Skip to main content

The Role of G Proteins in Myocardial Preconditioning

  • Chapter
Myocardial Preconditioning

Part of the book series: Medical Intelligence Unit ((MIU.LANDES))

  • 17 Accesses

Abstract

Several comprehensive reviews have recently been published examining the role of G proteins in cardiovascular tissue.1–3 This chapter will focus on modifications of G protein function under conditions of myocardial ischemia, reperfusion and ischemic preconditioning and wille examine the role of G proteins in receptor-mediated cardioprotection. Firstly, as an introduction to outlining their regulation under ischemic conditions, a description of the fundamental studies of G protein function in many cell types is given.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Holmer SR, Homcy CJ. G proteins in the heart. A redundant and diverse transmembrane signaling network. Circulation 1991; 84: 1891–1902.

    PubMed  CAS  Google Scholar 

  2. Fleming JW, Wisler PL, Watanabe AM. Signal transduction by G proteins in cardiac tissues. Circulation 1992; 85: 420–433.

    PubMed  CAS  Google Scholar 

  3. Johnson MD, Friedman E. G proteins in cardiovascular function and dysfunction. Biochem Pharmacol 1993; 45: 2365–2372.

    PubMed  CAS  Google Scholar 

  4. Hepler JR, Gilman AG. G proteins. TIBS 1992; 17: 383–387.

    CAS  Google Scholar 

  5. Neer EJ. Heterotrimeric G proteins: organizers of transmembrane signals. Cell 1995; 80: 249–257.

    PubMed  CAS  Google Scholar 

  6. Berstein G, Blank JL, Jhon DY et al. Phospholipase C-131 is a GTPaseactivating protein for Got, its physiological regulator. Cell 1992; 70: 411–418.

    PubMed  CAS  Google Scholar 

  7. Yatani A, Codina J, Imoto Y et al. A G protein directly regulates mammalian cardiac calcium channels. Science 1987; 238: 1288–1293.

    PubMed  CAS  Google Scholar 

  8. Schubert B, Van Dongen AMJ, Kirsch GE et al. ß-adrenergic inhibition of cardiac sodium channels by dual G protein pathways. Science 1989; 245: 516–519.

    PubMed  CAS  Google Scholar 

  9. Kaziro Y, Itoh H, Nakafuku M. Organization of genes coding for G-protein a subunits in higher and lower eukaryotes. In: Iyengar R and Birnbaumer L eds. G-Proteins. San Diego: Academic Press 1990.

    Google Scholar 

  10. Bray P, Carter A, Guo V et al. Human cDNA clones of four species of Gsa signal transduction protein. Proc Natl Acad Sci 1986; 83: 8893–8897.

    PubMed  CAS  Google Scholar 

  11. Robishaw JD, Smigel MD, Gilman AG. Molecular basis for two forms of the G-protein that stimulates adenylate cyclase J Biol Chem 1986; 261: 9587–9590.

    CAS  Google Scholar 

  12. Graziano MP, Freissmuth M, Gilman AG. Expression of Gsa in E. coli: purification and properties of two forms of the protein. J Biol Chem 1989; 264: 409–418.

    CAS  Google Scholar 

  13. Mattera AM, Graziano MP, Yatani A et al. Bacterially synthesised splice variants of the a subunit of the G-protein Gs activate both adenylyl cyclase and dihydropyridine-sensitive calcium channels. Science 1989; 243: 804–807.

    PubMed  CAS  Google Scholar 

  14. Pyne NJ, Freissmuth M, Palmer S. Phosphorylation of the spliced variant forms of the recombinant stimulatory guanine-nucleotide-binding regulatory protein (Gsa) by protein kinase C. Biochem J 1992; 285: 333–338.

    PubMed  CAS  Google Scholar 

  15. Longabaugh JP, Vatner DE, Graham DE et al. NADP improves the efficiency of cholera toxin catalysed ADP-ribosylation in liver and heart membranes. Biochem Biophys Res Comm 1986; 137: 328–333.

    PubMed  CAS  Google Scholar 

  16. Longabaugh JP, Vatner DE, Vatner SF et al. Decreased stimulatory guanosine triphosphate binding protein in dogs with pressure-overload left ventricular failure. J Clin Invest 1988; 81: 420–424.

    PubMed  CAS  Google Scholar 

  17. West RE, Moss J, Vaughan M et al. Pertussis toxin-catalysed ADPribosylation of transducin. J Biol Chem 1985; 260: 14428–14430.

    PubMed  CAS  Google Scholar 

  18. Suki W, Abramowitz J, Mattera R et al. The human genome encodes at least three non-allelic G proteins with a;-type subunits. FEBS Lett 1987; 220: 187–192.

    PubMed  CAS  Google Scholar 

  19. Yatani A, Mattera R, Codina J et al. The G protein-gated atrial K. channel is stimulated by three distinct G; a-subunits. Nature 1988; 336: 680–682.

    PubMed  CAS  Google Scholar 

  20. Taussig R, Iniguez-Lluhi JA, Gilman AG. Inhibition of adenylyl cyclase by G;a. Science 1993; 261: 218–221.

    PubMed  CAS  Google Scholar 

  21. Jones DJ, Randall RR. Molecular cloning of five GTP-binding protein cDNA species from rat olafactory neuroepithelium. J Biol Chem 1987; 262: 14241–14249.

    PubMed  CAS  Google Scholar 

  22. Katoh Y, Komuro I, Takaku F et al. Messenger RNA levels of guanine nucleotide-binding proteins are reduced in the ventricle of cardiomyopathic hamsters. Circ Res 1990; 67: 235–239.

    PubMed  CAS  Google Scholar 

  23. Luetje CW, Tietje KM, Christian JL et al. Differential tissue expression and developmental regulation of guanine nucleotide binding regulatory proteins and their messenger RNAs in rat heart. J Biol Chem 1988; 263: 13357–13365.

    PubMed  CAS  Google Scholar 

  24. Holmer SR, Stevens S, Homey CJ. Tissue- and species-specific expression of inhibitory guanine nucleotide-binding proteins. Circ Res 1989; 65: 1136–1140.

    PubMed  CAS  Google Scholar 

  25. Brann MR, Collins RM, Spiegel A. Localization of mRNAs encoding the a-subunits of signal transducing G-proteins within rat brain and among peripheral tissues. FEBS Lett 1987; 222: 191–198.

    PubMed  CAS  Google Scholar 

  26. Strathman M, Simon M. G-protein diversity: a distinct class of a subunit is present in vertebrates and invertebrates. Proc Natl Acad Sci USA 1990; 87: 9113–9117.

    Google Scholar 

  27. Kozasa T, Hepler JR, Smrka AV et al. Purification and a characterization of recombinant G16a, from Sf9 cells: activation of purified phospholipase C isozymes by G-protein a subunits. Proc Natl Acad Sci USA 1993; 90: 9176–9180.

    PubMed  CAS  Google Scholar 

  28. Hansen CA, Schroering AG, Robishaw JD. Subunit expression of signal transducing G proteins in cardiac tissue: implications for phospholipase C-p regulation. J Mol Cell Cardiol 1995; 27: 471–484.

    PubMed  CAS  Google Scholar 

  29. Carlson KE, Brass LF, Manning DR. Thrombin and phorbol esters cause the selective phosphorylation of G-protein other than G, in human platelets. J Biol Chem 1989; 264: 13298–13305.

    PubMed  CAS  Google Scholar 

  30. Katada T, Kusakabe K, Oinuma M et al. A novel mechanism for the inhibition of adenylate cyclase via the inhibitory GTP-binding protein. Calmodulin-dependent inhibition of the cyclase catalyst by the fry subunits of the GTP-binding proteins. J Biol Chem 1987; 262: 11897–11900.

    PubMed  CAS  Google Scholar 

  31. Hildebrandt JD, Kohnken RE. Hormone inhibition of adenylyl cyclase. Differences in the mechanisms for inhibition by hormones and G protein py. J Biol Chem 1990; 265: 9825–983.

    PubMed  CAS  Google Scholar 

  32. Tang WJ, Gilman A. Type specific regulation of adenylyl cyclase by G-protein py subunits. Science 1991; 254: 1500–1503.

    PubMed  CAS  Google Scholar 

  33. Federman AD, Conklin BR, Schrader KA et al. Hormonal stimulation of adenylyl cyclase through G;-protein py subunits. Nature 1992; 356: 159–161.

    PubMed  CAS  Google Scholar 

  34. Camps M, Hou C, Sidiropoulos D et al. Stimulation of phospholipase C by guanine nucleotide-binding protein fry subunits. Eur J Biochem 1992; 206: 821–831.

    PubMed  CAS  Google Scholar 

  35. Boyer JL, Waldo GL, Harden TK. 1y-subunit activation of G-proteinregulated phospholipase C. J Biol Chem 1992; 267: 25454–25456.

    Google Scholar 

  36. Jeshma CL, Axelrod J. Stimulation of phospholipase A2 in bovine rod outer segments by the PT sub-units of transducin and the inhibition by the a sub-unit. Proc Natl Acad Sci USA 1987; 80: 3899–3902.

    Google Scholar 

  37. Pitcher JA, Inglese J, Higgins JB et al. Role of Ay subunits of G proteins in targeting the p-adrenergic receptor kinase to membrane-bound receptors. Science 1992; 257: 1264–1267.

    PubMed  CAS  Google Scholar 

  38. Kameyama K, Haga K, Haga T et al. Activation of G-protein py subunits of p-adrenergic and muscarinic receptor kinase. J Biol Chem 1993; 268: 7753–7758.

    PubMed  CAS  Google Scholar 

  39. Gilman AG. G proteins: transducers of receptor-generated signals. Ann Rev Biochem 1987; 56: 615–49.

    PubMed  CAS  Google Scholar 

  40. Birnbaumer L, Codina J, Mattera R et al. Structural basis of adenylate cyclase stimulation and inhibition by distinct guanine nucleotide regulatory proteins. In: Cohen P, Houslay MD, eds. Molecular mechanisms of transmembrane signalling. Elsevier Science Publishers B.V. ( Biomedical Division ) 1985.

    Google Scholar 

  41. Gilman AG. Regulation of adenylyl cyclase by G proteins. In: Nishizuka Y, ed. The biology and medicine of signal transduction. New York: Raven Press 1990.

    Google Scholar 

  42. Levitzki A, Bar-Sinai A. The regulation of adenylyl cyclase by receptor-operated G proteins. In: Taylor CW, ed. Intracellular Messengers. Oxford: Pergamon Press 1993.

    Google Scholar 

  43. Szabo G, Otero AS. G protein mediated regulation of K’ channels in heart. Ann Rev Physiol 1990; 52: 293–305.

    CAS  Google Scholar 

  44. Brown AM, Birnbaumer L. Direct G protein gating of ion channels. Am J Physiol 1988; 254: H401 - H410.

    PubMed  CAS  Google Scholar 

  45. Robishaw JD, Foster KA. Role of G proteins in the regulation of the cardiovascular system. Ann Rev Physiol 1989; 51: 229–244.

    CAS  Google Scholar 

  46. Strasser RH, Krimmer J, Braun Dullaeus R et al. Dual sensitization of the adrenergic system in early myocardial ischemia: independent regulation of the p-adrenergic receptors and the adenylyl cyclase. J Mol Cell Cardiol 1990; 22: 1405–1423.

    PubMed  CAS  Google Scholar 

  47. Drummond RW, Sordahl LA. Temporal changes in adenylate cyclase activity in acutely ischemic dog heart: evidence of functional subunit damage. J Mol Cell Cardiol 1981; 13: 323–330.

    PubMed  CAS  Google Scholar 

  48. Will-Shahab L, Krause EG, Bartel S et al. Reversible inhibition of adenylate cyclase activity in the ischemic myocardium. J Cardiovasc Pharmacol 1985; 7 (Suppl. 5): S23 - S27.

    PubMed  CAS  Google Scholar 

  49. Maisel AS, Ransnäs LA, Insel PA. p-adrenergic receptors and the Gs protein in myocardial ischemia and injury. Bas Res Cardiol 1990; 85 (Suppl. 1): 47–56.

    Google Scholar 

  50. Iwase T, Murakami T, Tornita T et al. Ischemic preconditioning is associated with a delay in ischemia-induced reduction of p-adrenergic signal transduction in rabbit hearts. Circulation 1993; 88: 2827–2837.

    PubMed  CAS  Google Scholar 

  51. Wollenberger A, Krause EG, Heier G. Stimulation of 3’5’-cyclic AMP formation in dog myocardium following arrest of blood flow. Biochem Biophys Res Comm 1969; 36: 664–670.

    PubMed  CAS  Google Scholar 

  52. Niroomand F, Bangert M, Beyer T et al. Reduced adenylyl cyclase inhibition by carbachol and GTP during acute myocardial ischemia. J Mol Cell Cardiol 1992; 24: 471–475.

    PubMed  CAS  Google Scholar 

  53. Will-Shahab L, Rosenthal W, Schulze W et al. G protein function in the ischemic myocardium. Eur Heart J 1991; 12 (Suppl F): 135–138.

    PubMed  CAS  Google Scholar 

  54. Niroomand F, Weinbrenner C, Weis A et al. Impaired function of inhibitory G proteins during acute myocardial ischemia of canine hearts and its reversal during reperfusion and a second period of ischemia: possible implications for the protective mechanism of ischemic preconditioning. Circ Res 1995; 76: 861–870.

    PubMed  CAS  Google Scholar 

  55. Fleming JW, Watanabe AM. Muscarinic cholinergic-receptor stimulation of specific GTP hydrolysis related to adenylate cyclase activity in canine cardiac sarcolemma. Circ Res 1988; 64: 340–350.

    Google Scholar 

  56. Weis A, Zeifang F, Rauch B et al. A functional modification of Gi proteins as the underlying mechanism of ischemic preconditioning. Circulation 1993; 88: 3406 (Abstract).

    Google Scholar 

  57. Fu LX, Kirkeboen KA, Liang QM et al. Free radical scavenging enzymes and G protein mediated receptors signalling systems in ischemically preconditioned porcine myocardium. Cardiovasc Res 1993; 27: 612–616.

    PubMed  CAS  Google Scholar 

  58. Przyklenk K, Bauer B, Ovize M et al. Regional ischemic ‘preconditioning’ protects remote virgin myocardium from subsequent sustained coronary occlusion. Circulation 1993; 87: 893–899.

    PubMed  CAS  Google Scholar 

  59. Liu GS, Thornton J, Van Winkle DM et al. Protection against infarction afforded by preconditioning is mediated by AI adenosine receptors in rabbit heart. Circulation 1991; 84: 350–356.

    PubMed  CAS  Google Scholar 

  60. Auchampach JA, Gross GJ. Adenosine AI receptors, KATP channels, and ischemic preconditioning. Am J Physiol 1993; 264: H1327 - H1336.

    PubMed  CAS  Google Scholar 

  61. Schwarz ER, Mohri M, Sack S et al. Preconditioning by ischemia lasts for only 30 minutes and is inhibited by adenosine antagonists. J Mol Cell Cardiol 1992; 24 (Suppl.I): S. 93 (Abstract).

    Google Scholar 

  62. Thornton JD, Thornton CS, Downey JM. Effect of adenosine receptor blockade: preventing protective preconditioning depends on time of initiation. Am J Physiol 1993; 265: HSO4–HSO8.

    Google Scholar 

  63. Grover GJ, Sleph PG, Dzwonczyk S. Role of myocardial ATP sensitive potassium channels in mediating preconditioning in the dog heart and their possible interaction with adenosine A, receptors. Circulation 1992; 86: 1310–1316.

    PubMed  CAS  Google Scholar 

  64. Gross GJ, Auchampach JA. Blockade of ATP sensitive potassium channels prevents myocardial preconditioning in dogs. Circ Res 1992; 70: 223–233.

    PubMed  CAS  Google Scholar 

  65. Toombs CF, Moore TL, Shebuski RJ. Limitation of infarct size in the rabbit by ischemic preconditioning is reversible with glibenclamide. Cardiovasc Res 1993; 27: 617–622.

    PubMed  CAS  Google Scholar 

  66. Toombs CF, McGee DS, Johnston WE et al. Protection from ischemicreperfusion injury with adenosine pretreatment is reversed by inhibition of ATP-sensitive potassium channels. Cardiovasc Res 1993; 27: 623–629.

    PubMed  CAS  Google Scholar 

  67. Van Winkle DM, Chien GL, Wolff RA et al. Cardioprotection provided by adenosine receptor activation is abolished by blockade of the KATP channel. Am J Physiol 1994; 266: H829 - H839.

    PubMed  Google Scholar 

  68. Yao Z, Gross GJ. A comparison of adenosine-induced cardioprotection and ischemic preconditioning in dogs. Circulation 1994; 89: 1229–1236.

    PubMed  CAS  Google Scholar 

  69. Kirsch GE, Condina J, Birnbaumer L et al. Coupling of ATP-sensitive K. channels to AI receptors by G proteins in rat ventricular myocytes. Am J Physiol 1990; 259: H820 - H826.

    PubMed  CAS  Google Scholar 

  70. Endoh M, Masahiko M, Taira N. Modification by islet-activating protein of direct and indirect inhibitory actions of adenosine on rat atrial contraction in relation to cyclic nucleotide metabolism. J Cardiovasc Res 1983; 5: 131–142.

    CAS  Google Scholar 

  71. Böhm M, Bruckner R, Neumann R et al. Role of guanine nucleotide-binding protein in the regulation by adenosine of cardiac potassium conductance and force of contraction. Evaluation with pertussis toxin. NaunynSchmiedeberg’s Arch Pharmacol 1986; 332: 406–405.

    Google Scholar 

  72. Kubalak SW, Newman WH, Webb JG. Differential effect of pertussis toxin on adenosine and muscarinic inhibition of cyclic AMP accumulation in canine ventricular myocytes. J Mol Cell Cardiol 1991; 23: 199–205.

    PubMed  CAS  Google Scholar 

  73. Thornton J, Liu GS, Downey JM. Pretreatment with pertussis toxin blocks the protective effects of preconditioning: evidence for a G protein mechanism. J Mol Cell Cardiol 1993; 25: 311–320.

    PubMed  CAS  Google Scholar 

  74. Asimakis GA, Inners-McBride K, Conti VR. Attenuation of postischemic dysfunction by ischemic preconditioning is not mediated by adenosine in the isolated rat heart. Cardiovasc Res 1993; 27: 1522–1530.

    PubMed  CAS  Google Scholar 

  75. Liu Y, Downey JM. Ischemic preconditioning protects against infarction in rat heart. Am J Physiol 1992; 263: H1107 - H1112.

    PubMed  CAS  Google Scholar 

  76. Li Y, Kloner R. The cardioprotective effects of ischemic `preconditioning’ are not mediated by adenosine receptors in rat hearts. Circulation 1993; 87: 1642–1648.

    PubMed  CAS  Google Scholar 

  77. Piacentini L, Wainwright CL, Parratt JR. The antarrhythmic effect of preconditioning, in rat isolated hearts, does not involve Al adenosine receptors. Br J Pharmacol 1992; 107: 137P (Abstract).

    Google Scholar 

  78. Piacentini L, Wainwright CL, Parratt JR. The antiarrhythmic effect of ischemic preconditioning in isolated rat heart involves a pertussis toxin-sensitive mechanism. Cardiovasc Res 1993; 27: 674–680.

    PubMed  CAS  Google Scholar 

  79. Lawson CS, Coltart DJ, Hearse DJ. The antiarrhythmic action of ischemic preconditioning in rat hearts does not involve functional G; proteins. Cardiovasc Res 1993; 27: 681–687.

    PubMed  CAS  Google Scholar 

  80. Liu Y, Downey JM. Preconditioning against infarction in the rat heart does not involve a pertussis toxin-sensitive G protein. Cardiovasc Res 1993; 27: 608–611.

    PubMed  CAS  Google Scholar 

  81. Hu K, Nattel S. Signal transduction systems underlying ischemic preconditioning in rat hearts. Circulation 1994; 90 (Suppl.): 0578 (abstract).

    Google Scholar 

  82. Piacentini L, Wainwright CL, Parratt JR. Effects of Bordetella pertussis toxin pretreatment on the antiarrhythmic action of ischemic preconditioning in anesthetized rats. Br J Pharmacol 1995; 114: 755–760.

    PubMed  CAS  Google Scholar 

  83. Boachie-Ansah G, Kane KA, Parratt JR. Is adenosine an endogenous myocardial protective (antiarrhythmic) substance under conditions of ischemia? Cardiovasc Res 1993; 27: 77–83.

    PubMed  CAS  Google Scholar 

  84. Ely SW, Berne RM. Protective effects of adenosine in myocardial ischemia. Circulation 1992; 85: 893–904.

    PubMed  CAS  Google Scholar 

  85. Olsson RA. Changes in the content of purine nucleosides in canine myocardium during coronary occlusion. Circ Res 1970; 26: 310–316.

    Google Scholar 

  86. Londos C, Cooper DM, Schlegel W et al. Adenosine analogs inhibit adipocyte adenylate cyclase by a GTP-dependent process: basis for actions of adenosine and methylxanthines on cyclic AMP production and lipolysis. Proc Natl Acad Sci 1978; 75: 5362–5366.

    PubMed  CAS  Google Scholar 

  87. Wikstrom G, Waldenstrom A, Ronquist G. Adenosine release is decreased by ischemic preconditioning. A study with microdialysis in thoracotamised pigs. J Mol Cell Cardiol 1993; 25 (Suppl I): S. 35 (Abstract).

    Google Scholar 

  88. Dorheim TA, Mentzer RM, Van Wylen DGL. Preconditioning reduces interstitial fluid purine metabolites during prolonged myocardial ischemia. Circulation 1991; 84: 0760 (Abstract).

    Google Scholar 

  89. Van Wylen DGL. Effect of ischemic preconditioning on interstitial purine metabolite and lactate accumulation during myocardial ischemia. Circulation 1994; 89: 2253–2289.

    Google Scholar 

  90. Birnbaumer L. G proteins in signal transduction. Ann Rev Pharmacol Toxicol 1990; 30: 675–705.

    CAS  Google Scholar 

  91. Kurose H, Ui M. Functional uncoupling of muscarinic receptors from adenylate cyclase in rat cardiac membranes by the active component of islet-activating protein, pertussis toxin. J Cyc Nuc Prot Phos Res 1983; 9: 305–318.

    CAS  Google Scholar 

  92. Anand-Srivastava MB. Angiotensin II receptors negatively coupled to adenylate cyclase in rat myocardial sarcolemma. Biochem Pharmacol 1989; 38: 489–469.

    PubMed  CAS  Google Scholar 

  93. Barrett S, Honbo N, Karliner JS. ai-adrenoceptor-mediated inhibition of cellular cAMP accumulation in neonatal rat ventricular myocytes. Naunyn Schmeidberg Arch Pharmacol 1993; 347: 384–393.

    CAS  Google Scholar 

  94. Shah A, Cohen IS, Rosen MR. Stimulation of cardiac a-receptors increases Na/K pump current and decreases gK via a pertussis toxin-sensitive pathway Biophys J 1988; 54: 219–225.

    CAS  Google Scholar 

  95. Vulliemoz Y, Verosky M, Horn EM et al. A pertussis toxin substrate regulates the cGMP response to a-adrenergic agonists in mouse heart. Circulation 1987; 76 (Suppl. IV): 0245 (Abstract).

    Google Scholar 

  96. Yao Z, Gross GJ. Role of nitric oxide, muscarinic receptors, and the ATP-sensitive K. channel in mediating the effects of acetylcholine to mimic preconditioning in dogs. Circ Res 1993; 73: 1193–1201.

    PubMed  CAS  Google Scholar 

  97. Banerjee A, Locke Winter C, Rogers KB et al. Preconditioning against myocardial dysfunction after ischemia and reperfusion by an a1-adrenergic mechanism. Circ Res 1993; 73: 656–670.

    PubMed  CAS  Google Scholar 

  98. Bankwala Z, Hale SL, Kloner RA. a-adrenoceptor stimulation with exogenous norepinephrine or release of endogenous catecholamines mimics ischemic preconditioning. Circulation 1994; 90: 1023–1028.

    PubMed  CAS  Google Scholar 

  99. Tsuchida A, Liu Y, Liu GS et al. al-adrenergic agonists precondition rabbit ischemic myocardium independent of adenosine by direct activation of protein kinase C. Circ Res 1994; 75: 576–585.

    PubMed  CAS  Google Scholar 

  100. Asimakis GK, Inners-McBride K, Conti VR et al. Transient ß-adrenergic stimulation can precondition the rat heart against postischemic contractile dysfunction. Cardiovasc Res 1994; 28: 1726–1734.

    PubMed  CAS  Google Scholar 

  101. Liu Y, Tsuchida A, Cohen MV et al. Pretreatment with angiotensin II limits infarction in rabbit heart. J Mol Cell Cardiol 1994; 26: CLV (Abstract).

    Google Scholar 

  102. Schultz JE, Yoa Z, Gross GJ. Evidence for the involvement of opioid receptors in ischemic preconditioning in the rat heart. Circulation 1994; 90 (Suppl.): 2556 (Abstract).

    Google Scholar 

  103. Ashkenzai A, Winslow JW, Peralta EG et al. An M2 muscarinic receptor subtype coupled to both adenylyl cyclase and phosphoinositide turnover. Science 1987; 238: 672–673.

    Google Scholar 

  104. Peralta EG, Ashkenazai A, Winslow JW et al. Differential regulation of PI hydrolysis and adenylyl cylase by muscarinic receptor subtypes. Nature 1988; 334: 434–437.

    PubMed  CAS  Google Scholar 

  105. Hershberger RE, Feldman AM, Bristow MR. A, adenosine receptor inhibition of adenylate cyclase in failing and nonfailing human ventricular myocardium. Circulation 1991; 83: 1343–1351.

    PubMed  CAS  Google Scholar 

  106. Brown Masters S, Martin MW, Harden TK et al. Pertussis toxin does not inhibit muscarinic-receptor-mediated phosphoinositide hydrolysis or calcium mobilization. Biochem J 1985; 227: 933–937.

    PubMed  CAS  Google Scholar 

  107. Tajima T, Tsuji Y, Heller Brown J et al. Pertussis toxin-insensitive phosphoinositide hydrolysis, membrane depolarization, and positive isotropic effect of carbachol in chick atria. Circ Res 1987; 61: 436–445.

    PubMed  CAS  Google Scholar 

  108. Leung E, Johnston CI, Woodcock EA. Stimulation of phosphatidylinositol metabolism in atrial and ventricular myocytes. Life Sci 1986; 39: 2215–2220.

    PubMed  CAS  Google Scholar 

  109. Kohl C, Linck B, Schmitz W et al. Effects of carbachol and (-)-N6phenylisopropyladenosine on myocardial inosital phosphate content and force of contraction. Br J Pharmacol 1990; 101: 829–834.

    PubMed  CAS  Google Scholar 

  110. Endoh M, Hiramoto T, Ishihata A et al. Myocardial a1-adrenoceptors mediate positive inotropic effect and changes in phosphatidylinositol metabolism. Species differences in receptor distribution and the intracellular coupling process in mammalian ventricular myocardium. Circ Res 1991; 68: 1179–1190.

    PubMed  CAS  Google Scholar 

  111. Meggs LG, Coupet J, Huang H et al. Regulation of angiotensin II receptors on ventricular myocytes after myocardial infarction in rats. Circ Res 1993; 72: 1149–1162.

    PubMed  CAS  Google Scholar 

  112. Ytrehus K, Liu Y, Downey JM. Preconditioning protects ischemic rabbit heart by protein kinase C activation. Am J Physiol 1994; 266: H1145 - H1152.

    PubMed  CAS  Google Scholar 

  113. Speechly-Dick ME, Mocanu MM, Yellon DM. Protein kinase C. Its role in ischemic preconditioning. Circ Res 1994; 75: 586–590.

    PubMed  CAS  Google Scholar 

  114. Strasser RH, Simonis G, Weinbrenner C et al. Ischemia-induced activation of protein kinase C: evidence for an acidosis-dependent, but energy-independent mechanism. Circulation 1994; 90: 1117 (Abstract).

    Google Scholar 

  115. Houslay MD. Crosstalk: a pivotal role for protein kinase C in modulating relationships between signal transduction pathways. Eur J Biochem 1991; 195: 9–27.

    Google Scholar 

  116. Yoshimasa T, Sibley DR, Bouvier M et al. Cross-talk between cellular signalling pathways suggested by phorbol-ester-induced adenylate cyclase phosphorylation. Nature 1987; 327: 67–70.

    PubMed  CAS  Google Scholar 

  117. Katada T, Gilman AG, Watanabe Y et al. Protein kinase C phosphorylates the inhibitory guanine-nucleotide-binding regulatory component and apparently suppresses its function in hormonal inhibition of adenylate cyclase. Eur J Bioch 1985; 1985: 431–437.

    Google Scholar 

  118. Bell JD, Brunton LL. Enhancement of adenylate cyclase activity in S49 lymphona cells by phorbal esters. J Biol Chem 1986; 261: 12036–12041.

    PubMed  CAS  Google Scholar 

  119. Pyne NJ, Murphy GJ, Milligan G et al. Treatment of intact hepatocytes with either the phorbal ester TPA or glucagon elicits the phosphorylation and functional inactivation of the inhibitory guanine nucleotide regulatory protein G;. FEBS Lett 1989; 243: 77–82.

    PubMed  CAS  Google Scholar 

  120. Gordeladze JO, Bjoro T, Torjesen PA et al. Protein kinase C stimulates adenylyl cyclase activity in prolactin-secreting rat adenoma (GH4C1) pituicytes by inactivation of the inhibitory GTP-binding protein G1. Eur J Biochem 1989; 183: 397–406.

    PubMed  Google Scholar 

  121. Bushfield M, Murphy GJ, Lavan BE et al. Hormonal regulation of G;2,- subunit phosphorylation in intact hepatocytes. Biochem J 1990; 268: 449–457.

    PubMed  CAS  Google Scholar 

  122. Strasser RH, Braun-Dullaeus R, Walendzik H et al. al-receptor independent action of protein kinase C in acute myocardial ischemia. Circ Res 1992; 70: 1304–1312.

    PubMed  CAS  Google Scholar 

  123. Traynor-Kaplan AE, Harris AL, Thompson BL et al. Transient increase in phosphatidylinisitol 3,4-biphosphate and phosphatidylinisotol triphosphate during activation of human neutrophils. J Biol Chem 1989; 264: 15668–15673.

    PubMed  CAS  Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Piacentini, L., Pyne, N.J. (1996). The Role of G Proteins in Myocardial Preconditioning. In: Myocardial Preconditioning. Medical Intelligence Unit. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-22206-5_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-22206-5_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-22208-9

  • Online ISBN: 978-3-662-22206-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics