Skip to main content

Abstract

Eukaryotic cells contain two independent but interactive genetic systems com-prising of nuclear DNA and mitochondrial DNA (mtDNA). MtDNA represents less than 1% of total cellular DNA. However, it encodes gene products essential for cellular function. Thus, damage to mtDNA either by endogenous or environmental agents can impair cellular functions.1 Unlike nuclear DNA, human mtDNA contains no introns, has no protective histones, and is exposed to reactive oxygen species (ROS) generated by oxidative phosphorylation. Replication of mtDNA could also be prone to error.2–5 Perhaps due to these reasons, mtDNA accumulates mutations at least 10 times more frequently than does nuclear DNA.6,7

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Satoh MS, Huh NH, Rajewsky T et al. Enzymatic removal of 06-ethylguanine-Nnitrosurea in vivo. J Biol Chem 1988; 263: 6854–6856.

    PubMed  CAS  Google Scholar 

  2. Kunkel TA, Loeb LA. Fidelity of mammalian DNA polymerases Science 1981; 213: 765–767.

    CAS  Google Scholar 

  3. Matsukage A, Bohn EW, Wilson SH. On the DNA polymerase III of mouse myeloma:partial purification and characterization. Biochemistry 1975; 14: 1006–1020.

    Article  PubMed  CAS  Google Scholar 

  4. Shay JW, Werbin H. Are mitochondrial DNA mutations involved in the carcinogenic process? Mut Res 1987; 186: 149–16o.

    Article  CAS  Google Scholar 

  5. Torri AF, Kunkel TA, Englund PT. A beta-like DNA polymerase from the mitochondrion of the trypanosomaatid Crithidia fasciculata. J Biol Chem 1994; 269: 8165–8171.

    PubMed  CAS  Google Scholar 

  6. Grossman LI, Shoubridge EA. Mitochondrial genetics and human disease. BioEssay 1996; 18: 983–991.

    CAS  Google Scholar 

  7. Johns DR. Mitochondrial DNA and disease. New Eng J Med 1995; 333: 638–644.

    Article  PubMed  CAS  Google Scholar 

  8. Friedberg EC, Walker GC, and Siede W. In: DNA repair and mutagenesis. American Society for Microbiology Press, Washington, D. C. 1995.

    Google Scholar 

  9. Clayton DA, Doda JN, Friedberg EC. The absence of pyrimidine dimer repair mechanism in mammalian mitochondria. Proc Natl Acad Sci 1974; 71: 2777–2781.

    Article  PubMed  CAS  Google Scholar 

  10. Beal F. Aging, energy, and oxidative stress in neurodegenerative diseases. Ann Neurol 1995; 38: 357–366.

    Article  PubMed  CAS  Google Scholar 

  11. Demple B, Harrison L. Repair of oxidative damage to DNA: Enzymology and biology. Annu Rev Biochem 1994; 63: 915–948.

    Article  PubMed  CAS  Google Scholar 

  12. Kasai H, Nishimura MK, Hagen TM. Formation of 8-hydroxydeoxyguanosine in DNA by oxygen radicals and its bilogical significance. In: Sies H, ed. Oxidative Stress: Oxidants and Antioxidants. London: Academic Press, 1991, 99–116.

    Google Scholar 

  13. Grollman AP, Moriya M. Mutagenesis by 8-oxoguanine: An enemy within. Trends Genet 1993, 9: 246–249.

    Article  PubMed  CAS  Google Scholar 

  14. Michaels ML, Miller JH. The GO system protects organisms from the mutagenic effect of the spontaneous lesion 8-hydroxyguanine (7,8-dihydro-8-oxoguanine). J. Bacteriol 1992, 174: 6321–6325.

    PubMed  CAS  Google Scholar 

  15. Evans CH, Stefanovic-Racic M, Lancaster J. Nitric oxide and its role in orthopedic disease. Clin Orth and Related Res 1995; 312: 275–294.

    Google Scholar 

  16. Bates TE, Loesch A, Burnstock G et al. and Clark JB. Mitochondrial nitric oxide synthase: an ubiquotous regulator of oxidative phosphorylation. Biochem Biophys Res Comm 1996; 218: 40–44.

    Article  PubMed  CAS  Google Scholar 

  17. Jaruga P, Dizdaroglu. Repair of products of oxidative DNA base damage in human cells. Nucleic Acid Res 1996; 24: 1389–1394.

