Advertisement

Cyclic Homology

  • Jean-Louis Loday

Part of the Grundlehren der mathematischen Wissenschaften book series (GL, volume 301)

Table of contents

  1. Front Matter
    Pages I-XVII
  2. Jean-Louis Loday
    Pages 1-49
  3. Jean-Louis Loday
    Pages 50-87
  4. Jean-Louis Loday
    Pages 88-113
  5. Jean-Louis Loday
    Pages 114-154
  6. Jean-Louis Loday
    Pages 155-197
  7. Jean-Louis Loday
    Pages 198-222
  8. Jean-Louis Loday
    Pages 223-252
  9. Jean-Louis Loday
    Pages 253-276
  10. Jean-Louis Loday
    Pages 277-294
  11. Jean-Louis Loday
    Pages 295-336
  12. Jean-Louis Loday
    Pages 337-376
  13. Jean-Louis Loday
    Pages 377-394
  14. Back Matter
    Pages 395-454

About this book

Introduction

This book is a comprehensive study of cyclic homology theory together with its relationship with Hochschild homology, de Rham cohomology, S1 equivariant homology, the Chern character, Lie algebra homology, algebraic K-theory and non-commutative differential geometry. Though conceived as a basic reference on the subject, many parts of this book are accessible to graduate students.

Keywords

Algebraic K-theory Homology Theory K-theory Lie Algebras Non-commutative Differential Geometry algebra associative algebra differential geometry homology invariant theory lie algebra matrices

Authors and affiliations

  • Jean-Louis Loday
    • 1
  1. 1.Institut de Recherche Mathématique AvancéeCentre National de la Recherche ScientifiqueStrasbourgFrance

Bibliographic information

  • DOI https://doi.org/10.1007/978-3-662-21739-9
  • Copyright Information Springer-Verlag Berlin Heidelberg 1992
  • Publisher Name Springer, Berlin, Heidelberg
  • eBook Packages Springer Book Archive
  • Print ISBN 978-3-662-21741-2
  • Online ISBN 978-3-662-21739-9
  • Series Print ISSN 0072-7830
  • Buy this book on publisher's site