Skip to main content

Cardioprotective Effects of Chronic Hypoxia: Relation to Preconditioning

  • Chapter
Myocardial Preconditioning

Part of the book series: Medical Intelligence Unit ((MIU.LANDES))

Abstract

Preconditioning with ischemia originally referred to the observation that brief sublethal coronary occlusions, each followed by reperfusion, limit the infarct size in dogs after a subsequent longer period of ischemia.1 Since then, this remarkable phenomenon has been demonstrated in a variety of experimental models and the concept of preconditioning broadened to include the temporal protection of the heart against other adverse consequences of ischemia and reperfusion, such as arrhythmias or contractile dysfunction. This term is now used to describe also the increased tolerance of the heart to various types of stress mediated by brief stimuli other than ischemia (e.g., acute hypoxia, drugs).2 Occasionally, preconditioning has been improperly used in a more general meaning that includes any intervention, even long-term, which increases the resistance of the heart against subsequent injury. As ischemic preconditioning represents the most efficient form of temporal protection, it has attracted a great deal of attention and considerable progress has been achieved in understanding this phenomenon over the past nine years. At the same time, however, other forms of protection have been largely ignored.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Murry CE, Jennings RB, Reimer KA. Preconditioning with ischemia: a delay of lethal cell injury in ischemic myocardium. Circulation 1986; 74: 1124–1136.

    Article  PubMed  CAS  Google Scholar 

  2. Lawson CS, Downey JM. Preconditioning: state of art myocardial protection. Cardiovasc Res 1993; 27: 542–550.

    Article  PubMed  CAS  Google Scholar 

  3. Moret PR. Hypoxia and the heart. In: Bourne GH, ed. Hearts and Heart-like Organs. New York: Academic Press, 1980: 333–387.

    Google Scholar 

  4. Heath D, Williams DR. Man at High Altitude. Edinburgh: Churchill Livingstone, 1981.

    Google Scholar 

  5. Ostâdal B, Widimsky J. Intermittent Hypoxia and Cardiopulmonary System. Prague: Academia, 1985.

    Google Scholar 

  6. Monge C, Leon-Velarde F. Physiological adaptation to high altitude: oxygen transport in mammals and birds. Physiol Rev 1991; 71: 1135–1172.

    PubMed  CAS  Google Scholar 

  7. Ostidal B, Kolai F, Pelouch V et al. Intermittent high altitude and the cardiopulmonary system. In: Nagano M, Takeda N, Dhalla NS, eds. The Adapted Heart. New York: Raven Press, 1994: 173–182.

    Google Scholar 

  8. Kopecky M, Daum S. Tissue adaptation to anoxia in rat myocardium (in Czech). Cs Fysiol 1958; 7: 518–521.

    Google Scholar 

  9. Poupa O, Krofta K, Prochâzka J et al. Acclimatization to simulated high altitude and acute cardiac necrosis. Fed Proc 1966; 25: 1243–1246.

    PubMed  CAS  Google Scholar 

  10. McGrath JJ, Bullard RW. Altered myocardial performance in response to anoxia after high-altitude exposure. J Appl Physiol 1968; 25: 761–764.

    PubMed  CAS  Google Scholar 

  11. Ziegelhöffer A, Grünermel J, Dzurba A et al. Sarcolemmal cation transport systems in rat hearts acclimatized to high altitude hypoxia: influence of 7-oxo-prostacyclin. In: Os“tâdal B, Dhalla NS, eds. Heart Function in Health and Disease. Boston: Kluwer 1992: 219–228.

    Google Scholar 

  12. McGrath JJ, Prochízka J, Pelouch V et al. Physiological responses of rats to intermittent high altitude stress. Effect of age. J Appl Physiol 1973; 34: 289–293.

    PubMed  CAS  Google Scholar 

  13. Widimsky J, Urbanova D, Ressl J et al. Effect of intermittent altitude hypoxia on the myocardium and lesser circulation in the rat. Cardiovasc Res 1973; 7: 798–808.

    Article  PubMed  CAS  Google Scholar 

  14. Tajima M, Katayose D, Bessho M et al. Acute ischemic preconditioning and chronic hypoxia independently increase myocardial tolerance to ischemia. Cardiovasc Res 1994; 28: 312–319.

    Article  PubMed  CAS  Google Scholar 

  15. Meerson FZ, Malyshev IY, Zamotrinsky AV. Differences in adaptive stabilization of structures in response to stress and hypoxia relate with the accumulation of hsp70 isoforms. Mol Cell Biochem 1992; 111: 87–95.

    Article  PubMed  CAS  Google Scholar 

  16. Faltovâ E, Mrâz M, Pelouch V et al. Increase and regression of the protective effect of high altitude acclimatization on the isoprenaline-induced necrotic lesions in the rat myocardium. Physiol Bohemoslov 1987; 36: 43–52.

    PubMed  Google Scholar 

  17. Meerson FZ, Gomzakov OA, Shimkovich MV. Adaptation to high altitude hypoxia as a factor preventing development of myocardial ischemic necrosis. Am J Cardiol 1973; 31: 30–34.

    Article  PubMed  CAS  Google Scholar 

  18. Turek Z, Kubat K, Ringnalda BEM et al. Experimental myocardial infarction in rats acclimated to simulated high altitude. Basic Res Cardiol 1980; 75: 544–553.

    Article  PubMed  CAS  Google Scholar 

  19. Opie LH, Duchosal F, Moret PR. Effect of increased left ventricular work, hypoxia, or coronary artery ligation on hearts from rats at high altitude. Eur J Clin Invest 1978; 8: 309–315.

    Article  PubMed  CAS  Google Scholar 

  20. Meerson FZ, Ustinova EE, Orlova EH. Prevention and elimination of heart arrhythmias by adaptation to intermittent high altitude hypoxia. Clin Cardiol 1987; 10: 783–789.

    Article  PubMed  CAS  Google Scholar 

  21. Meerson FZ, Arkhipenko IV, Rozhitskaia II et al. Opposite effects on antioxidant enzymes of adaptation to continuous and intermittent hypoxia (in Russian). Byull Eksp Biol Med 1992; 114: 14–15.

    CAS  Google Scholar 

  22. Os“tâdal B, Prochâzka J, Pelouch V et al. Pharmacological treatment and spontaneous reversibility of cardiopulmonary changes induced by intermittent high altitude hypoxia. Progr Resp Res 1985; 29:17–25.

    Google Scholar 

  23. Valdivia E. Total capillary bed of the myocardium in chronic hypoxia. Fed Proc 1962; 21: 221 (Abstract).

    Google Scholar 

  24. Kayar SR, Banchero N. Myocardial capillarity in acclimation to hypoxia. Pflügers Arch 1985; 404: 319–325.

    Article  PubMed  CAS  Google Scholar 

  25. Rakusan K, Turek Z, Kreuzer F. Myocardial capillaries in guinea pigs native to high altitude (Junin, Peru, 4,105 m). Pflügers Arch 1981; 391: 22–24.

    Article  PubMed  CAS  Google Scholar 

  26. Becker EL, Cooper RG, Hataway GD. Capillary vascularization in puppies born at a simulated altitude of 20,000 feet. J Appl Physiol 1955; 8: 166–168.

    PubMed  CAS  Google Scholar 

  27. Turek Z, Grandtner M, Kreuzer F. Cardiac hypertrophy, capillary and muscle fiber density, muscle fiber diameter, capillary radius and diffusion distance in the myocardium of growing rats adapted to a simulated altitude of 3,500 m. Pflügers Arch 1972; 335: 19–28.

    Article  PubMed  CAS  Google Scholar 

  28. Grandtner M, Turek Z, Kreuzer F. Cardiac hypertrophy in the first generation of rats native to simulated high altitude. Pflügers Arch 1974; 350: 241–248.

    Article  PubMed  CAS  Google Scholar 

  29. Clark DR, Smith P. Capillary density and muscle fibre size in the hearts of rats subjected to simulated high altitude. Cardiovasc Res 1978; 12: 578–584.

    Article  PubMed  CAS  Google Scholar 

  30. Smith P, Clark DR. Myocardial capillary density and muscle fibre size in rats born and raised at simulated high altitude. Br J Exp Path 1979; 60: 225–230.

    CAS  Google Scholar 

  31. Turek Z, Turek-Maischeider M, Claessens RA et al. Coronary blood flow in rats native to simulated high altitude and in rats exposed to it later in life. Pflügers Arch 1975; 355: 49–62.

    Article  PubMed  CAS  Google Scholar 

  32. Holmes G, Epstein ML. Effect of growth and maturation in a hypoxic environment on maximum coronary flow rates in isolated rabbit hearts. Pediat Res 1993; 33: 527–532.

    Article  PubMed  CAS  Google Scholar 

  33. Scheel KW, Seavey E, Gaugl JF et al. Coronary and myocardial adaptations to high altitude in dogs. Am J Physiol 1990; 259: H1667 - H1673.

    PubMed  CAS  Google Scholar 

  34. Manohar M, Parks CM, Busch MA et al. Regional myocardial blood flow and coronary vascular reserve in unanesthetized young calves exposed to a simulated altitude of 3500 m for 8–10 weeks. Circ Res 1982; 50: 714–726.

    Article  PubMed  CAS  Google Scholar 

  35. Reiner L, Freudenthal RR, Greene MA et al. Interarterial coronary anastomosis in piglets at simulated high altitude. Arch Pathol 1972; 93: 198–208.

    PubMed  CAS  Google Scholar 

  36. Scheurer J, Buttrick P. The cardiac hypertrophic responses to pathologic and physiologic loads. Circulation 1987; 75 (Suppl I): 63–68.

    Article  Google Scholar 

  37. Scholz H, Schurek H-J, Eckardt K-U et al. Role of erythropoietin in adaptation to hypoxia. Experientia 1990; 46: 1197–1201.

    Article  PubMed  CAS  Google Scholar 

  38. Harris P. Myocardial metabolism. In: Heath D, Williams DR, Man at High Altitude. Edinburgh: Churchill Livingstone 1981: 196–208.

    Google Scholar 

  39. Bisgard GE. Pulmonary hypertension in cattle. Adv Vet Sci Comp Med 1977; 21: 151–172.

    PubMed  CAS  Google Scholar 

  40. Banchero N. Cardiovascular responses to chronic hypoxia. Ann Rev Physiol 1987; 49: 465–476.

    Article  CAS  Google Scholar 

  41. Turek Z, Rakusan K. Computer model analysis of myocardial tissue oxygenation: a comparison of high altitude guinea pig and rat. In: LeonVelarde F, Arregui A, eds. Hipoxia: Investigationes Basicas y Clinicas. Lima: UPCH, 1993: 141–154.

    Google Scholar 

  42. Turek Z, Ringnalda BEM, Grandtner M et al. Myoglobin distribution in the heart of growing rats exposed to a simulated altitude of 3,500 m in their youth or born in the low pressure chamber. Pflügers Arch 1973; 340: 1–10.

    Article  PubMed  CAS  Google Scholar 

  43. Bui MV, Banchero N. Effects of chronic exposure to cold or hypoxia on ventricular weights and ventricular myoglobin concentration in guinea pigs during growth. Pflügers Arch 1980; 385: 155–160.

    Article  PubMed  Google Scholar 

  44. Barrie SE, Harris P. Effects of chronic hypoxia and dietary restriction on myocardial enzyme activities. Am J Physiol 1976; 231: 1308–1313.

    PubMed  CAS  Google Scholar 

  45. Bass A, Ostâdal B, Prochâzka J et al. Intermittent high altitude-induced changes in energy metabolism in the rat myocardium and their reversibility. Physiol Bohemoslov 1989; 38: 155–161.

    PubMed  CAS  Google Scholar 

  46. Weiss J, Hiltbrand B. Functional compartmentation of glycolytic versus oxidative metabolism in isolated rabbit heart. J Clin Invest 1985; 75: 436–447.

    Article  PubMed  CAS  Google Scholar 

  47. Maher JT, Manchanda SC, Cymerman A et al. Cardiovascular responsiveness to beta-adrenergic stimulation and blockade in chronic hypoxia. Am J Physiol 1975; 228: 477–481.

    PubMed  CAS  Google Scholar 

  48. Richalet JP. The heart and the adrenergic system. In: Sutton JR, Coates G, Remmers JE, eds. Hypoxia, the Adaptations. Philadelphia: Dekker 1990: 231–245.

    Google Scholar 

  49. Os“tâdal B, Ressl J, Urbanoví et al. The effect of beta-adrenergic blockade on pulmonary hypertension, right ventricular hypertrophy and polycythemia, induced in rats by intermittent high altitude hypoxia. Basic Res Cardiol 1978; 73:422–432.

    Google Scholar 

  50. Voelkel NF, Hegstrand L, Reeves JT et al. Effects of hypoxia on density of I3-adrenergic receptors. J Appl Physiol 1981; 50: 363–366.

    PubMed  CAS  Google Scholar 

  51. Kacimi R, Richalet J-P, Corsin A et al. Hypoxia-induced downregulatio-of 0-adrenergic receptors in rat heart. J Appl Physiol 1992; 73: 1377–1382.

    PubMed  CAS  Google Scholar 

  52. Maher JT, Denniston JC, Wolfe DL. Mechanism of the attenuated cardiac response to beta-adrenergic stimulation in chronic hypoxia. J Appl Physiol 1978; 44: 647–651.

    PubMed  CAS  Google Scholar 

  53. Crockatt LH, Lund DD, Schmid PG et al. Hypoxia-induced changes in parasympathetic neurochemical markers in guinea pig heart. J Appl Physiol 1981; 50: 1017–1021.

    PubMed  CAS  Google Scholar 

  54. Kacimi R, Richalet J-P, Crozatier B. Hypoxia-induced differential modulation of adenosinergic and muscarinic receptors in rat heart. J Appl Physiol 1993; 75: 1123–1128.

    PubMed  CAS  Google Scholar 

  55. Wolfe BB, Voelkel NF. Effect of hypoxia on atrial muscarinic cholinergic receptors and cardiac parasympathetic response. Biochem Pharmacol 1983; 32: 1999–2002.

    Article  PubMed  CAS  Google Scholar 

  56. Martin LG, Westenberger GE, Bullard RW. Thyroidal changes in the rat during acclimatization to simulated high altitude. Am J Physiol 1971; 221: 1057–1063.

    PubMed  CAS  Google Scholar 

  57. Palacios I, Sagar K, Powell WJ. Effect of hypoxia on mechanical properties of hyperthyroid cat papillary muscle. Am J Physiol 1979; 237: H293 - H298.

    PubMed  CAS  Google Scholar 

  58. Seppet EK, Eimre MA, Kallikorm AP et al. Effect of exogenous phosphocreatine on heart muscle contractility modulated by hyperthyroidism and extracellular calcium concentration. J Appl Cardiol 1988; 3: 369–380.

    Google Scholar 

  59. Holubarsch CH, Goulette RP, Litten RZ et al. The economy of isometric force development, myosin isozyme pattern and myofibrillar ATPase activity in normal and hypothyroid rat myocardium. Circ Res 1985; 56: 78–86.

    Article  PubMed  CAS  Google Scholar 

  60. McDonough KH, Chen V, Spitzer J. Effect of altered thyroid status on in vitro cardiac performance in rats. Am J Physiol 1987; 252: H788 - H795.

    PubMed  CAS  Google Scholar 

  61. Seppet EK, Kadaya LY, Hata T et al. Thyroid control over membrane processes in rat heart. Am J Physiol 1991; 26 (Suppl): 66–71.

    Google Scholar 

  62. Iwaki K, Chi S-H, Dillmann WH et al. Induction of HSP70 in cultured rat neonatal cardiomyocytes by hypoxia and metabolic stress. Circulation 1993; 87: 2023–2032.

    Article  PubMed  CAS  Google Scholar 

  63. Howard G, Geoghegan TE. Altered cardiac tissue gene expression during acute hypoxic exposure. Mol Cell Biochem 1986; 69: 155–160.

    Article  PubMed  CAS  Google Scholar 

  64. Mestril R, Chi S-H, Sayen MR et al. Isolation of a novel inducible rat heat-shock protein (HSP70) gene and its expression during ischemia/hypoxia and heat shock. Biochem J 1994; 298: 561–569.

    PubMed  CAS  Google Scholar 

  65. Katayose D, Isoyama S, Fujita H et al. Separate regulation of heme oxygenase and heat shock protein 70 mRNA expression in the rat heart by hemodynamic stress. Biochem Biophys Res Commun 1993; 191: 587–594.

    Article  PubMed  CAS  Google Scholar 

  66. Parratt JR. Eicosanoids and arrhythmogenesis. In: Vaughan-Williams EM, ed. Antiarrhythmic Drugs. Berlin: Springer Verlag 1989: 569–589.

    Chapter  Google Scholar 

  67. De Deckere EAM, Nugteren DH, Ten Hoor F. Prostacyclin is the major prostaglandin released from the isolated perfused rabbit and rat heart. Nature 1977; 268: 160–163.

    Article  Google Scholar 

  68. Karmazyn M, Dhalla NS. Physiological and pathophysiological aspects of cardiac prostaglandins. Can J Physiol Pharmacol 1983; 61: 1207–1225.

    Article  PubMed  CAS  Google Scholar 

  69. Richalet JP, Hornych A, Rathat C et al. Plasma prostaglandins, leukotrienes and thromboxane in acute high altitude hypoxia. Respir Physiol 1991; 85: 205–215.

    Article  PubMed  CAS  Google Scholar 

  70. Pshennikova MG, Kuznetsova VA, Kopylov IN et al. The role of prostaglandin system in the cardioprotective effect of adaptation to hypoxia in stress (in Russian). Kardiologiya 1992; 32: 61–64.

    PubMed  CAS  Google Scholar 

  71. Curtis MJ, Pugsley MK, Walker MJA. Endogenous chemical mediators of ventricular arrhythmias in ischemic heart disease. Cardiovasc Res 1993; 27: 703–719.

    Article  PubMed  CAS  Google Scholar 

  72. Schrader J, Deussen A, Smolenski RT. Adenosine is a sensitive oxygen sensor in the heart. Experientia 1990; 46: 1172–1175.

    Article  PubMed  CAS  Google Scholar 

  73. Rubio R, Berne RM. Release of adenosine by the normal myocardium in dogs and its relationship to the regulation of coronary resistance. Circ Res 1969; 25: 407–415.

    Article  PubMed  CAS  Google Scholar 

  74. Fenton RA, Dobson JG. Measurement by fluorescene of interstitial adenosine levels in normoxic, hypoxic, and ischemic perfused rat hearts. Circ Res 1987; 60: 177–184.

    Article  PubMed  CAS  Google Scholar 

  75. Xu J, Tong H, Wang L et al. Endogenous adenosine, A, adenosine receptor, and pertussis toxin sensitive guanine nucleotide binding protein mediate hypoxia induced AV nodal conduction block in guinea pig heart in vivo. Cardiovasc Res 1993; 27: 134–140.

    Article  PubMed  CAS  Google Scholar 

  76. Wyatt DA, Edmunds MC, Rubio R et al. Adenosine stimulated glycolytic flux in isolated perfused rat hearts by Al-adenosine receptors. Am J Physiol 1989; 257: H1952 - H1957.

    PubMed  CAS  Google Scholar 

  77. Ziada AM, Hudlicka O, Tyler KR et al. The effect of long-term vasodilatation on capillary growth and performance in rabbit heart and skeletal muscle. Cardiovasc Res 1984; 18: 724–732.

    Article  PubMed  CAS  Google Scholar 

  78. Meininger CJ, Schelling ME, Granger HJ. Adenosine and hypoxia stimulate proliferation and migration of endothelial cells. Am J Physiol 1988; 255: H554 - H562.

    PubMed  CAS  Google Scholar 

  79. Boachie-Ansah G, Kane KA, Parratt JR. Is adenosine an endogenous myocardial protective (antiarrhythmic) substance under conditions of ischemia? Cardiovasc Res 1993; 27: 77–83.

    Article  PubMed  CAS  Google Scholar 

  80. Parratt JR. Endogenous myocardial protective (antiarrhythmic) substances. Cardiovasc Res 1993; 27: 693–702.

    Article  PubMed  CAS  Google Scholar 

  81. Pelouch V, Ostadal B, Prochâzka J et al. Effect of high altitude hypoxia on the protein composition of the right ventricular myocardium. Progr Resp Res 1985; 20: 41–48.

    Google Scholar 

  82. Ziegelhöffer A, Prochâzka J, Pelouch V et al. Increased affinity to substrate in sarcolemmal ATP-ases from hearts acclimatized to high altitude hypoxia. Physiol Bohemoslov 1987; 36: 403–415.

    PubMed  Google Scholar 

  83. Lebedev AV, Sadredtinov SM, Pelouch V et al. Free radical membrane scavengers in myocardium of rats of different age exposed to chronic hypoxia. Biomed Biochim Acta 1989; 48: S122 - S125.

    PubMed  CAS  Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Kolář, F. (1996). Cardioprotective Effects of Chronic Hypoxia: Relation to Preconditioning. In: Myocardial Preconditioning. Medical Intelligence Unit. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-22206-5_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-22206-5_15

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-22208-9

  • Online ISBN: 978-3-662-22206-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics