Skip to main content

Role of Contaminating White Blood Cells in the Storage Lesions of Red Cells and Platelets

  • Chapter
Clinical Benefits of Leukodepleted Blood Products

Part of the book series: Medical Intelligence Unit ((MIUN))

  • 77 Accesses

Summary

Red cell concentrates prepared from whole blood donations without buffy coat removal contain the majority of the original white cells contained in the whole blood donation. These white cells are predominantly granulocytes. Granulocytes may be metabolically active and release oxidant radicals. They certainly degenerate rapidly on storage, releasing proteolytic enzymes. Such substances may damage the red cell membrane, resulting in accelerated glycolysis, possibly to supply ATP for the sodium/potassium pump, followed by in vitro hemolysis and diminished in vivo recovery or survival.

Early studies on buffy coat-depleted additive-suspended red cells showed less hemolysis after storage as compared to nonbuffy coat-depleted concentrates. Furthermore, studies on pre-storage filtration of red cells have consistently shown a favorable effect of early leukocyte removal on in vitro hemolysis and 24-hour recovery in red cell concentrates stored in PVC-DEHP containers, though this improvement was only significant with 〉4 loglo leukodepletion. Recent studies have also indicated that early removal of leukocytes from red cell concentrates stored in nonDEHP containers is also beneficial, though not enough to compensate for the lack of the protective effect of DEHP on red cell membrane integrity.

Platelet concentrates (PC) prepared from whole blood donations or apheresis devices show great variation in white cell content. The predominant cell is the mononuclear cell, except in situations where there is poor cell separation, in which granulocytes may be present in large numbers. Contaminating leukocytes may potentially damage platelets by competing for available oxygen or metabolic substrates, by releasing enzymes which degrade platelet membrane glycoproteins, or by releasing substances which act on platelets to cause activation or degranulation.

Some studies have implied an adverse indirect or direct effect of leukocytes on platelet properties during storage. Most of these studies have involved high residual leukocyte levels in platelet concentrates platelet stored in first-generation containers where insufficient oxygen for cell respiration may have led to a fall in pH. In addition, some studies involved spiking concentrates with buffy coat leukocytes. However, no convincing data indicates that modest levels of mononuclear white cell contamination (〈1 x 108) in second-generation containers affect the platelet storage lesion, and no differences in in vivo recovery or survival have been demonstrated.

In a number of plateletpheresis concentrate studies where mononuclear cells were predominant and present in the 105-108 range, there was no evidence that this was associated with an adverse effect on platelet quality. Manufacturing protocols which result in high residual granulocyte content may affect platelets, but, in practice, this is uncommon.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Heaton W. Enhancement of cellular elements. In: Wallas, CH and McCarthy, LJ (eds). New Frontiers in Blood Banking. Arlington VA, AABB,p 89, 1986.

    Google Scholar 

  2. Carmen R. The selection of plastic materials for blood bags. Trans Med Rev 7: 1, 1993.

    Article  CAS  Google Scholar 

  3. Hogman C, Eriksson L, Erickson A, et al. Storage of saline-adenine-glucose-mannitol suspended red cells in a new plastic container: polyvinylchloride plasticized with butyryl-n-trihexyl-citrate. Transfusion 31: 26, 1991.

    Article  PubMed  CAS  Google Scholar 

  4. Moore G. Red blood cell preservation: A survey of recent research. In Sohmer PR, Schiffer CA (eds): Blood storage and preservation. A technical workshop. Arlington VA, AABB, p 9, 1982.

    Google Scholar 

  5. Heaton W. Evaluation of posttranfusion recovery and survival of transfused red cells. Trans Med Rev 6: 153, 1992.

    Article  CAS  Google Scholar 

  6. Moroff G, Holme S, Heaton A, et al. Storage of ADSOL-preserved red cells at 2.55.5° C. Comparable in vitro properties. Vox Sang 59: 136, 1990.

    Article  PubMed  CAS  Google Scholar 

  7. Meryman H, Hornblower M. Manipulating red cell intra-and extracellular pH by washing. Vox Sang 60: 99, 1991.

    Article  PubMed  CAS  Google Scholar 

  8. Kay A, Beutler E. The effect of ammonium, phosphate, potassium, and hypotonicity on stored red cells. Transfusion 32: 37, 1992.

    Article  PubMed  CAS  Google Scholar 

  9. Greenwalt T, McGuiness C, Dumswala U, et al. Studies on red cell preservation 3. A phosphate-ammonium-adenine-additive solution. Vox Sang 58: 94, 1990.

    Article  PubMed  CAS  Google Scholar 

  10. Greenwalt T, Dumaswala U, Dhingra N, et al. Studies in red cell preservation. Vox Sang 65: 87, 1993.

    Article  PubMed  CAS  Google Scholar 

  11. Mazor D, Dvilansky A, Meyerstein N. Prolonged storage of red cells with ammonium chloride and mannitol. Transfusion 30: 150, 1990.

    Article  PubMed  CAS  Google Scholar 

  12. Jacobach G, Minakami S, Rapoport S. Glycolysis of the erythrocyte; in Yoshikawa H, Rapoport SM (eds): cellular and molecular biology of erythrocytes. Baltimore, University Park Press, p 55, 1974.

    Google Scholar 

  13. Hershko A, Razin A, Mager J. Regulation of the synthesis of 5-phosphoribosyl-1-pyrophosphate in intact red blood cell and in cell-free preparations. Biochem Biophys Acta 184: 64, 1969.

    Article  PubMed  CAS  Google Scholar 

  14. Olivieri O, de Franceschi L, de Gironcoli M, et al. Potassium loss and cellular dehydration of stored erythrocytes following incubation in autologous plasma: Role of the KCL cotransport system. Vox Sang 65: 95, 1993.

    Article  PubMed  CAS  Google Scholar 

  15. Wolfe L. The membrane and the lesions of storage in preserved red cells. Transfusion 25: 185, 1985.

    Article  PubMed  CAS  Google Scholar 

  16. Greenwalt T, Bryan D, Dumaswala U. Erythrocyte membrane vesiculation and changes in membrane composition during storage in citrate-phosphate-dextrose-adenine-1. Vox Sang 47: 261, 1984.

    Article  PubMed  CAS  Google Scholar 

  17. Rumsby M, Trotter J, Allan D, et al. Recovery of membrane microvesicles from human erythrocytes stored for transfusion. A mechanism for the erythrocyte discocyteto-spherocyte shape transformation. Biochem Soc Trans 5: 126, 1977.

    PubMed  CAS  Google Scholar 

  18. Trotter J, Rumbsby M. Lipids of the erythrocyte membrane during storage for transfusion. Correlation of lipid changes with the discocyte to spherocyte shape transformation. J Appl Biochem 3: 19, 1981.

    CAS  Google Scholar 

  19. Hogman C, de Verdier C, Borgstrom L. Studies on the mechanism of human red cell loss of viability during storage at +4_C. II. Relation between cellular morphology and viability. Vox Sang 52: 20, 1987.

    Article  PubMed  CAS  Google Scholar 

  20. Meryman H, Hornblower M, Keegan T, et al. Refrigerated storage of red cells. Vox Sang 60: 88, 1991.

    Article  PubMed  CAS  Google Scholar 

  21. Hogman C, Eriksson L, Gong J, et al. Half-strength citrate CPD and new additive solutions for improved blood preservation. I. Studies of six experimental solutions. Transfusion Med 3: 43, 1993.

    Article  CAS  Google Scholar 

  22. Sasakawa S, Mitomi Y. Di-2-ethylhexyl phthalate (DEHP) content of blood or blood components stored in plastic bags. Vox Sang 34: 81, 1978.

    Article  PubMed  CAS  Google Scholar 

  23. Miyamoto M, Sasakawa S. Effects of plasticizers and plastic bags on granulocyte function during storage. Vox Sang 53: 19, 1987.

    Article  PubMed  CAS  Google Scholar 

  24. Horowitz B, Stryker M, Waldman A, et al. Stabilization of red blood cells by the plasticizer, diethylhexylphthalate. Vox Sang 48: 150, 1985.

    Article  PubMed  CAS  Google Scholar 

  25. Estep T, Pedersen R, Miller T, et al. Characterization of erythrocyte quality during the refrigerated storage of whole blood containing di-(2-ethylhexyl) phthalate. Blood 64: 1270, 1988.

    Google Scholar 

  26. AuBuchon J, Estep T, Davey R. The effect of the plasticizer di-2-ethylhexyl phthalate on the survival of stored red cells. Blood 71: 448, 1988.

    PubMed  CAS  Google Scholar 

  27. Waldman A. Effects of plasticizers on red blood cells and platelets during storage. Plasma Ther Transfus Technol 9: 317, 1988.

    Article  CAS  Google Scholar 

  28. Högman C, Hedlund K, Akerblom O, Venge P. Red blood cell preservation in protein-poor media: I. Leukocyte enzymes as a cause of hemolysis. Transfusion 18 (2): 233, 1978.

    Google Scholar 

  29. England M, Cavarocchi N, O’Brien J. Influence of antioxidants (mannitol and allopurinol) on oxygen free radical generation during and after cardiopulmonary bypass. Circulation (Suppl. III): 134, 1986.

    Google Scholar 

  30. Whitley P, McNeil D, Holme S. The evaluation of red cell viability with and without leukodepletion, stored in DEHP and nonDEHP containers. In: Proc. of Mid-Atlantic Association of Blood Banks Annual Meeting, Fredericksburg, VA, May, 1992.

    Google Scholar 

  31. Högman CF, Hedlund K, Sahlestrom Y. Red cell preservation in protein-poor media: III. Protection against in vitro hemolysis. Vox Sang 41: 274, 1981.

    Article  Google Scholar 

  32. Humbert J, Fermin C, Winsor E. Early damage to granulocytes during storage. Sem in Hematol 28: 10, 1991.

    CAS  Google Scholar 

  33. Weiss D, Murtaugh M. Activated neutrophils induce erythrocyte immunoglobulin binding and membrane protein degradation. J Leukocyte Biol 48: 438, 1990.

    PubMed  CAS  Google Scholar 

  34. Janoff A. Elastase in tissue injury. Ann Rev Med 36: 207, 1985.

    Article  PubMed  CAS  Google Scholar 

  35. Bykowska K;, Kaczanowska J, Karpowicz M, Stachuiska Z, Kopec M. Effect of neutral proteases from blood leukocytes on human platelets. Thromb Haemostas 50: 768, 1983.

    Google Scholar 

  36. Bykowska K, Kaczanowska J, Karpowicz M, et al. Alterations of blood platelet function induced by neutral proteases from human leukocytes. Thromb Res 38: 535, 1985.

    Article  PubMed  CAS  Google Scholar 

  37. Brower M, Levin R, Garry K. Human neutrophil elastase modulates platelet function by limited proteolysis of membrane glycoproteins. J Clin Invest 75: 657, 1985.

    Article  PubMed  CAS  Google Scholar 

  38. Selak M, Chignard M, Smith J. Cathepsin G is a strong platelet agonist released by neutrophils. Biol J 251: 293, 1988.

    CAS  Google Scholar 

  39. Weiss D, Aird B, Murtaugh M. Neutrophil-induced immunoglobulin binding to erythrocytes involves proteolytic and oxidative injury. J Leukocyte Biol 51: 19, 1992.

    PubMed  CAS  Google Scholar 

  40. Bykowska K, Duk M, Kusnierz-Alejska G, et al. Degradation of human erythrocyte surface components by human neutrophil elastase and cathepsin G: preferential digestion of glycophorins. Brit J Haematol 84: 736, 1993.

    Article  CAS  Google Scholar 

  41. Travis J. Structure, function and control of neutrophil proteinases. Am J Med 84: 37 (Supp1.6A), 1988.

    Google Scholar 

  42. Weiss S. Tissue destruction by neutrophils. New Eng J Med 320: 365, 1989.

    Article  PubMed  CAS  Google Scholar 

  43. Lovric V, Schuller M, Raftos J, et al. Filtered microaggregate-free erythrocyte concentrates with 35-day shelflife. Vox Sang 41: 6, 1981.

    Article  PubMed  CAS  Google Scholar 

  44. Angue M, Chatelain P, Fiabane S, et al. Viabilite des globules rouges humains conserves pendant 35 jours apres depletion en leucocytes (etude in vitro). Rev Fr Transfus Hemobio 32: 27, 1989.

    CAS  Google Scholar 

  45. Pietersz R, Reesink H, deKorte D, et al. Storage of leukocyte-poor red cell concentrates: filtration in a closed system using a sterile connection device. Vox Sang 57: 29, 1989.

    Article  PubMed  CAS  Google Scholar 

  46. Davey R, Carmen R, Simon T, et al. Preparation of white cell-depleted red cells for 42-day storage using an integral inline filter. Transfusion 29: 496, 1989.

    Article  PubMed  CAS  Google Scholar 

  47. Brecher M, Pineda A, Torloni A, et al. Prestorage leukocyte depletion: effect on leukocyte and platelet metabolites, erythrocyte lysis, metabolism, and in vivo survival. Sem Hematol 28: 3, 1991.

    CAS  Google Scholar 

  48. Heaton WAL, Holme S, Smith K, Brecher ME, Pineda A, Aubuchon JP, Nelson E. Effects of 3–5 loglo pre-storage leucocyte depletion on red cell storage and metabolism. Brit J of Haem 87: 363, 1994.

    Article  CAS  Google Scholar 

  49. Davey R, Heaton W, Sweat L, et al. Characteristics of leukocyte-reduced red cells stored in tri(2-ethylhexyl) trimellitate plastic. Transfusion 34: 895–898, 1994.

    Article  PubMed  CAS  Google Scholar 

  50. Murphy S. Platelet storage for transfusion. Semin Haematol 22: 65, 1985.

    Google Scholar 

  51. Holme S. Platelet storage in a liquid environment. Transfusion Science 15 (2): 7, 1994.

    Article  Google Scholar 

  52. Murphy S, Rebulla P, Bertolini F, Holme S, Moroff G, Snyder E, and Stromberg R. In vitro assessment of the quality of stored platelet concentrates. Trans Med Rev 8:29, 1994.

    Google Scholar 

  53. Slichter SJ. In vitro measurements of platelet concentrates stored at 4°C and 22°C: Correlation with post transfusion platelet viability and function. Vox Sang 40: 72, 1981.

    Article  Google Scholar 

  54. Murphy S. Use of an arithmetic model for evaluation of in vivo platelet survival. Transfusion 26: 26, 1986.

    Article  PubMed  CAS  Google Scholar 

  55. Leach MF, Aubuchon JP. Effect of storage time on clinical efficacy of single donor platelet units. Transfusion 33: 661, 1993.

    Article  PubMed  CAS  Google Scholar 

  56. Peter-Saloren K, Bucher U, Nydegger UE: Comparison of post transfusion recoveries achieved with either fresh or stored platelet concentrates. Blut 54: 207, 1987.

    Article  Google Scholar 

  57. Shanwell A, Wikman A, Ringden O. Pretransfusion incubation of apheresis platelets at 37°C improves post transfusion recovery. Transfusion 32: 71S, 1992.

    Google Scholar 

  58. Bishop JF, McGrath K, Wolf MM. Clinical factors influencing the efficacy of pooled platelet transfusion. Blood 71: 383, 1988.

    PubMed  CAS  Google Scholar 

  59. Button LN, DeWolf WL, Newburger PE. The effects of irradiation on blood components. Transfusion 21: 419, 1981.

    Article  PubMed  CAS  Google Scholar 

  60. Owens M, Holme S, Heaton A, Sawyer S, Cardinali S. Post transfusion recovery of function of 5 day stored platelet concentrates. Brit J Haematol 80: 539, 1992.

    Article  CAS  Google Scholar 

  61. Taki M, Miura T, Inagaki M, et al. Influence of granulocyte elastase-like proteinase (ELP) on platelet function. Thromb Res 41: 837, 1986.

    Article  PubMed  CAS  Google Scholar 

  62. Bykowska K, Pawlowska Z, Cierniewki E, Lopaciuk S, Kopec M. Different effects of human neutrophil elastase on platelet glycoproteins IIb and IIIa of resting and stimulated platelets. Thromb Haemostas 64: 69, 1990.

    CAS  Google Scholar 

  63. Silliman CC, Thurman GW, Ambruso DR. Stored blood components contain agents that prime the neutrophil NADPH oxidase through the platelet activating factor receptors. Vox Sang 63: 133, 1992.

    Article  PubMed  CAS  Google Scholar 

  64. Palabrica T, Lobb R, Furie B. et al. Leukocyte accumulation promoting fibrin deposition is mediated in vivo by P-selectin on adherent platelets. Nature 359: 848, 1992.

    Article  PubMed  CAS  Google Scholar 

  65. Gottschall JL, Johnston VL, Rzad L, Anderson AJ, Aster RH. Importance of white blood cells in platelet storage. Vox Sang 47: 101, 1984.

    Article  PubMed  CAS  Google Scholar 

  66. Taylor MA, Tandy NP, Fraser ID. Effect of new plastics and leukocyte contamination on in vitro storage of platelet concentrates. J Clin Pathol 36: 1382, 1983.

    Article  PubMed  CAS  Google Scholar 

  67. Holme S, Dunn S, Sawyer S, Gambill P, Heaton A. Storage of filtered apheresis and filtered pooled platelet concentrates. American Association of Blood Banks/International Society of Blood Transfusion Joint Congress; Los Angeles, CA (abstract ), 1990.

    Google Scholar 

  68. Wallvik J, Suonkaka AM, Blomback M. Proteolytic activity during storage of platelets in plasma. Transfus Med 2: 135, 1992.

    Article  PubMed  CAS  Google Scholar 

  69. Dzik WH, Cusack WF, Sherburne B, Vickler T. The effect of pre-storage white cell reduction on the function and viability of stored platelet concentrates. Transfusion 32: 334, 1992.

    Article  PubMed  CAS  Google Scholar 

  70. Sweeney JD, Holme S, Heaton WAL, Nelson E. Leukodepleted platelet concentrates prepared by in-line filtration of platelet rich plasma. Transfusion (in press).

    Google Scholar 

  71. Prins HK, deBruijn H, Henrichs HPJ, Loos JA. Prevention of microaggregate formation by removal of buffy coats. Vox Sang 39: 48, 1980.

    Google Scholar 

  72. Racz Z, Thek M. Buffy coat or platelet-rich plasma. Vox Sang 47: 108, 1984.

    Article  PubMed  CAS  Google Scholar 

  73. Pietersz RNI, deKorte D, Reesink HW, van der End A, Dekker WJA, Roos D. Preparation of leukocyte poor platelet concentrates from buffy coats. Vox Sang 55: 14, 1988.

    Article  PubMed  CAS  Google Scholar 

  74. Fijnheer R, Pietersz RNI, de Korte D, Gouwerak CWN, Dekker WJA, Reesink HW, Roos D. Platelet activation during preparation of platelet concentrates a comparison of the platelet-rich plasma and the buffy coat methods. Transfusion 30: 634, 1990.

    Article  PubMed  CAS  Google Scholar 

  75. Mohr R, Goor DA, Yellin A, Moshkovitz Y, Shinfield A, Martinowitz U. Fresh blood units contain large potent platelets that improve hemostasis after open heart surgery. Ann Thorac Surg 53: 650, 1992.

    Article  PubMed  CAS  Google Scholar 

  76. Pietersz RNI, Reesink HW, Dekker WJA. Preparation of leukocyte-poor platelet concentrates from buffy coats. II. Lack of effect on storage of different plastics. Vox Sang 53: 208, 1987.

    Article  PubMed  CAS  Google Scholar 

  77. Keegan T, Heaton A, Holme S, Owens M, Nelson E, Carmen R. Paired comparison of platelet concentrates prepared from platelet-rich plasma and buffy coats using a new technique with “’In and ”Cr. Transfusion 32: 113, 1991.

    Article  Google Scholar 

  78. Tandy NP, Seghatchian MJ, Bessus H. Automated processing of leukocyte-poor platelet concentrates. Blood Coag Fibrin 3: 625, 1992.

    Article  CAS  Google Scholar 

  79. Snyder EL, Ezekowitz MD, Malech HL, et al. In vitro characteristics and in vivo viability of platelets contained in granulocyte-platelet apheresis concentrate. Transfusion 27:10, 1987.

    Google Scholar 

  80. Sloand EM, Klein HG. Effect of white cells on platelets during storage. Transfusion 30: 333, 1990.

    Article  PubMed  CAS  Google Scholar 

  81. Skinnider L, Wrobel H, McSheffrey B. The nature of the leukocyte “contamination” in platelet concentrates. Vox Sang 49: 309, 1985.

    Article  PubMed  CAS  Google Scholar 

  82. Garcia GI, Fitzpatrick JE, Hoernig LA, Stewart CC, Sweeney JD. Effects of prestorage white cell reduction of apheresis platelets on platelet glycoprotein Ib and von Willebrand factor. Transfusion 32: 148, 1992.

    Article  PubMed  CAS  Google Scholar 

  83. Sweeney JD, Holme S, Heaton WAL, Stromberg RR. In vitro and in vivo effects of prestorage filtration of apheresis platelets. Transfusion (in press).

    Google Scholar 

  84. Bock M, Glaser A, Pfosser A, Schleuning M, Heim MV, Mempel W. Storage of single donor platelet concentrates: metabolic and functional changes. Transfusion 33: 311, 1993.

    Article  PubMed  CAS  Google Scholar 

  85. Holme S, Heaton A, Smith K, Buchholz DH. Evaluation of apheresis platelet concentrates collected with a reduced (30 mL) collection chamber with resuspension and storage in a synthetic medium. Vox Sanguinis 67: 149, 1994.

    Article  PubMed  CAS  Google Scholar 

  86. Wallvik J, Soontaka AM. Limited metabolic effect of mononuclear cells in platelet storage. Throm Res 70: 255, 1993.

    Article  CAS  Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Sweeney, J.D., Holme, S., Heaton, A. (1995). Role of Contaminating White Blood Cells in the Storage Lesions of Red Cells and Platelets. In: Clinical Benefits of Leukodepleted Blood Products. Medical Intelligence Unit. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-26538-3_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-26538-3_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-1-57059-122-8

  • Online ISBN: 978-3-662-26538-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics