Skip to main content

Myocardial Stress Response, Cytoprotective Proteins and the Second Window of Protection Against Infarction

  • Chapter
Myocardial Preconditioning

Part of the book series: Medical Intelligence Unit ((MIU.LANDES))

Abstract

The cellular stress response is a multifactorial process, the nature of which is dependent on the organism, the metabolic status of the cell involved and the nature of the stress imposed. It is known that many cells and tissues, ranging from prokaryotes to highly organized and complex tissues such as myocardium are able to respond to a variety of metabolic stresses so that they become better able to withstand a subsequent period of metabolic stress several hours later.1,2 The ischemic preconditioning phenomenon in myocardium is well recognized and could be regarded as a very particular form of acute stress response in myocytes (and possibly in other cellular components of heart tissue).3,4 However, the stress response to hyperthermia and hypoxia, originally described in lower organisms such as yeasts and bacteria, differs fundamentally from ischemic preconditioning of myocardium in timecourse and quite probably in the mechanism of cellular preservation. The presence of a rapid preconditioning mechanism in myocardium does not preclude the occurrence of other stress response mechanisms and there is now reason to believe that myocardium has the potential to respond to ischemic stress with at least two different adaptive routes to cytoprotection. The first of these is the preconditioning response that has been considered comprehensively in the preceding chapters of this volume, and which for the sake of clarity we will refer to as classic preconditioning. The other is analogous to the stress (or ‘heat-shock’) response, originally recognized in lower organisms. It is this latter form of adaptation that is thought to underlie the delayed phase of protection that develops following transient ischemic stress, many hours after classic preconditioning protection has disappeared.5,6 We have coined the term “second window of protection” for this delayed protection following transient ischemia.7 In this brief review, we will describe the background relevant to the discovery of the second window, review the evidence for its occurrence in myocardium and other tissues, discuss some of the cellular mechanisms that may be involved and speculate on its pathophysiological relevance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Lindquist SC. The heat shock response. Ann Rev Biochem 1986; 55: 1151–1191.

    Article  PubMed  CAS  Google Scholar 

  2. Minowada G, Welch WJ. Clinical implications of the stress response. J Clin Invest 1995; 95: 3–12.

    Article  PubMed  CAS  Google Scholar 

  3. Baxter GF, Yellon DM. Ischemic preconditioning of myocardium: a new paradigm for clinical cardioprotection? Br J Clin Pharmacol 1994; 38: 381–387.

    Article  PubMed  CAS  Google Scholar 

  4. Parratt JR. Protection of the heart by ischemic preconditioning: mechanisms and possibilities for pharmacological exploitation. Trends Pharmacol Sci 1994; 15: 19–25.

    Article  PubMed  CAS  Google Scholar 

  5. Marber MS, Yellon DM. Hsp70 in myocardial ischemia. Experientia 1994; 50: 1075–1084.

    Article  PubMed  Google Scholar 

  6. Mestril R, Dillmann WH. Heat shock proteins and protection against myocardial ischemia. J Mol Cell Cardiol 1995; 27: 45–52.

    Article  PubMed  CAS  Google Scholar 

  7. Yellon DM, Baxter GF. A `second window of protection’ or delayed preconditioning phenomenon: future horizons for myocardial protection? J Mol Cell Cardiol 1995; 27: 1023–1034.

    Article  PubMed  CAS  Google Scholar 

  8. Schlesinger MJ. Heat shock proteins. J Biol Chem 1990; 265: 12111–12114.

    PubMed  CAS  Google Scholar 

  9. Morimoto RI, Tissieres A, Georgopoulos C, eds. The Biology of Heat Shock Proteins and Molecular Chaperones. Cold Spring Harbor: Cold Spring Harbor Laboratory Press 1994.

    Google Scholar 

  10. Angelidis CE, Lazaridis I, Papoulatos GN. Constitutive expression of heat shock protein 70 in mammalian cells confers thermoresistance. Eur J Biochem 1991; 199: 35–39.

    Article  PubMed  CAS  Google Scholar 

  11. Heads RJ, Latchman DS, Yellon DM. Stable high level expression of a transfected human HSP70 gene protects a heart-derived muscle cell line against thermal stress. J Mol Cell Cardiol 1994; 26: 695–699.

    Article  PubMed  CAS  Google Scholar 

  12. Li GC. Induction of thermotolerance and enhanced heat shock protein synthesis in Chinese hamster fibroblasts by sodium arsenite and by ethanol. J Cell Physiol 1983; 115: 116–122.

    Article  PubMed  CAS  Google Scholar 

  13. Das DK, Maulik N, Moraru II. Gene expression in acute myocardial stress. Induction by hypoxia, ischemia, reperfusion, hyperthermia and oxidative stress. J Mol Cell Cardiol 1995 27: 181–193.

    Article  PubMed  CAS  Google Scholar 

  14. Donati YRA, Slosman DO, Polla BS. Oxidative injury and the heat shock response. Biochem Pharmacol 1993; 40: 2571–2577.

    Article  Google Scholar 

  15. Das DK, Engelman RM, Kimura Y. Molecular adaptation of cellular defences following preconditioning of the heart by repeated ischemia. Cardiovasc Res 1993; 27: 578–584.

    Article  PubMed  CAS  Google Scholar 

  16. Currie RW, Karmazyn M, Kloc M et al. Heat shock response is associated with enhanced post-ischemic ventricular recovery. Circ Res 1988; 63: 543–549.

    Article  PubMed  CAS  Google Scholar 

  17. Yellon DM, Pasini E, Cargnoni A et al. The protective role of heat stress in the ischemic and reperfused rabbit myocardium. J Mol Cell Cardiol 1992; 24: 895–907.

    Article  PubMed  CAS  Google Scholar 

  18. Walker DM, Pasini E, Kuckukoglu S et al. Heat stress limits infarct size in the isolated perfused rabbit heart. Cardiovasc Res 1993; 27: 962–967.

    Article  PubMed  CAS  Google Scholar 

  19. Donnelly TJ, Sievers RE, Vissern FLJ et al. Heat shock protein induction in rat hearts: a role for improved salvage after ischemia and reperfusion? Circulation 1992; 85: 769–778.

    Article  PubMed  CAS  Google Scholar 

  20. Marber MS, Walker JM, Latchman DS et al. Cardiac stress protein elevation 24 hours following brief ischemia or heat stress is associated with resistance to myocardial infarction. Circulation 1993; 88: 1264–1272.

    Article  PubMed  CAS  Google Scholar 

  21. Currie RW, Tanguay RM, Kingma JG. Heat shock response and limitation of tissue necrosis during occlusion-reperfusion in rabbit hearts. Circulation 1993; 87: 963–971.

    Article  PubMed  CAS  Google Scholar 

  22. Mocanu MM, Steare SE, Evans M et al. Heat stress attenuates free radical release in the isolated perfused rat heart. Free Rad Biol Med 1993; 15: 459–463.

    Article  PubMed  CAS  Google Scholar 

  23. Steare SE, Yellon DM. The protective effect of heat stress against reperfusion arrhythmias in the rat. J Mol Cell Cardiol 1993; 25: 1471–1481.

    Article  PubMed  CAS  Google Scholar 

  24. Currie RW, Tanguay RM. Analysis of RNA for transcripts for catalase and SP71 in rat hearts after in vivo hyperthermia. Biochem Cell Biol 1991; 69: 375–382.

    Article  PubMed  CAS  Google Scholar 

  25. Karmazyn M, Mailer K, Currie RW. Acquisition and decay of heat shock enhanced post-ischemic ventricular recovery. Am J Physiol 1990; 259: H424 - H431.

    PubMed  CAS  Google Scholar 

  26. Steare SE, Yellon DM. Increased endogenous catalase activity caused by heat stress does not protect the isolated rat heart against exogenous hydrogen peroxide. Cardiovasc Res 1994; 28: 1096–1101.

    Article  PubMed  CAS  Google Scholar 

  27. Kukreja RC, Hess ML. The oxygen free radical system: from equations through membrane-protein interactions to cardiovascular injury and protection. Cardiovasc Res 1992; 26: 641–655.

    Article  PubMed  CAS  Google Scholar 

  28. Hutter MA, Sievers RE, Barbosa V et al. Heat shock protein induction in rat hearts: a direct correlation between the amount of heat shock protein induced and the degree of myocardial protection. Circulation 1994; 89: 355–360.

    Article  PubMed  CAS  Google Scholar 

  29. Marber MS, Walker JM, Latchman DS et al. Myocardial protection after whole body heat stress in the rabbit is dependent on metabolic substrate and is related to the amount of the inducible 70-kD heat stress protein. J Clin Invest 1994; 93: 1087–1094.

    Article  PubMed  CAS  Google Scholar 

  30. Donnelly TJ, Sievers RE, Vissern FLJ et al. Heat shock protein induction in rat hearts. A role for improved myocardial salvage after ischemia and reperfusion? Circulation 1992; 85: 769–778.

    Article  PubMed  CAS  Google Scholar 

  31. Yellon DM, Iliodromitis E, Latchman DS et al. Whole body heat stress fails to limit infarct size in the reperfused rabbit heart. Cardiovasc Res 1992; 26: 342–346.

    Article  PubMed  CAS  Google Scholar 

  32. Dillmann WH, Mehta HB, Barrieux A et al. Ischemia of the dog heart induces the appearance of a cardiac mRNA coding for a protein with migration characteristics similar to the heat shock/stress protein 71. Circ Res 1986; 59: 110–114.

    Article  PubMed  CAS  Google Scholar 

  33. Mehta HB, Popovich BK, Dillman WH. Ischemia induces changes in the level of mRNAs coding for stress protein 71 and creatine kinase M. Circ Res 1988; 63: 512–517.

    Article  PubMed  CAS  Google Scholar 

  34. Knowlton AA, Brecher P, Apstein CS. Rapid expression of heat shock protein in the rabbit after brief cardiac ischemia. J Clin Invest 1990; 87: 139–147.

    Article  Google Scholar 

  35. Kukreja RC, Kontos MC, Loesser KE et al. Oxidant stress increases heat shock protein 70 mRNA in isolated perfused rat heart. Am J Physiol 1994; 267: H2213 - H2219.

    PubMed  CAS  Google Scholar 

  36. Thornton J, Striplin S, Liu GS et al. Inhibition of protein synthesis does not block myocardial protection afforded by preconditioning. Am J Physiol 1990; 259: H1822 - H1825.

    PubMed  CAS  Google Scholar 

  37. Heads RJ, Latchman DS, Yellon DM. Differential stress protein mRNA expression during early ischemic preconditioning in the rabbit heart and its relationship to adenosine receptor function. J Mol Cell Cardiol 1995; 27: 2133–2148.

    Article  PubMed  CAS  Google Scholar 

  38. Hoshida S, Kuzuya T, Fuji H et al. Sublethal ischemia alters myocardial antioxidant activity in canine heart. Am J Physiol 1993; 264: H33 - H39.

    PubMed  CAS  Google Scholar 

  39. Kuzuya T, Hoshida S, Yamashita N et al. Delayed effects of sublethal ischemia on the acquisition of tolerance to ischemia. Circ Res 1993; 72: 1293–1299.

    Article  PubMed  CAS  Google Scholar 

  40. Baxter GF, Marber MS, Patel VC et al. Adenosine receptor involvement in a delayed phase of myocardial protection 24 hours after ischemic preconditioning. Circulation 1994; 90: 2993–3000.

    Article  PubMed  CAS  Google Scholar 

  41. Baxter GF, Goma FM, Yellon DM. Involvement of protein kinase C in the delayed cytoprotection following sublethal ischemia in rabbit myocardium. Br J Pharmacol 1995; 115: 222–224.

    Article  PubMed  CAS  Google Scholar 

  42. Yang X-M, Baxter GF, Yellon DM et al. Second window of protection in conscious rabbits. J Mol Cell Cardiol 1995; 27: A27 (Abstract).

    Google Scholar 

  43. Vegh A, Papp JG, Parratt JR. Prevention by dexamethasone of the marked antiarrhythmic effects of preconditioning induced 20 hours after rapid cardiac pacing. Br J Pharmacol 1994; 113: 1081–1082.

    Article  PubMed  CAS  Google Scholar 

  44. Sun J-Z, Tang X-L, Knowlton AA et al. Late preconditioning against myocardial stunning. An endogenous protective mechanism that confers resistance to postischemic dysfunction 24 h after brief ischemia in conscious pigs. J Clin Invest 1995; 95: 388–403.

    Article  PubMed  CAS  Google Scholar 

  45. Tanaka M, Fujiwara H, Yamasaki K et al. Ischemic preconditioning elevates cardiac stress protein but does not limit infarct size 24 or 48 h later in rabbits. Am J Physiol 1994; 267:H14 76-H 1482.

    Google Scholar 

  46. Strasser R, Arras M, Vogt A et al. Preconditioning of porcine myocardium: how much ischemia is required for induction? What is its duration? Is a renewal of effect possible? Circulation 1994; 90 (suppl): I - 109 (Abstract).

    Google Scholar 

  47. Schulz R, Rose J, Heusch G. Involvement of ATP-dependent potassium channels in ischemic preconditioning in swine. Am J Physiol 1994; 267: H1341 - H1352.

    PubMed  CAS  Google Scholar 

  48. Baxter GF, Goma FM, Yellon DM. Duration of the `second window of protection’ following ischemic preconditioning in the rabbit. J Mol Cell Cardiol 1995; 27: A162 (Abstract).

    Google Scholar 

  49. Downey JM, Liu GS, Thornton JD. Adenosine and the anti-infarct effects of preconditioning. Cardiovasc Res 1993; 27: 3–8.

    Article  PubMed  CAS  Google Scholar 

  50. Schulz R, Rose J, Post H et al. Involvement of endogenous adenosine in ischemic preconditioning in swine. Pflugers Archiv—Eur J Physiol 1995; 430: 273–282.

    Article  CAS  Google Scholar 

  51. Baxter GF, Kerac M, Zaman MJ et al. Delayed myocardial protection: responses to global ischemia 24 hours after adenosine A, receptor activation. J Mol Cell Cardiol 1994; 26:CLII (Abstract).

    Google Scholar 

  52. Baxter GF, Yellon DM. Temporal characterization of the `second window of protection’: prolonged anti-infarct effect after adenosine Al receptor activation. Circulation 1994; 90 (suppl): I - 475 (Abstract).

    Article  Google Scholar 

  53. Meng X, Brown JM, Ao L et al. Norepinephrine induces late cardiac protection preceded by oncogene and heat shock protein overexpression. Circulation 1993; 88 (suppl): I - 633 (Abstract).

    Google Scholar 

  54. Strasser RH, Braun-Dullaeus R, Walendzik H et al. a, receptor-independent activation of protein kinase C in acute myocardial ischemia: mechanisms for sensitization of the adenylyl cyclase system. Circ Res 1992; 70: 1304–1312.

    Article  PubMed  CAS  Google Scholar 

  55. Mitchell MB, Meng X, Ao L et al. Preconditioning of isolated rat heart is mediated by protein kinase C. Circ Res 1995; 76: 73–81.

    Article  PubMed  CAS  Google Scholar 

  56. Hug H, Sarre TF. Protein kinase C isoenzymes: divergence in signal transduction. Biochem J 1993; 291: 329–343.

    PubMed  CAS  Google Scholar 

  57. Yamashita N, Nishida M, Hoshida S et al. Induction of manganese superoxide dismutase in rat cardiac myocytes increases tolerance to hypoxia 24 hours after preconditioning. J Clin Invest 1994; 94: 2193–2199.

    Article  PubMed  CAS  Google Scholar 

  58. Currie RW, Plumier J-C L, Ross BM et al. Transgenic mice expressing high levels of the human Hsp70 have improved post-ischemic myocardial recovery. Circulation 90:I-377 (Abstract).

    Google Scholar 

  59. Radford NB, Fina M, Benjamin IJ et al. Enhanced functional and metabolic recovery following ischemia in intact hearts from hsp70 tansgenic mice. Circulation 1994; 90:I-G (Abstract).

    Google Scholar 

  60. Marber MS, Mestril R, Chi S-H et al. Overexpression of the rat inducible 70 kiloDalton heat stress protein in a transgenic mouse increases the resisitance of the heart to ischemic injury. J Clin Invest 1995; 95: 1446–1456.

    Article  PubMed  CAS  Google Scholar 

  61. Mestril R, Chi S-H, Sayen MR et al. Expression of inducible stress protein 70 in rat heart myogenic cells confers protection against simulated ischemia induced injury. J Clin Invest 1994; 93: 759–767.

    Article  PubMed  CAS  Google Scholar 

  62. Heads RJ, Yellon DM, Latchman DS. Differential cytoprotection against heat stress or hypoxia following expression of specific stress protein genes in myogenic cells. J Mol Cell Cardiol 1995; 27: 1669–1678.

    Article  PubMed  CAS  Google Scholar 

  63. Heads RJ, Baxter GF, Latchman DS et al. Delayed protection in rabbit heart following ischemic preconditioning is associated with modulation of hsp27 and superoxide dismutase at 24 hours. J Mol Cell Cardiol 1995; 27: A163 (Abstract).

    Google Scholar 

  64. Kitagawa K, Matsumoto M, Kuwabara K et al. Ischemic tolerance’ phenomenon detected in various brain regions. Brain Res 1991; 561: 203–211.

    Article  PubMed  CAS  Google Scholar 

  65. Yoshioka T, Bills T, Moore-Jarrett T et al. Role of intrinsic antioxidant enzymes in renal oxidant injury. Kidney Int 1990; 38: 282–288.

    Article  PubMed  CAS  Google Scholar 

  66. Osborne DL, Aw T, Cephinskas G et al. Development of ischemia-reperfusion tolerance in the rat small intestine. An epithelium-independent event. J Clin Invest 1994; 1910–1918.

    Google Scholar 

  67. Kloncr RA, Shook T, Pryzklenk K et al. Previous angina alters in-hosptial outcome in TIMI-4. A clinical correlate to preconditioning? Circulation 1995; 91: 37–47.

    Article  Google Scholar 

  68. Ottani F, Galvani M, Ferrini D et al. Prodromal angina limits infarct size. A role for ischemic preconditoning. Circulation 1995; 91: 291–297.

    Article  PubMed  CAS  Google Scholar 

  69. Crea F, Gaspardone A, Kaki JC et al. Relation between stimulation site of cardiac afferent nerves by adenosine and distribution of cardiac pain: results of a study in patients with stable angina. J Am Coll Cardiol 1992; 20: 1498–1502.

    Article  PubMed  CAS  Google Scholar 

  70. Behar S, Reicher-Reiss H, Alimader E. The prognostic significance of angina pectoris preceeding the occurence of a first acute myocardial infarction in 4166 consecutive hospitalized patients. Am Heart J 1992; 123: 1481–1486.

    Article  PubMed  CAS  Google Scholar 

  71. Muller DW, Topol EJ, Calif RM et al. Relationship between antecedent angina pectoris and short-term prognosis after thrombolytic therapy for acute myocardial infarction. Thrombolysis and angioplasty in myocardial infarction (TAMI) study group. Am Heart J 1990; 119: 224–231.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Baxter, G.F., Marber, M.S., Yellon, D.M. (1996). Myocardial Stress Response, Cytoprotective Proteins and the Second Window of Protection Against Infarction. In: Myocardial Preconditioning. Medical Intelligence Unit. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-22206-5_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-22206-5_13

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-22208-9

  • Online ISBN: 978-3-662-22206-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics