Advertisement

Operations on Hochschild and Cyclic Homology

  • Jean-Louis Loday
Part of the Grundlehren der mathematischen Wissenschaften book series (GL, volume 301)

Abstract

How does Hochschild and cyclic homology behave with respect to tensor products and with respect to operations performed on the defining complexes? This is the subject of the present chapter.

Keywords

Exact Sequence Eulerian Number Mixed Complex Cyclic Module Cyclic Homology 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliographical Comments on Chapter 4

  1. Goodwillie, T.G., Cyclic homology, derivations and the free loop space, Topology 2.4 (1985), 187–215. 87c: 18009MathSciNetCrossRefGoogle Scholar
  2. Rinehart, G., Differential forms on general commutative algebras, Trans. AMS 108 (1963), 195–222. 91d: 19004MathSciNetCrossRefGoogle Scholar
  3. Hood, C., Jones, J.D.S., Some algebraic properties of cyclic homology groups, K-theory 1 (1987), 361–384. 89f: 18011MathSciNetCrossRefGoogle Scholar
  4. Burghelea, D., Ogle, C., The Künneth formula in cyclic homology, Math. Zeit. 193 (1986) 527–536. 88a: 18015MathSciNetCrossRefGoogle Scholar
  5. Karoubi, M., K-théorie multiplicative, C. R. Acad. Sci. Paris Sér. A-B 302 (1986), 321–324.MathSciNetMATHGoogle Scholar
  6. Kassel, C., A Künneth formula for the cyclic cohomology of Z/2-graded algebras, Math. Ann. 275 (1986), 683–699. 88a: 18018MathSciNetCrossRefGoogle Scholar
  7. Getzler, E., Jones, J.D.S., Petrack, S.B., Differential forms on loop spaces and the cyclic bar complex, Topology 30 (1991), 339–371.MathSciNetMATHCrossRefGoogle Scholar
  8. Quillen, D., On the (co)-homology of commutative rings, Proc. Symp. Pure Math. 17 (1970), 65–87.MathSciNetCrossRefGoogle Scholar
  9. Hain, R.M., On the indecomposable elements of the bar construction, Proc. Amer. Math. Soc. 98 (1986), 312–316.MathSciNetMATHCrossRefGoogle Scholar
  10. Gerstenhaber, M., Schack, S.D., A Hodge-type decomposition for commutative algebra cohomology, J. Pure Applied Algebra 48 (1987), 229–247.MathSciNetMATHCrossRefGoogle Scholar
  11. Gerstenhaber, M., Schack, S.D., The shuffle bialgebra and the cohomology of commutative algebras, J. Pure Appl. Algebra 70 (1991), 263–272.MathSciNetMATHCrossRefGoogle Scholar
  12. Loday, J.-L., Opérations sur l’homologie cyclique des algèbres commutatives, Invent. Math. 96 (1989), 205–230. 89m: 18017MathSciNetCrossRefGoogle Scholar
  13. Natsume, T., Schack, S.D., A decomposition for the cyclic cohomology of a commutative algebra, J. Pure App. Alg. 61 (1989), 273–282. 90k: 13010MathSciNetCrossRefGoogle Scholar
  14. Loday, J.-L., Procesi, C., Cyclic homology and A-operations, in Proc. Lake Louise Conf. Canada NATO-A SI Ser. C, 279 (1989), 209–224. 91e: 19002Google Scholar
  15. Feigin, B.L., Tsygan, B.L., Cohomologie de l’algèbre de Lie des matrices de Jacobi généralisées (en russe), Funct. Anal. and Appl. 17(2) (1983), 86–87. 85c: 17008MathSciNetGoogle Scholar
  16. Burghelea, D., Vigué-Poirrier, M., Cyclic homology of commutative algebras I, Springer Lect. Notes in Math. 1318 (1988), 51–72. 89k: 18027CrossRefGoogle Scholar
  17. Ronco, M.O., Adams operations on a Hopf algebra, preprint (1992). Burghelea- Fiedorowicz, Z., Loday, J.-L., Crossed simplicial groups and their associated homology, Trans. Amer. Math. Soc. 326 (1991), 57–87. 91j: 18018Google Scholar
  18. Hanlon, P., The action of Sn on the components of the Hodge decomposition of Hochschild homology, Mich. Math. J. 37 (1990), 105–124.MathSciNetMATHCrossRefGoogle Scholar
  19. Poirrier, M., Décompositions de l’homologie cyclique des algèbres différentielles graduées commutatives, K-theory 4 (1991), 399–410.MathSciNetMATHCrossRefGoogle Scholar
  20. Nuss, P., L’homologie cyclique des algèbres enveloppantes des algèbres de Lie de dimension 3, J. Pure Appl. Algebra 73 (1991), 39–71.MathSciNetMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1992

Authors and Affiliations

  • Jean-Louis Loday
    • 1
  1. 1.Institut de Recherche Mathématique AvancéeCentre National de la Recherche ScientifiqueStrasbourgFrance

Personalised recommendations