Skip to main content

Pathophysiologie und Behandlung der therapieinduzierten Osteoporose

  • Chapter
  • First Online:
Knochenmetastasen

Zusammenfassung

Die Osteoporose ist laut WHO-Definition eine systemische Skeletterkrankung, die charakterisiert ist durch eine niedrige Knochenmasse und eine Störung der Mikroarchitektur des Knochengewebes mit konsekutiv erhöhter Knochenbrüchigkeit und erhöhtem Frakturrisiko. Sie wird zusätzlich operational auf Basis der Messung der Knochendichte durch den T-Score definiert. Die Leitlinie des Dachverbands Osteologie integriert in die Definition der Osteoporose klinische Aspekte und berücksichtigt insbesondere neben der Diagnose einer niedrigen Knochendichte die klinischen Risikofaktoren sowie den Einfluss medikamentöser Therapien auf das Frakturrisiko. Eine Ursache für die steigende Inzidenz der Osteoporose ist u. a. die tumor- bzw. therapieinduzierte Osteoporose, die in diesem Buchkapitel am Beispiel des Mammakarzinoms, welches die häufigste maligne Erkrankung der Frau ist, dargestellt wird.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 79.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Literatur

  • Ataya K, Moghissi K (1989) Chemotherapy-induced premature ovarian failure: mechanisms and prevention. Steroids 54: 607–626

    CAS  PubMed  Google Scholar 

  • Avenell A, Gillespie WJ, Gillespie LD, O’Connell D (2009) Vitamin D and vitamin D analogues for preventing fractures associated with involutional and post-menopausal osteoporosis. Cochrane. Database Syst Rev (2): CD000227

    Google Scholar 

  • Brinton LA, Schairer C, Hoover RN, Fraumeni JF Jr (1988) Menstrual factors and risk of breast cancer. Cancer Invest 6: 245–254

    CAS  PubMed  Google Scholar 

  • Brufsky AM, Harker WG, Beck JT et al (2012) Final 5-year results of Z-FAST trial: adjuvant zoledronic acid maintains bone mass in postmenopausal breast cancer patients receiving letrozole. Cancer 118: 1192–1201

    CAS  PubMed  Google Scholar 

  • Bruning PF, Pit MJ, de Jong-Bakker M et al (1990) Bone mineral density after adjuvant chemotherapy for premenopausal breast cancer. Br J Cancer 61: 308–310

    CAS  PubMed Central  PubMed  Google Scholar 

  • Buzdar AU, Hortobagyi G (1998) Update on endocrine therapy for breast cancer. Clin Cancer Res 4: 527–534

    CAS  PubMed  Google Scholar 

  • Cann CE, Martin MC, Genant HK, Jaffe RB (1984) Decreased spinal mineral content in amenorrheic women. JAMA 251: 626–629

    CAS  PubMed  Google Scholar 

  • Cauley JA, Lucas FL, Kuller LH et al (1999) Elevated serum estradiol and testosterone concentrations are associated with a high risk for breast cancer. Study of Osteoporotic Fractures Research Group. Ann Intern Med 130: 270–277

    CAS  PubMed  Google Scholar 

  • Cauley JA, LaCroix AZ, Robbins JA et al (2010) Baseline serum estradiol and fracture reduction during treatment with hormone therapy: the Women’s Health Initiative randomized trial. Osteoporos Int 21: 167–177

    CAS  PubMed Central  PubMed  Google Scholar 

  • Chapurlat RD, Garnero P, Breart G et al (2000) Serum estradiol and sex hormone-binding globulin and the risk of hip fracture in elderly women: the EPIDOS study. J Bone Miner Res 15: 1835–1841

    CAS  PubMed  Google Scholar 

  • Chlebowski R, Cuzick J, Amakye D et al (2009) Clinical perspectives on the utility of aromatase inhibitors for the adjuvant treatment of breast cancer. Breast: 18(Suppl 2): S1–11

    PubMed  Google Scholar 

  • Christenson ES, Jiang X, Kagan R, Schnatz P (2012) Osteoporosis management in post-menopausal women. Minerva Ginecol 64: 181–194

    CAS  PubMed  Google Scholar 

  • Coleman R, Banks LM, Girgis SI et al; Intergroup Exemestane Study Group (2007) Skeletal effects of exemestane on bone-mineral density, bone biomarkers, and fracture incidence in postmenopausal women with early breast cancer participating in the Intergroup Exemestane Study (IES): a randomised controlled study. Lancet Oncol 8: 119–127

    Google Scholar 

  • Coleman R, Costa L, Saad F et al (2011) Consensus on the utility of bone markers in the malignant bone disease setting. Crit Rev Oncol Hematol 80: 411–432

    PubMed  Google Scholar 

  • Coleman R, de Boer R, Eidtmann H et al (2013) Zoledronic acid (zoledronate) for postmenopausal women with early breast cancer receiving adjuvant letrozole (ZO-FAST study): final 60-month results. Ann Oncol 24: 398–405

    CAS  PubMed  Google Scholar 

  • Conference Report (1993) Consensus development conference: diagnosis, prophylaxis, and treatment of osteoporosis. Am J Med 94: 646–650

    Google Scholar 

  • Coombes RC, Hall E, Gibson LJ et al (2004) A randomized trial of exemestane after two to three years of tamoxifen therapy in postmenopausal women with primary breast cancer. N Engl J Med 350: 1081–1092

    CAS  PubMed  Google Scholar 

  • Cummings SR, Nevitt MC, Browner WS et al (1995) Risk factors for hip fracture in white women. Study of Osteoporotic Fractures Research Group. N Engl J Med 332: 767–773

    CAS  PubMed  Google Scholar 

  • Cummings SR, Browner WS, Bauer D et al (1998) Endogenous hormones and the risk of hip and vertebral fractures among older women. Study of Osteoporotic Fractures Research Group. N Engl J Med 339: 733–740

    CAS  PubMed  Google Scholar 

  • Cuzick J, Sestak I, Baum M et al (2010) Effect of anastrozole and tamoxifen as adjuvant treatment for early-stage breast cancer: 10-year analysis of the ATAC trial. Lancet Oncol 11: 1135–1141

    CAS  PubMed  Google Scholar 

  • Davies JH, Evans BA, Jenney ME, Gregory JW (2002) In vitro effects of chemotherapeutic agents on human osteoblast-like cells. Calcif Tissue Int 70: 408–415

    CAS  PubMed  Google Scholar 

  • Dawson-Hughes B, Looker AC, Tosteson AN et al (2012) The potential impact of the National Osteoporosis Foundation guidance on treatment eligibility in the USA: an update in NHANES 2005-2008. Osteoporos Int 23: 811–820

    CAS  PubMed  Google Scholar 

  • De Stavola BL, Wang DY, Allen DS et al (1993) The association of height, weight, menstrual and reproductive events with breast cancer: results from two prospective studies on the island of Guernsey (United Kingdom). Cancer Causes Control 4: 331–340

    CAS  PubMed  Google Scholar 

  • Delmas PD, Fontana A (1998) Bone loss induced by cancer treatment and its management. Eur J Cancer 34: 260–262

    CAS  PubMed  Google Scholar 

  • Delmas PD, Balena R, Confravreux E et al (1997) Bisphosphonate risedronate prevents bone loss in women with artificial menopause due to chemotherapy of breast cancer: a double-blind, placebocontrolled study. J Clin Oncol 15: 955–962

    CAS  PubMed  Google Scholar 

  • Dhesy-Thind SK (2012) Screening for osteoporosis in postmenopausal women with breast cancer receiving aromatase inhibitors: less is more? J Clin Oncol 30: 1408–1410

    PubMed  Google Scholar 

  • Duffy S, Jackson TL, Lansdown M et al (2006) The ATAC (’Arimidex’, Tamoxifen, Alone or in Combination) adjuvant breast cancer trial: first results of the endometrial sub-protocol following 2 years of treatment. Hum Reprod 21: 545–553

    CAS  PubMed  Google Scholar 

  • DVO (Dachverband Osteologie) (2009) DVO-Guideline 2009 on the Prevention, Diagnosis and Treatment of Osteoporosis in Adults. Osteologie 18: 304–324

    Google Scholar 

  • Eastell R, Adams JE, Coleman RE et al (2008) Effect of anastrozole on bone mineral density: 5-year results from the anastrozole, tamoxifen, alone or in combination trial 18233230. J Clin Oncol 26: 1051–1057

    CAS  PubMed  Google Scholar 

  • Eastell R, Adams J, Clack G et al (2011) Long-term effects of anastrozole on bone mineral density: 7-year results from the ATAC trial. Ann Oncol 22: 857–862

    CAS  PubMed  Google Scholar 

  • Eliassen AH, Missmer SA, Tworoger SS et al (2006) Endogenous steroid hormone concentrations and risk of breast cancer among premenopausal women. J Natl Cancer Inst 98: 1406–1415

    CAS  PubMed  Google Scholar 

  • Ellis GK, Bone HG, Chlebowski R et al (2008) Randomized trial of denosumab in patients receiving adjuvant aromatase inhibitors for nonmetastatic breast cancer. J Clin Oncol 26: 4875–4882

    CAS  PubMed  Google Scholar 

  • Eriksen EF, Colvard DS, Berg NJ et al (1988) Evidence of estrogen receptors in normal human osteoblast-like cells. Science 241: 84–86

    CAS  PubMed  Google Scholar 

  • Ettinger B, Pressman A, Sklarin P et al (1998) Associations between low levels of serum estradiol, bone density, and fractures among elderly women: the study of osteoporotic fractures. J Clin Endocrinol Metab 83: 2239–2243

    CAS  PubMed  Google Scholar 

  • Fisher B, Costantino JP, Wickerham DL et al (1998) Tamoxifen for prevention of breast cancer: report of the National Surgical Adjuvant Breast and Bowel Project P-1 Study. J Natl Cancer Inst 90: 1371–1388

    CAS  PubMed  Google Scholar 

  • Fogelman I, Blake GM, Blamey R et al (2003) Bone mineral density in premenopausal women treated for node-positive early breast cancer with 2 years of goserelin or 6 months of cyclophosphamide, methotrexate and 5-fluorouracil (CMF). Osteoporos Int 14: 1001–1006

    CAS  PubMed  Google Scholar 

  • Fox KM, Magaziner J, Sherwin R et al (1993) Reproductive correlates of bone mass in elderly women. Study of Osteoporotic Fractures Research Group. J Bone Miner Res 8: 901–908

    CAS  PubMed  Google Scholar 

  • Gnant MF et al (2004) Abstracts of the 27th Annual San Antonio Breast Cancer Symposium. December 8–11, 2004, San Antonio, Texas, USA. Breast Cancer Res Treat 88(Suppl 1): S1–265

    Google Scholar 

  • Gnant MF, Mlineritsch B, Luschin-Ebengreuth G et al (2007) Zoledronic acid prevents cancer treatment-induced bone loss in premenopausal women receiving adjuvant endocrine therapy for hormone-responsive breast cancer: a report from the Austrian Breast and Colorectal Cancer Study Group. J Clin Oncol 25: 820–828

    CAS  PubMed  Google Scholar 

  • Gnant M, Mlineritsch B, Luschin-Ebengreuth G et al (2008) Adjuvant endocrine therapy plus zoledronic acid in premenopausal women with early-stage breast cancer: 5-year follow-up of the ABCSG-12 bone-mineral density substudy. Lancet Oncol 9: 840–849

    CAS  PubMed  Google Scholar 

  • Goel S, Sharma R, Hamilton A, Beith J (2009) LHRH agonists for adjuvant therapy of early breast cancer in premenopausal women. Cochrane Database Syst Rev (4): CD004562

    Google Scholar 

  • Goss PE, Ingle JN, Martino S et al (2005) Randomized trial of letrozole following tamoxifen as extended adjuvant therapy in receptor-positive breast cancer: updated findings from NCIC CTG MA.17 J Natl Cancer Inst 97: 1262–1271

    Google Scholar 

  • Gradishar WJ, Schilsky RL (1988) Effects of cancer treatment on the reproductive system. Crit Rev Oncol Hematol 8: 153–171

    CAS  PubMed  Google Scholar 

  • Greep NC, Giuliano AE, Hansen NM et al (2003) The effects of adjuvant chemotherapy on bone density in postmenopausal women with early breast cancer. Am J Med 114: 653–659

    PubMed  Google Scholar 

  • Hadji P (2005) Endogene und exogene Östrogene. Gynäkologe 38: 1065–1073

    Google Scholar 

  • Hadji P (2009) Aromatase inhibitor-associated bone loss in breast cancer patients is distinct from postmenopausal osteoporosis. Crit Rev Oncol Hematol 69: 73–82

    PubMed  Google Scholar 

  • Hadji P, Wüster C, Emons G, Schulz KD (1998) Prävention der Osteoporose – eine Herausforderung für die gynäkologische Sprechstunde. Frauenarzt 39: 1864–1877

    Google Scholar 

  • Hadji P, Bock K, Emons G et al (2002a) Früherkennung und Prävention der Osteoporose. Gynäkologe 35: 518–526

    Google Scholar 

  • Hadji P, Rabe T, Ortmann O et al (2002b) The possible role of estrogens and progestagens in the prevention of osteoporosis. Geburtshilfe Frauenheilkunde 62: 436–445

    Google Scholar 

  • Hadji P, Gottschalk M, Jackisch C, Wagner U (2005) Tumortherapie-induzierte Osteoporose beim Mammakarzinom. Frauenarzt 46 Nr. 10

    Google Scholar 

  • Hadji P, Gottschalk M, Ziller V et al (2007) Bone mass and the risk of breast cancer: the influence of cumulative exposure to oestrogen and reproductive correlates. Results of the Marburg breast cancer and osteoporosis trial (MABOT). Maturitas 56: 312–321

    CAS  PubMed  Google Scholar 

  • Hadji P et al (2008a) Abstract 1143. 31st Annual San Antonio Breast Cancer Symposium, San Antonio, TX, Dec 10–14

    Google Scholar 

  • Hadji P, Body JJ, Aapro MS et al (2008b) Practical guidance for the management of aromatase inhibitor-associated bone loss. Ann Oncol 19: 1407–1416

    CAS  Google Scholar 

  • Hadji P, Ziller M, Kieback DG et al (2009a) The effect of exemestane or tamoxifen on markers of bone turnover: results of a German sub-study of the Tamoxifen Exemestane Adjuvant Multicentre (TEAM) trial. Breast 18: 159–164

    CAS  Google Scholar 

  • Hadji P, Ziller M, Maskow C et al (2009b) The influence of chemotherapy on bone mineral density, quantitative ultrasonometry and bone turnover in pre-menopausal women with breast cancer. Eur J Cancer 45: 3205–3212

    CAS  Google Scholar 

  • Hadji P, Aapro MS, Body JJ et al (2011a) Management of aromatase inhibitor-associated bone loss in postmenopausal women with breast cancer: practical guidance for prevention and treatment. Ann Oncol 22: 2546–2555

    CAS  Google Scholar 

  • Hadji P, Asmar L, van Nes JG et al (2011b) The effect of exemestane and tamoxifen on bone health within the Tamoxifen Exemestane Adjuvant Multinational (TEAM) trial: a meta-analysis of the US, German, Netherlands, and Belgium sub-studies. J Cancer Res Clin Oncol 137: 1015–1025

    CAS  Google Scholar 

  • Hadji P, Gnant M, Body JJ et al (2012) Cancer treatment-induced bone loss in premenopausal women: a need for therapeutic intervention? Cancer Treat Rev 38: 798–806

    CAS  PubMed  Google Scholar 

  • Hadji P, Klein S, Gothe H et al (2013) The Epidemiology of Osteoporosis – Bone Evaluation Study (BEST): An Analysis of Routine Health Insurance Data. Dt Ärztebl Int 100(4): 52–57

    Google Scholar 

  • Hamilton A, Piccart M (1999) The third-generation non-steroidal aromatase inhibitors: a review of their clinical benefits in the second-line hormonal treatment of advanced breast cancer. Ann Oncol 10: 377–384

    CAS  PubMed  Google Scholar 

  • Haussler B, Gothe H, Gol D et al (2007) Epidemiology, treatment and costs of osteoporosis in Germany – the BoneEVA Study. Osteoporos Int 18: 77–84

    CAS  PubMed  Google Scholar 

  • Headley JA, Theriault RL, LeBlanc AD et al (1998) Pilot study of bone mineral density in breast cancer patients treated with adjuvant chemotherapy. Cancer Invest 16: 6–11

    CAS  PubMed  Google Scholar 

  • Heshmati HM, Khosla S, Robins SP et al (2002) Role of low levels of endogenous estrogen in regulation of bone resorption in late postmenopausal women. J Bone Miner Res 17: 172–178

    CAS  PubMed  Google Scholar 

  • Hojan K, Milecki P, Molinska-Glura M et al (2013) Effect of physical activity on bone strength and body composition in breast cancer premenopausal women during endocrine therapy. Eur J Phys Rehabil Med 49: 331–339

    CAS  PubMed  Google Scholar 

  • Horowitz MC (1993) Cytokines and estrogen in bone: anti-osteoporotic effects. Science 260: 626–627

    CAS  PubMed  Google Scholar 

  • Howell SJ, Berger G, Adams JE, Shalet SM (1998) Bone mineral density in women with cytotoxic-induced ovarian failure. Clin Endocrinol (Oxf) 49: 397–402

    Google Scholar 

  • Howell A, Cuzick J, Baum M et al (2005) Results of the ATAC (Arimidex, Tamoxifen, Alone or in Combination) trial after completion of 5 years’ adjuvant treatment for breast cancer. Lancet 365: 60–62

    CAS  PubMed  Google Scholar 

  • Irwin ML, McTiernan A, Manson JE et al (2011) Physical activity and survival in postmenopausal women with breast cancer: results from the women’s health initiative. Cancer Prev Res (Phila) 4: 522–529

    Google Scholar 

  • Jackson RD, LaCroix AZ, Gass M et al (2006) Calcium plus vitamin D supplementation and the risk of fractures. N Engl J Med 354: 669–683

    CAS  PubMed  Google Scholar 

  • Johansen JS, Riis BJ, Hassager C et al (1988) The effect of a gonadotropin-releasing hormone agonist analog (nafarelin) on bone metabolism. J Clin Endocrinol Metab 67: 701–706

    CAS  PubMed  Google Scholar 

  • Jordan VC, Morrow M (1999) Tamoxifen, raloxifene, and the prevention of breast cancer. Endocr Rev 20: 253–278

    CAS  PubMed  Google Scholar 

  • Jordan VC, Phelps E, Lindgren JU (1987) Effects of anti-estrogens on bone in castrated and intact female rats. Breast Cancer Res Treat 10: 31–35

    CAS  PubMed  Google Scholar 

  • Kalder M, Jager C, Seker-Pektas B et al (2011) Breast cancer and bone mineral density: the Marburg Breast Cancer and Osteoporosis Trial (MABOT II). Climacteric 14: 352–361

    CAS  PubMed  Google Scholar 

  • Kalder M, Hans D, Kyvernitakis I et al (2013) Effects of exemestane and tamoxifen treatment on bone texture analysis assessed by TBS in comparison with bone mineral density assessed by DXA in women with breast cancer. J Clin Densitom 17(1): 66–71

    PubMed  Google Scholar 

  • Kanis JA, McCloskey EV, Powles T et al (1999) A high incidence of vertebral fracture in women with breast cancer. Br J Cancer 79: 1179–1181

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kaufmann M, Jonat W, Blamey R et al (2003) Survival analyses from the ZEBRA study. goserelin (Zoladex) versus CMF in premenopausal women with node-positive breast cancer. Eur J Cancer 39: 1711–1717

    CAS  PubMed  Google Scholar 

  • Key TJ, Appleby PN, Reeves GK et al (2011) Circulating sex hormones and breast cancer risk factors in postmenopausal women: reanalysis of 13 studies. Br J Cancer 105: 709–722

    CAS  PubMed  Google Scholar 

  • Kreienberg R (2004) Diagnostik, Therapie und Nachsorge des Mammakarzinoms der Frau – Eine nationale S3-Leitlinie. Deutsche Krebsgesellschaft e.V.)

    Google Scholar 

  • Kreienberg R, Albert US, Follmann M et al (2013) Interdisziplinäre S3-Leitlinie für die Diagnostik, Therapie und Nachsorge des Mammakarzinoms. Leitlinienprogramm Onkologie der AWMF, Deutschen Krebsgesellschaft e.V. und Deutschen Krebshilfe e.V. AWMF-Register-Nummer: 032-045OL – Kurzversion 3.0, Juli 2012. Senologie – Zeitschrift für Mammadiagnostik und -therapie 10(3): 164–192 (https://www.thieme-connect.com/ejournals/abstract/10.1055/s-0033-1355476)

  • Kristensen B, Ejlertsen B, Dalgaard P et al (1994) Tamoxifen and bone metabolism in postmenopausal low-risk breast cancer patients: a randomized study. J Clin Oncol 12: 992–997

    CAS  PubMed  Google Scholar 

  • Lindsay R (1988) Sex steroids in the pathogenesis and prevention of osteoporosis. In: Riggs BL, Melton III LJ (eds) Osteoporosis: Etiology, Diagnosis and Management. Raven, New York, pp 353–358

    Google Scholar 

  • Lippman ME, Dickson RB (1989) Mitogenic regulation of normal and malignant breast epithelium. Yale J Biol Med 62: 459–480

    CAS  PubMed Central  PubMed  Google Scholar 

  • Love RR, Mazess RB, Barden HS et al (1992) Effects of tamoxifen on bone mineral density in postmenopausal women with breast cancer. N Engl J Med 326: 852–856

    CAS  PubMed  Google Scholar 

  • Lower EE, Blau R, Gazder P, Tummala R (1999) The risk of premature menopause induced by chemotherapy for early breast cancer. J Womens Health Gend Based Med 8: 949–954

    CAS  PubMed  Google Scholar 

  • Mattison DR, Chang L, Thorgeirsson SS, Shiromizu K (1981) The effects of cyclophosphamide, azathioprine, and 6-mercaptopurine on oocyte and follicle number in C57BL/6N mice. Res Commun Chem Pathol Pharmacol 31: 155–161

    CAS  PubMed  Google Scholar 

  • Mauri D, Valachis A, Polyzos IP et al (2009) Osteonecrosis of the jaw and use of bisphosphonates in adjuvant breast cancer treatment: a meta-analysis. Breast Cancer Res Treat 116: 433–439

    CAS  PubMed  Google Scholar 

  • Miller KK, Klibanski A (1999) Clinical review 106: Amenorrheic bone loss. J Clin Endocrinol Metab 84: 1775–1783

    CAS  PubMed  Google Scholar 

  • Nieves JW, Barrett-Connor E, Siris ES et al (2008) Calcium and vitamin D intake influence bone mass, but not short-term fracture risk, in Caucasian postmenopausal women from the National Osteoporosis Risk Assessment (NORA) study. Osteoporos Int 19: 673–679

    CAS  PubMed  Google Scholar 

  • Peto R, Davies C, Godwin J et al (2012) Comparisons between different polychemotherapy regimens for early breast cancer: meta-analyses of long-term outcome among 100,000 women in 123 randomised trials. Lancet 379: 432–444

    CAS  PubMed  Google Scholar 

  • Pfeilschifter J, Diel IJ (2000) Osteoporosis due to cancer treatment: pathogenesis and management. J Clin Oncol 18: 1570–1593

    CAS  PubMed  Google Scholar 

  • Plowchalk DR, Mattison DR (1991) Phosphoramide mustard is responsible for the ovarian toxicity of cyclophosphamide. Toxicol Appl Pharmacol 107: 472–481

    CAS  PubMed  Google Scholar 

  • Podhajcer OL, Bravo AI, Dain L et al (1988) In vitro analysis of the cellular proliferative response to 17-beta-estradiol of human breast cancer. Cancer 61: 1807–1812

    CAS  PubMed  Google Scholar 

  • Powles TJ, McCloskey E, Paterson AH et al (1998) Oral clodronate and reduction in loss of bone mineral density in women with operable primary breast cancer. J Natl Cancer Inst 90: 704–708

    CAS  PubMed  Google Scholar 

  • Rabaglio M, Sun Z, Price N et al (2009) Bone fractures among postmenopausal patients with endocrine-responsive early breast cancer treated with 5 years of letrozole or tamoxifen in the BIG 1-98 trial. Ann Oncol 20: 1489–1498

    CAS  PubMed Central  PubMed  Google Scholar 

  • Rea D et al (2009) Abstract 15; 5. San Antonio Breast Cancer Symposium, San Antonio, TX

    Google Scholar 

  • Reginster JY, Deroisy R, Albert A et al (1989) Relationship between whole plasma calcitonin levels, calcitonin secretory capacity, and plasma levels of estrone in healthy women and postmenopausal osteoporotics. J Clin Invest 83: 1073–1077

    CAS  PubMed Central  PubMed  Google Scholar 

  • Reid DM, Doughty J, Eastell R et al (2008) Guidance for the management of breast cancer treatment-induced bone loss: a consensus position statement from a UK Expert Group. Cancer Treat Rev 34 Suppl 1: S3–18

    Google Scholar 

  • Reyno LM, Levine MN, Skingley P et al (1992) Chemotherapy induced amenorrhoea in a randomised trial of adjuvant chemotherapy duration in breast cancer. Eur J Cancer 29A: 21–23

    CAS  PubMed  Google Scholar 

  • Richelson LS, Wahner HW, Melton LJ III, Riggs BL (1984) Relative contributions of aging and estrogen deficiency to postmenopausal bone loss. N Engl J Med 311: 1273–1275

    CAS  PubMed  Google Scholar 

  • Robert-Koch-Institut (2009) Prävalenz der Osteoporose, »Beiträge zur Gesundheitsberichterstattung« GEDA 2009. Robert-Koch-Institut, Berlin

    Google Scholar 

  • Robert-Koch-Institut (2010) Verbreitung von Krebserkrankungen in Deutschland. Entwicklung der Prävalenzen zwischen 1990 und 2010. Beiträge zur Gesundheitsberichterstattung des Bundes. Robert-Koch-Institut, Berlin (Ref Type: Report)

    Google Scholar 

  • Rubens RD, Coleman RE (1995) Knochenmetastasen. In: Abelhoff MD, Armitage JO, Licher AS, Niederhuber JE (eds) Clinical Oncology. Churchill Livingstone, New York, pp 643–665

    Google Scholar 

  • Saad F, Adachi JD, Brown JP et al (2008) Cancer treatment-induced bone loss in breast and prostate cancer. J Clin Oncol 26: 5465–5476

    PubMed  Google Scholar 

  • Saarto T, Blomqvist C, Valimaki M et al (1997a) Chemical castration induced by adjuvant cyclophosphamide, methotrexate, and fluorouracil chemotherapy causes rapid bone loss that is reduced by clodronate: a randomized study in premenopausal breast cancer patients. J Clin Oncol 15: 1341–1347

    CAS  Google Scholar 

  • Saarto T, Blomqvist C, Valimaki M et al (1997b) Clodronate improves bone mineral density in post-menopausal breast cancer patients treated with adjuvant antioestrogens. Br J Cancer 75: 602–605

    CAS  Google Scholar 

  • Saarto T, Vehmanen L, Blomqvist C, Elomaa I (2008) Ten-year follow-up of 3 years of oral adjuvant clodronate therapy shows significant prevention of osteoporosis in early-stage breast cancer. J Clin Oncol 26: 4289–4295

    CAS  PubMed  Google Scholar 

  • Schmid C (1993) The regulation of osteoblast function by hormones and cytokines with special reference to insulin-like growth factors and their binding proteins. J Intern Med 234: 535–542

    CAS  PubMed  Google Scholar 

  • Schmitz KH (2011) Exercise for secondary prevention of breast cancer: moving from evidence to changing clinical practice. Cancer Prev Res (Phila) 4: 476–480

    Google Scholar 

  • Schulz KD, Albert US (2003) Stufe-3-Leitlinie. Brustkrebs-Früherkennung in Deutschland. Zuckschwerdt, München

    Google Scholar 

  • Schwartz AL, Winters-Stone K, Gallucci B (2007) Exercise effects on bone mineral density in women with breast cancer receiving adjuvant chemotherapy. Oncol Nurs Forum 34: 627–633

    PubMed  Google Scholar 

  • Shapiro CL, Manola J, Leboff M (2001) Ovarian failure after adjuvant chemotherapy is associated with rapid bone loss in women with early-stage breast cancer. J Clin Oncol 19: 3306–3311

    CAS  PubMed  Google Scholar 

  • Silva-Fernandez L, Rosario MP, Martinez-Lopez JA et al (2013) Denosumab for the treatment of osteoporosis: a systematic literature review. Reumatol Clin 9: 42–52

    PubMed  Google Scholar 

  • Singh JA, Schmitz KH, Petit MA (2009) Effect of resistance exercise on bone mineral density in premenopausal women. Joint Bone Spine 76: 273–280

    PubMed  Google Scholar 

  • Siris ES, Chen YT, Abbott TA et al (2004) Bone mineral density thresholds for pharmacological intervention to prevent fractures. Arch Intern Med 164: 1108–1112

    PubMed  Google Scholar 

  • Siris ES, Brenneman SK, Barrett-Connor E et al (2006) The effect of age and bone mineral density on the absolute, excess, and relative risk of fracture in postmenopausal women aged 50-99: results from the National Osteoporosis Risk Assessment (NORA). Osteoporos Int 17: 565–574

    CAS  PubMed  Google Scholar 

  • Stone K, Bauer DC, Black DM et al (1998) Hormonal predictors of bone loss in elderly women: a prospective study. The Study of Osteoporotic Fractures Research Group. J Bone Miner Res 13: 1167–1174

    CAS  PubMed  Google Scholar 

  • Toniolo PG, Levitz M, Zeleniuch-Jacquotte A et al (1995) A prospective study of endogenous estrogens and breast cancer in postmenopausal women. J Natl Cancer Inst 87: 190–197

    CAS  PubMed  Google Scholar 

  • Turken S, Siris E, Seldin D et al (1989) Effects of tamoxifen on spinal bone density in women with breast cancer. J Natl Cancer Inst 81: 1086–1088

    CAS  PubMed  Google Scholar 

  • Turner RT, Wakley GK, Hannon KS, Bell NH (1987) Tamoxifen prevents the skeletal effects of ovarian hormone deficiency in rats. J Bone Mine. Re. 2: 449–456

    CAS  Google Scholar 

  • Twiss JJ, Waltman N, Ott CD et al (2001) Bone mineral density in postmenopausal breast cancer survivors. J Am Acad Nurse Pract 13: 276–284

    CAS  PubMed  Google Scholar 

  • Van PC, Hannon RA, Mackey JR, Campone M et al (2010) Prevention of aromatase inhibitor-induced bone loss using risedronate: the SABRE trial. J Clin Oncol 28: 967–975

    Google Scholar 

  • Van der Burg B, Rutteman GR, Blankenstein MA et al (1988) Mitogenic stimulation of human breast cancer cells in a growth factor-defined medium: synergistic action of insulin and estrogen. J Cell Physiol 134: 101–108

    Google Scholar 

  • Vehmanen L, Saarto T, Elomaa I et al (2001) Long-term impact of chemotherapy-induced ovarian failure on bone mineral density (BMD) in premenopausal breast cancer patients. The effect of adjuvant clodronate treatment. Eur J Cancer 37: 2373–2378

    CAS  PubMed  Google Scholar 

  • Vehmanen L, Elomaa I, Blomqvist C, Saarto T (2006) Tamoxifen treatment after adjuvant chemotherapy has opposite effects on bone mineral density in premenopausal patients depending on menstrual status. J Clin Oncol 24: 675–680

    CAS  PubMed  Google Scholar 

  • Vehmanen LK, Elomaa I, Blomqvist CP, Saarto T (2013) The effect of ovarian dysfunction on bone mineral density in breast cancer patients 10 years after adjuvant chemotherapy. Acta Oncol 53(1): 75–95

    PubMed  Google Scholar 

  • Ward RL, Morgan G, Dalley D, Kelly PJ (1993) Tamoxifen reduces bone turnover and prevents lumbar spine and proximal femoral bone loss in early postmenopausal women. Bone Miner 22: 87–94

    CAS  PubMed  Google Scholar 

  • WHO (World Health Organization) (2004) WHO Scientific group on the assessment of osteoporosis at primary health care. Summary Meeting Report

    Google Scholar 

  • Wong MH, Stockler MR, Pavlakis N (2012) Bisphosphonates and other bone agents for breast cancer. Cochrane Database Syst Rev 2: CD003474

    PubMed  Google Scholar 

  • Wüster C (1994) Internistisch-endokrinologische Aspekte der Osteoporose. Krankenhaus Arzt 67: 390–400

    Google Scholar 

  • Zhao C, Dahlman-Wright K, Gustafsson JA (2008) Estrogen receptor beta: an overview and update. Nucl Recept Signal 6: e003

    PubMed Central  PubMed  Google Scholar 

  • Zhou W, Ding Q, Liang X et al (2012) The risk of amenorrhea is related to chemotherapy-induced leucopenia in breast cancer patients receiving epirubicin and taxane based chemotherapy. PLoS One 7: e37249

    CAS  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthias Kalder .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Kalder, M., Hadji, P. (2014). Pathophysiologie und Behandlung der therapieinduzierten Osteoporose. In: Stenzl, A., Fehm, T., Hofbauer, L., Jakob, F. (eds) Knochenmetastasen. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-43471-0_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-43471-0_12

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-43470-3

  • Online ISBN: 978-3-662-43471-0

  • eBook Packages: Medicine (German Language)

Publish with us

Policies and ethics