CAS  Google Scholar 

  4. Bucar F, Wube A, Schmid M (2013) Natural product isolation – how to get from biological material to pure compounds. Nat Prod Rep 30:525–545

    Article  CAS  Google Scholar 

  5. Anastas PT, Kirchhoff MM (2002) Origins, current status, and future challenges of green chemistry. Acc Chem Res 35:686–694

    Article  CAS  Google Scholar 

  6. Ventura SPM, e Silva FA, Gonçalves AMM et al (2014) Ecotoxicity analysis of cholinium-based ionic liquids to Vibrio fischeri marine bacteria. Ecotoxicol Environ Saf 102:48–54

    Article  CAS  Google Scholar 

  7. Freemantle M (2009) An introduction to ionic liquids. RSC Publishing, Cambridge

    Google Scholar 

  8. Bogdanov MG, Kantlehner W (2009) Simple prediction of some physical properties of ionic liquids: the residual volume approach. Z Naturforsch B 64:215–222

    CAS  Google Scholar 

  9. Bogdanov MG, Iliev B, Kantlehner W (2009) The residual volume approach II: simple prediction of ionic conductivity of ionic liquids. Z Naturforsch B 64:756–764

    CAS  Google Scholar 

  10. Bogdanov MG, Petkova D, Hristeva S et al (2010) New guanidinium-based room-temperature ionic liquids. Substituent and anion effect on density and solubility in water. Z Naturforsch B 65:37–48

    CAS  Google Scholar 

  11. Hallett JP, Welton T (2011) Room-temperature ionic liquids: solvents for synthesis and catalysis. 2. Chem Rev 111:3508–3576

    Article  CAS  Google Scholar 

  12. Parvulescu VI, Hardacre C (2007) Catalysis in ionic liquids. Chem Rev 107:2615–2665

    Article  CAS  Google Scholar 

  13. Opallo M, Lesniewski A (2011) A review on electrodes modified with ionic liquids. J Electroanal Chem 656:2–16

    Article  CAS  Google Scholar 

  14. Poole CF, Poole SK (2011) Ionic liquid stationary phases for gas chromatography. J Sep Sci 34:888–900

    Article  CAS  Google Scholar 

  15. Ho TD, Zhang C, Hantao LW et al (2014) Ionic liquids in analytical chemistry: fundamentals, advances, and perspectives. Anal Chem 86:262–285

    Article  CAS  Google Scholar 

  16. Reichardt C, Welton T (2011) Solvents and solvent effects in organic chemistry, 4th edn. Wiley, Weinheim

    Google Scholar 

  17. Reichardt C (2005) Polarity of ionic liquids determined empirically by means of solvatochromic pyridinium N-phenolate betaine dyes. Green Chem 7:339–351

    Article  CAS  Google Scholar 

  18. Jessop PG, Jessop DA, Fu D et al (2012) Solvatochromic parameters for solvents of interest in green chemistry. Green Chem 14:1245–1259

    Article  CAS  Google Scholar 

  19. Meindersma GW, Maase M, Haan ABD (2007) Ionic liquids. In: Ullmann’s encyclopedia of industrial chemistry. Wiley-VCH, GmbH & Co. KGaA, Weinheim

    Google Scholar 

  20. Jacquemin J, Husson P, Padua AAH et al (2006) Density and viscosity of several pure and water-saturated ionic liquids. Green Chem 8:172–180

    Article  CAS  Google Scholar 

  21. Tariq M, Freire MG, Saramago B et al (2012) Surface tension of ionic liquids and ionic liquid solutions. Chem Soc Rev 41:829–868

    Article  CAS  Google Scholar 

  22. Dupont J (2004) On the solid, liquid and solution structural organization of imidazolium ionic liquids. J Braz Chem Soc 15:341–350

    Article  CAS  Google Scholar 

  23. Greaves TL, Drummond CJ (2013) Solvent nanostructure, the solvophobic effect and amphiphile self-assembly in ionic liquids. Chem Soc Rev 42:1096–1120

    Article  CAS  Google Scholar 

  24. Cammarata L, Kazarian SG, Salter PA et al (2001) Molecular states of water in room temperature ionic liquids. Phys Chem Chem Phys 3:5192–5200

    Article  CAS  Google Scholar 

  25. Gaillon L, Sirieix-Plénet J, Letellier P (2004) Volumetric study of binary solvent mixtures constituted by amphiphilic ionic liquids at room temperature (1-alkyl-3-methylimidazolium bromide) and water. J Solut Chem 33:1333–1347

    Article  CAS  Google Scholar 

  26. Sirieix-Plénet J, Gaillon L, Letellier P (2004) Behaviour of a binary solvent mixture constituted by an amphiphilic ionic liquid, 1-decyl-3-methylimidazolium bromide and water: potentiometric and conductometric studies. Talanta 63:979–986

    Article  Google Scholar 

  27. Inoue T, Dong B, Zheng L-Q (2007) Phase behavior of binary mixture of 1-dodecyl-3-methylimidazolium bromide and water revealed by differential scanning calorimetry and polarized optical microscopy. J Colloid Interface Sci 307:578–581

    Article  CAS  Google Scholar 

  28. Bhargava BL, Klein ML (2009) Formation of micelles in aqueous solutions of a room temperature ionic liquid: a study using coarse grained molecular dynamics. Mol Phys 107:393–401

    Article  CAS  Google Scholar 

  29. Bhargava BL, Yasaka Y, Klein ML (2011) Computational studies of room temperature ionic liquid–water mixtures. Chem Commun 47:6228–6241

    Article  CAS  Google Scholar 

  30. Tonova K, Svinyarov I, Bogdanov MG (2014) Hydrophobic 3-alkyl-1-methylimidazolium saccharinates as extractants for L-lactic acid recovery. Sep Purif Technol 125:239–246

    Article  CAS  Google Scholar 

  31. Freire MG, Neves CMSS, Marrucho IM et al (2010) Hydrolysis of tetrafluoroborate and hexafluorophosphate counter ions in imidazolium-based ionic liquids. J Phys Chem A 114:3744–3749

    Article  CAS  Google Scholar 

  32. Heinrich M, Barnes J, Gibbons S et al (2012) Fundamentals of pharmacognosy and phytotherapy, 2nd edn. Churchill Livingstone, Elsevier, New York

    Google Scholar 

  33. Lu Y, Ma W, Hu R et al (2008) Ionic liquid-based microwave-assisted extraction of phenolic alkaloids from the medicinal plant Nelumbo nucifera Gaertn. J Chromatogr A 1208:42–46

    Article  CAS  Google Scholar 

  34. Ma W, Lu Y, Hu R et al (2010) Application of ionic liquids based microwave-assisted extraction of three alkaloids N-nornuciferine, O-nornuciferine, and nuciferine from lotus leaf. Talanta 80:1292–1297

    Article  CAS  Google Scholar 

  35. S-y W, Yang L, Y-g Z et al (2011) Design and performance evaluation of ionic-liquids-based microwave-assisted environmentally friendly extraction technique for camptothecin and 10-hydroxycamptothecin from samara of Camptotheca acuminata. Ind Eng Chem Res 50:13620–13627

    Article  Google Scholar 

  36. Zhang L, Geng Y, Duan W et al (2009) Ionic liquid-based ultrasound-assisted extraction of fangchinoline and tetrandrine from Stephaniae tetrandrae. J Sep Sci 32:3550–3554

    Article  CAS  Google Scholar 

  37. Cao X, Ye X, Lu Y et al (2009) Ionic liquid-based ultrasonic-assisted extraction of piperine from white pepper. Anal Chim Acta 640:47–51

    Article  CAS  Google Scholar 

  38. Yang L, Wang H, Zu Y-g et al (2011) Ultrasound-assisted extraction of the three terpenoid indole alkaloids vindoline, catharanthine and vinblastine from Catharanthus roseus using ionic liquid aqueous solutions. Chem Eng J 172:705–712

    Article  CAS  Google Scholar 

  39. Ma C-h, Wang S-y, Yang L et al (2012) Ionic liquid-aqueous solution ultrasonic-assisted extraction of camptothecin and 10-hydroxycamptothecin from Camptotheca acuminata samara. Chem Eng Process 57–58:59–64

    Article  Google Scholar 

  40. Bogdanov MG, Svinyarov I, Keremedchieva R et al (2012) Ionic liquid-supported solid–liquid extraction of bioactive alkaloids. I. New HPLC method for quantitative determination of glaucine in Glaucium flavum Cr. (Papaveraceae). Sep Purif Technol 97:221–227

    Article  CAS  Google Scholar 

  41. Bogdanov MG, Svinyarov I (2013) Ionic liquid-supported solid–liquid extraction of bioactive alkaloids. II. Kinetics, modeling and mechanism of glaucine extraction from Glaucium flavum Cr. (Papaveraceae). Sep Purif Technol 103:279–288

    Article  CAS  Google Scholar 

  42. Cláudio AFM, Ferreira AM, Freire MG et al (2013) Enhanced extraction of caffeine from Guaraná seeds using aqueous solutions of ionic liquids. Green Chem 15:2002–2010

    Article  Google Scholar 

  43. Ressmann AK, Zirbs R, Pressler M et al (2013) Surface-active ionic liquids for micellar extraction of piperine from black pepper. Z Naturforsch B 68:1129–1137

    Article  CAS  Google Scholar 

  44. Du F-Y, Xiao X-H, Li G-K (2007) Application of ionic liquids in the microwave-assisted extraction of trans-resveratrol from Rhizma Polygoni Cuspidati. J Chromatogr A 1140:56–62

    Article  CAS  Google Scholar 

  45. Du F-Y, Xiao X-H, Luo X-J et al (2009) Application of ionic liquids in the microwave-assisted extraction of polyphenolic compounds from medicinal plants. Talanta 78:1177–1184

    Article  CAS  Google Scholar 

  46. Du F-Y, Xiao X-H, Li G-K (2011) Ionic liquid aqueous solvent-based microwave-assisted hydrolysis for the extraction and HPLC determination of myricetin and quercetin from Myrica rubra leaves. Biomed Chromatogr 25:472–478

    Article  CAS  Google Scholar 

  47. Liu X, Wang Y, Kong J et al (2012) Application of ionic liquids in the microwave-assisted extraction of quercetin from Chinese herbal medicine. Anal Methods 4:1012–1018

    Article  CAS  Google Scholar 

  48. Liu X, Huang X, Wang Y et al (2013) Design and performance evaluation of ionic liquid-based microwave-assisted simultaneous extraction of kaempferol and quercetin from Chinese medicinal plants. Anal Methods 5:2591–2601

    Article  CAS  Google Scholar 

  49. Jin R, Fan L, An X (2011) Microwave assisted ionic liquid pretreatment of medicinal plants for fast solvent extraction of active ingredients. Sep Purif Technol 83:45–49

    Article  Google Scholar 

  50. Li X-J, Yu H-M, Gao C et al (2012) Application of ionic liquid-based surfactants in the microwave-assisted extraction for the determination of four main phloroglucinols from Dryopteris fragrans. J Sep Sci 35:3600–3608

    Article  CAS  Google Scholar 

  51. Wei Z, Zu Y, Fu Y et al (2013) Ionic liquids-based microwave-assisted extraction of active components from pigeon pea leaves for quantitative analysis. Sep Purif Technol 102:75–81

    Article  CAS  Google Scholar 

  52. Bonny S, Paquin L, Carrié D et al (2011) Ionic liquids based microwave-assisted extraction of lichen compounds with quantitative spectrophotodensitometry analysis. Anal Chim Acta 707:69–75

    Article  CAS  Google Scholar 

  53. Zhang L, Wang X (2010) Hydrophobic ionic liquid-based ultrasound-assisted extraction of magnolol and honokiol from cortex Magnoliae officinalis. J Sep Sci 33:2035–2038

    Article  CAS  Google Scholar 

  54. Lu C, Wang H, Lv W et al (2011) Ionic liquid-based ultrasonic/microwave-assisted extraction combined with UPLC for the determination of anthraquinones in Rhubarb. Chromatographia 74:139–144

    Article  CAS  Google Scholar 

  55. Zhang L, Liu J, Zhang P et al (2011) Ionic liquid-based ultrasound-assisted extraction of chlorogenic acid from Lonicera japonica Thunb. Chromatographia 73:129–133

    Article  CAS  Google Scholar 

  56. Jin R, Fan L, An X (2011) Ionic liquid-assisted extraction of paeonol from Cynanchum paniculatum. Chromatographia 73:787–792

    Article  CAS  Google Scholar 

  57. Han D, Row KH (2011) Determination of luteolin and apigenin in celery using ultrasonic-assisted extraction based on aqueous solution of ionic liquid coupled with HPLC quantification. J Sci Food Agric 91:2888–2892

    Article  CAS  Google Scholar 

  58. Tang B, Lee YJ, Lee YR et al (2013) Examination of 1-methylimidazole series ionic liquids in the extraction of flavonoids from Chamaecyparis obtuse leaves using a response surface methodology. J Chromatogr B 933:8–14

    Article  CAS  Google Scholar 

  59. Sun X, Jin Z, Yang L, et al (2013) Ultrasonic-assisted extraction of procyanidins using ionic liquid solution from Larix gmelinii bark. J Chem (1):1–9

    Google Scholar 

  60. Duan M-H, Luo M, Zhao C-J et al (2013) Ionic liquid-based negative pressure cavitation-assisted extraction of three main flavonoids from the pigeonpea roots and its pilot-scale application. Sep Purif Technol 107:26–36

    Article  CAS  Google Scholar 

  61. Sun Y, Liu Z, Wang J et al (2013) Aqueous ionic liquid based ultrasonic assisted extraction of four acetophenones from the Chinese medicinal plant Cynanchum bungei Decne. Ultrasonics Sonochem 20:180–186

    Article  CAS  Google Scholar 

  62. Wei W, Fu Y-j, Zu Y-g et al (2012) Ionic liquid-based microwave-assisted extraction for the determination of flavonoid glycosides in pigeon pea leaves by high-performance liquid chromatography-diode array detector with pentafluorophenyl column. J Sep Science 35:2875–2883

    Article  CAS  Google Scholar 

  63. Cao X, Qiao J, Wang L et al (2012) Screening of glycoside isomers in P. scrophulariiflora using ionic liquid-based ultrasonic-assisted extraction and ultra-performance liquid chromatography/electrospray ionization quadrupole time-of-flight tandem mass spectrometry. Rapid Commun Mass Spectrom 26:740–748

    Article  CAS  Google Scholar 

  64. Yang L, Liu Y, Y-g Z et al (2011) Optimize the process of ionic liquid-based ultrasonic-assisted extraction of aesculin and aesculetin from Cortex fraxini by response surface methodology. Chem Eng J 175:539–547

    Article  CAS  Google Scholar 

  65. Yang L, Li L-l, Liu T-t et al (2013) Development of sample preparation method for isoliquiritigenin, liquiritin, and glycyrrhizic acid analysis in licorice by ionic liquids-ultrasound based extraction and high-performance liquid chromatography detection. Food Chem 138:173–179

    Article  Google Scholar 

  66. Yang L, Ge H, Wang W et al (2013) Development of sample preparation method for eleutheroside B and E analysis in Acanthopanax senticosus by ionic liquids-ultrasound based extraction and high-performance liquid chromatography detection. Food Chem 141:2426–2433

    Article  CAS  Google Scholar 

  67. Zhu S, Ma C, Fu Q et al (2013) Application of ionic liquids in an online ultrasonic assisted extraction and solid-phase trapping of rhodiosin and rhodionin from Rhodiola rosea for UPLC. Chromatographia 76:195–200

    Article  CAS  Google Scholar 

  68. Fan J-P, Cao J, Zhang X-H et al (2012) Optimization of ionic liquid based ultrasonic assisted extraction of puerarin from Radix Puerariae Lobatae by response surface methodology. Food Chem 135:2299–2306

    Article  CAS  Google Scholar 

  69. Ribeiro BD, Coelho MAZ, Rebelo LPN et al (2013) Ionic liquids as additives for extraction of saponins and polyphenols from mate (Ilex paraguariensis) and tea (Camellia sinensis). Ind Eng Chem Res 52:12146–12153

    Article  CAS  Google Scholar 

  70. Lin H, Zhang Y, Han M et al (2013) Aqueous ionic liquid based ultrasonic assisted extraction of eight ginsenosides from ginseng root. Ultrason Sonochem 20:680–684

    Article  CAS  Google Scholar 

  71. Yan W, Ji L, Hang S et al (2013) New ionic liquid-based preparative method for diosgenin from Rhizoma dioscoreae nipponicae. Pharmacogn Mag 9:250–254

    Article  CAS  Google Scholar 

  72. Liu F, Wang D, Liu W et al (2013) Ionic liquid-based ultrahigh pressure extraction of five tanshinones from Salvia miltiorrhiza Bunge. Sep Purif Technol 110:86–92

    Article  CAS  Google Scholar 

  73. Zhai Y, Sun S, Wang Z et al (2009) Microwave extraction of essential oils from dried fruits of Illicium verum Hook. f. and Cuminum cyminum L. using ionic liquid as the microwave absorption medium. J Sep Sci 32:3544–3549

    Article  CAS  Google Scholar 

  74. Liu T, Sui X, Zhang R et al (2011) Application of ionic liquids based microwave-assisted simultaneous extraction of carnosic acid, rosmarinic acid and essential oil from Rosmarinus officinalis. J Chromatogr A 1218:8480–8489

    Article  CAS  Google Scholar 

  75. Ma C-h, Liu T-t, Yang L et al (2011) Ionic liquid-based microwave-assisted extraction of essential oil and biphenyl cyclooctene lignans from Schisandra chinensis Baill fruits. J Chromatogr A 1218:8573–8580

    Article  CAS  Google Scholar 

  76. Liu Y, Yang L, Zu Y et al (2012) Development of an ionic liquid-based microwave-assisted method for simultaneous extraction and distillation for determination of proanthocyanidins and essential oil in Cortex cinnamomi. Food Chem 135:2514–2521

    Article  CAS  Google Scholar 

  77. Jiao J, Gai Q-Y, Fu Y-J et al (2013) Microwave-assisted ionic liquids treatment followed by hydro-distillation for the efficient isolation of essential oil from Fructus forsythiae seed. Sep Purif Technol 107:228–237

    Article  CAS  Google Scholar 

  78. Severa G, Kumar G, Cooney MJ (2013) Corecovery of bio-oil and fermentable sugars from oil-bearing biomass. Int J Chem Eng, Article ID 617274

    Google Scholar 

  79. Severa G, Kumar G, Troung M et al (2013) Simultaneous extraction and separation of phorbol esters and bio-oil from Jatropha biomass using ionic liquid–methanol co-solvents. Sep Purif Technol 116:265–270

    Article  CAS  Google Scholar 

  80. Choi S-A, Oh Y-K, Jeong M-J et al (2014) Effects of ionic liquid mixtures on lipid extraction from Chlorella vulgaris. Renew Energ 65:169–174

    Article  CAS  Google Scholar 

  81. Choi S-A, Lee J-S, Oh Y-K et al (2014) Lipid extraction from Chlorella vulgaris by molten-salt/ionic-liquid mixtures. Algal Res 3:44–48

    Article  Google Scholar 

  82. Kim Y-H, Choi Y-K, Park J et al (2012) Ionic liquid-mediated extraction of lipids from algal biomass. Bioresour Technol 109:312–315

    Article  CAS  Google Scholar 

  83. Young G, Nippgen F, Titterbrandt S et al (2010) Lipid extraction from biomass using co-solvent mixtures of ionic liquids and polar covalent molecules. Sep Purif Technol 72:118–121

    Article  CAS  Google Scholar 

  84. Lapkin AA, Plucinski PK, Cutler M (2006) Comparative assessment of technologies for extraction of artemisinin. J Nat Prod 69:1653–1664

    Article  CAS  Google Scholar 

  85. Zirbs R, Strassl K, Gaertner P et al (2013) Exploring ionic liquid–biomass interactions: towards the improved isolation of shikimic acid from star anise pods. RSC Adv 3:26010–26016

    Article  CAS  Google Scholar 

  86. Yansheng C, Zhida Z, Changping L et al (2011) Microwave-assisted extraction of lactones from Ligusticum chuanxiong Hort. using protic ionic liquids. Green Chem 13:666–670

    Article  Google Scholar 

  87. Ma C-h, Liu T-t, Yang L et al (2011) Study on ionic liquid-based ultrasonic-assisted extraction of biphenyl cyclooctene lignans from the fruit of Schisandra chinensis Baill. Anal Chim Acta 689:110–116

    Article  CAS  Google Scholar 

  88. Vilkhu K, Mawson R, Simons L et al (2008) Applications and opportunities for ultrasound assisted extraction in the food industry – a review. Innov Food Sci Emerg Technol 9:161–169

    Article  CAS  Google Scholar 

  89. Zhang H-F, Yang X-H, Wang Y (2011) Microwave assisted extraction of secondary metabolites from plants: current status and future directions. Trends Food Sci Technol 22:672–688

    Article  CAS  Google Scholar 

  90. Dong L-L, Fu Y-J, Zu Y-G et al (2011) Negative pressure cavitation accelerated processing for extraction of main bioactive flavonoids from Radix Scutellariae. Chem Eng Process 50:780–789

    Article  CAS  Google Scholar 

  91. Cláudio AFM, Swift L, Hallett JP et al (2014) Extended scale for the hydrogen-bond basicity of ionic liquids. Phys Chem Chem Phys 16(14):6593–6601. doi:10.1039/C3CP55285C

    Article  Google Scholar 

  92. Rakotondramasy-Rabesiaka L, Havet J-L, Porte C et al (2007) Solid–liquid extraction of protopine from Fumaria officinalis L. Analysis determination, kinetic reaction and model building. Sep Purif Technol 54:253–261

    Article  CAS  Google Scholar 

  93. Harouna-Oumarou HA, Fauduet H, Porte C et al (2007) Comparison of kinetic models for the aqueous solid–liquid extraction of Tilia sapwood in a continuous stirred tank reactor. Chem Eng Commun 194:537–552

    Article  CAS  Google Scholar 

  94. Su C-H, Liu C-S, Yang P-C et al (2014) Solid–liquid extraction of phycocyanin from Spirulina platensis: kinetic modeling of influential factors. Sep Purif Technol 123:64–68

    Article  CAS  Google Scholar 

  95. Tan Z, Li F, Xu X (2012) Isolation and purification of aloe anthraquinones based on an ionic liquid/salt aqueous two-phase system. Sep Purif Technol 98:150–157

    Article  CAS  Google Scholar 

  96. Cláudio AFM, Marques CFC, Boal-Palheiros I et al (2014) Development of back-extraction and recyclability routes for ionic-liquid-based aqueous two-phase systems. Green Chem 16:259–268

    Article  Google Scholar 

  97. Bubalo MC, Radošević K, Redovniković IR et al (2014) A brief overview of the potential environmental hazards of ionic liquids. Ecotoxicol Environ Saf 99:1–12

    Article  Google Scholar 

Download references

Acknowledgments

The author would like to dedicate this work to Professor Willi Kantlehner, on the occasion of his 70th birthday, with gratitude for his guidance into the field of ionic liquids.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Milen G. Bogdanov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Bogdanov, M.G. (2014). Ionic Liquids as Alternative Solvents for Extraction of Natural Products. In: Chemat, F., Vian, M. (eds) Alternative Solvents for Natural Products Extraction. Green Chemistry and Sustainable Technology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-43628-8_7

Download citation

Publish with us

Policies and ethics