    Article  PubMed  CAS  Google Scholar 

  18. Hao H, and Moraes CT. Functional and molecular mitochondrial abnormalities associated with a C to T transition at position 3256 of the human mitochondrial genome. J. Biol Chem 1996; 271: 2347–2352.

    Article  PubMed  CAS  Google Scholar 

  19. Kadenbach B, Munscher C, Frank V et al. Human aging is associated with stochastic somatic mutations of mitochondrial DNA. Mut Res 1995; 338: 161–172.

    Article  CAS  Google Scholar 

  20. Bohr VA. DNA repair fine structure and its relations to genomic instability. Carcinogenesis 1995; 16: 2885–2892.

    Article  PubMed  CAS  Google Scholar 

  21. Hixon SC, Ocak A et al. Resistance to adriamycin cytotoxicity among respiratory deficient mutants in yeast. Antimicro Agents Chemother 1980, 1 7: 443–449.

    Article  Google Scholar 

  22. Kule C, Ondrejickova O, Verner K. Doxorubicin, Daunorubicin and Mitoxantrone cytotoxicity in yeast. Mol Pharmacology 1994; 46: 1234–1240.

    CAS  Google Scholar 

  23. Doroshow JH, Davies KJA. Redox cycling of anthracycline by cardiac mitochondria. II. Formation of superoxide anion, hydrogen peroxide, and hydroxyl radical. J Biol Chem 1986, 261: 3068–3074.

    PubMed  CAS  Google Scholar 

  24. Corral-Debrinski M, Shoffner JM, Lott MT, Wallace DC. Association of mitochondrial DNA damage with aging and coronary atherosclerotic heart disease. Mut Res 1992; 275: 169–180.

    Article  CAS  Google Scholar 

  25. Hattori K, Ogawa T, Kondo T et al. Cardiomyopathy with mitochondrial DNA mutations. Am Heart J 1991; 122: 866–869.

    Article  PubMed  CAS  Google Scholar 

  26. Luft R. The development of mitochondrial medicine. Proc Natl Aced Sci 1994; 91: 873108738.

    Google Scholar 

  27. Shoffner JM, Wallace DC. Heart disease and mitochondrial DNA mutations. Heart Disease Stroke 1992; 235–241.

    Google Scholar 

  28. Yoneda M, Chomyn A, Martinuzzi A et al. Marked replicative advantage of human mtDNA carrying a point mutation that causes the MELAS encephalomyopathy. Proc Natl Acad Sci USA 1992; 89: 11164–11168.

    Article  PubMed  CAS  Google Scholar 

  29. Albertini AM, Hofer M, Calos MP et al. On the formation of spontaneous deletions: The importance of short sequence homologies in the generation of large deletions. Cell 1982; 29: 319–328.

    Article  PubMed  CAS  Google Scholar 

  30. Mita S, Rizzuto R, Moraes CT et al. Recombination via flanking direct repeats is a major cause of large-scale deletions of human mitochondrial DNA. Nucleic Acids Res 1990; 18: 561–567.

    Article  PubMed  CAS  Google Scholar 

  31. Ripley LS. Frame shift mutation: Determinants of specificity. Annu Rev Genet 1990; 24: 189–213.

    Article  PubMed  CAS  Google Scholar 

  32. Butler DK, Yasuda LE, Yao M-C. Induction of large DNA palindrome formation in yeast: implications for gene amplification and genome stability in eukaryotes. Cell 1996; 87: 1115–1122.

    Article  PubMed  CAS  Google Scholar 

  33. Piko L, Hougham AJ, Bulpitt KJ. Studies of sequence heterogeneity of mitochondrial DNA from rat and mouse tissues: Evidence for an increased frequency of deletion/addition with aging. Mechanisms of Aging and Development 1988; 43: 279–293.

    Article  CAS  Google Scholar 

  34. Muller-Hocker J. Cytochrome-c-oxidase deficient cardiomyocytes in the human heart-an age related phenomenon. Am J. Path 1989; 134: 1167–1173.

    PubMed  CAS  Google Scholar 

  35. Shigenaga MK, Hagen TM, Ames B. Oxidative damage and mitochondrial decay in aging. Proc Natl Acad Sci 1994; 91: 10771–10778.

    Article  PubMed  CAS  Google Scholar 

  36. Memisoglu A, Samson L. DNA repair functions in heterologous cells. Crit Rev Biochem Mol Biol 1996; 31: 405–447.

    Article  PubMed  CAS  Google Scholar 

  37. Maki H, Sekiguchi M. MutT protein specifically hydrolyses a potent mutagenic substrate for DNA synthesis. Nature 1992; 355: 273–275.

    Article  PubMed  CAS  Google Scholar 

  38. Sakumi K, Furuichi M, Tsuzuki T et al. Cloning and expression of cDNA for a human enzyme that hydrolyzes 8-oxo-dGTP, a mutagenic substrate for DNA synthesis. J Biol Chem 1993; 268: 23524–23530.

    PubMed  CAS  Google Scholar 

  39. Slupska MM, Baiklov C, Luther WM et al. Cloning and sequencing a human homolog (hMYH) of the Escherichia coli mutY gene whose function is required for the repair of oxidative DNA damage. J Bacteriol 1996; 178: 3885–3892.

    PubMed  CAS  Google Scholar 

  40. Nash HM, Bruner SD et al. Cloning of yeast 8-oxoguanine DNA glycosylase reveals the existence of a base-excision DNA-repair protein superfamily. Curr Biol 1996, 6: 968–980.

    Article  PubMed  CAS  Google Scholar 

  41. Lu R, Nash HM, Verdine GL. A mammalian DNA repair enzyme that excises oxidatively damaged guanine maps to a locus frequently lost in lung cancer. Curr Biol 1997, 7: 397–407.

    Article  PubMed  CAS  Google Scholar 

  42. Aburatani H, Hippo Y, Ishida T et al. Cloning a characterization of mammalian 8-hydroxyguanine-specific DNA glycosylase/apurinic, apyrimidinic lyase, a functional MutM homolog. Cancer Res 1997, 57: 2151–2156.

    PubMed  CAS  Google Scholar 

  43. Arai K, Morishita K, Shinmura K et al. Cloning of human homolog of the yeast OGGi gene that is involved in the repair of oxidative DNA damage. Oncogene 1997, 14: 2857–2861.

    Article  PubMed  CAS  Google Scholar 

  44. Radicella JP, Dherin C et al. Cloning and characterization of hOGGi, a human homolog of the OGGi gene of Saccharomyces cerevisiae. Proc Natl Acad Sci 1997, 94: 8010–8015.

    Article  PubMed  CAS  Google Scholar 

  45. Roldan-Arjona T, Wei Y-F et al. Molecular cloning and functional expression of a human cDNA encoding the antimutator enzyme 8-hydroxyguanine-DNA glycosylase. Proc Natl Acad Sci. 1997, 94: 8021–8026.

    Article  Google Scholar 

  46. Kang D, Nishida J, Iyama A et al. Intracellular localization of 8–oxo–dGTPase in human cells, with special reference to the role of the enzyme in mitochondria. J. Biol Chem 1995, 270–14659–14665.

    Google Scholar 

  47. Breimer LH. Urea-DNA glycosylase in mammalian cells. Biochemistry 1983; 22: 4192–4197.

    Article  PubMed  CAS  Google Scholar 

  48. Doetsch PW, Henner WD, Cunningham RP et al. A highly conserved endonuclease activity in Escherichia coli, bovine, and human cells recognizes oxidative DNA damage at sites of pyrimidines. Mol Cell Biol 1987; 7: 26–32.

    PubMed  CAS  Google Scholar 

  49. Kim J, Linn S. Purification and characterization of UV endonucleases I and II from murine plasmacytoma cells. J Biol Chem 1989; 264: 2739–2745.

    PubMed  CAS  Google Scholar 

  50. Melamede RJ, Hatahet Z, Kow YW et al. Isolation and characterization of endonuclease VIII from Escherichia coli. Biochemistry 1994; 33: 1255–1264.

    Article  PubMed  CAS  Google Scholar 

  51. Tomkinson AE, Bonk RT, Kim J et al. Mammalian mitochondrial endonuclease activities specific for ultraviolet-irradiated DNA. Nucleic Acids Res 1990; 18: 929–935.

    Article  PubMed  CAS  Google Scholar 

  52. Dizaroglu M, Karakaya A, Jaruga P, Slullahaug, Krokan HE. Novel activities of uracil-DNA glycosylase for cytosine-derived products of oxidative DNA damage. Nucl Acid Res 1996; 24: 418–422.

    Article  Google Scholar 

  53. Nilsen H, Otterlei M, Haug T et al. Nuclear and mitochondrial uracil-DNA glycosylases are generated by alternative splicing and transcription from different positions in the UNG gene. Nucleic Acids Res 1997; 25: 750–755.

    Article  PubMed  CAS  Google Scholar 

  54. Nagelhus T, Haug T, Singh KK et al. A sequence in the N-terminal region of human uracil-DNA glycosylase with homology to XPA interacts with the C-terminal part of the 34 kDa subunit of replication protein A. J Biol Chem 1997; 272: 6561–6566.

    Article  PubMed  CAS  Google Scholar 

  55. Ladner RD, Caradonna SJ. The human dUTPase gene encodes both nuclear and mitochondrial isoforms. J Biol Chem 1997, 272: 19072–19080.

    Article  PubMed  CAS  Google Scholar 

  56. Mosbaugh DW, Bennett SE. Uracil-excision repair. Prog Nucl Acid Res 1994; 48: 315–370.

    Article  CAS  Google Scholar 

  57. Croteau DL, Bohr VA. Repair of oxidative damage to nuclear and mitochondrial DNA in mammalian cells. J Biol Chem 1997, 272: 25409–25412.

    Article  PubMed  CAS  Google Scholar 

  58. Sancar A. DNA excision repair. Ann Rev Biochem 1996; 65: 43–81.

    Article  PubMed  CAS  Google Scholar 

  59. Modrich P, Lahue R. Mismatch repair in replication fidelity, genetic recombination, and cancer biology. Annu Rev Biochem 1996; 65: 101–133.

    Article  PubMed  CAS  Google Scholar 

  60. Drummond JT, Li G-M, Longley MJ et al. Isolation of an hMSH2-p16o heterodimer that restores DNA mismatch repair to tumor cells. Science 1995; 268: 1909–1912.

    Article  PubMed  CAS  Google Scholar 

  61. Palombo F, Gallinari P, Iaccarino I et al. GTBP, a 16o-kilodalton protein essential for mismatch-binding activity in human cells. Science 1995; 268: 1912–1914.

    Article  PubMed  CAS  Google Scholar 

  62. Papadopoulos N, Nicolaides NC, Liu B et al. Mutations of GTBP in genetically unstable cells. Science 1995; 268: 1915–1917.

    Article  PubMed  CAS  Google Scholar 

  63. Prolla TA, Pang Q, Alani E et al. MLH1, PMS1, and MSH2 interactions during the initiation of DNA mismatch repair in yeast. Science 1994; 265: 1091–1093.

    Article  PubMed  CAS  Google Scholar 

  64. Reenan RAG, Kolodner RD. Isolation and characterization of two Saccharomyces cerevisiae genes encoding homologs of the bacterial HexA and MutS mismatch repair proteins. Genetics 1992; 132: 963–973.

    PubMed  CAS  Google Scholar 

  65. Reenan RAG, Kolodner RD. Characterization of insertion mutations in the Saccaharomyces cerevisiae MSH1 and MSH2 genes: Evidence for separate mitochondrial and nuclear functions. Genetics 1992; 132: 975–985.

    PubMed  CAS  Google Scholar 

  66. Chi N-W, Kolodner RD. Purification and characterization of MSH1, a yeast mitochondrial protein that binds to DNA mismatches. J Biol Chem 1994; 269: 29984–29992.

    PubMed  CAS  Google Scholar 

  67. Rasmussen LJ, Samson L, Marinus MG. Dam-directed DNA mismatch repair. In: Nickoloff JA, Hoekstra MF, eds. DNA damage and repair: Biochemistry, genetics, and cell biology. 1997:chapter u.

    Google Scholar 

  68. Pont-Kingdon GA, Okada NA et al. A coral mitochondrial mutS gene. Nature 1995 375: 109–111.

    Article  PubMed  CAS  Google Scholar 

  69. Modrich P, Lahue R. Mismatch repair in replication fidelity, genetic recombination and cancer biology. Ann Rev Biochem 1996, 65: 101–133.

    Article  PubMed  CAS  Google Scholar 

  70. Papadopoulos N, Nicolaides NC et al. Mutations of a MutL homolog in hereditary colon cancer. Science 1994 263: 1635–1629.

    Article  Google Scholar 

  71. Kaukonen JA, Amati P et al. An autosomal locus predisposing to multiple deletions of mitDNA on chromosome 3p. Am J Hum Genet 1996, 58: 763–769.

    PubMed  CAS  Google Scholar 

  72. Waters R, Moustacchi E. The fate of ultraviolet-induced pyrimidine dimers in the mtDNA of Saccharomyces cerevisiae following various post-irradiation cells treatments. Biochim Biophys Acta 1974; 366: 241–250.

    Article  PubMed  CAS  Google Scholar 

  73. Prakash L. Repair of pyrimidine dimers in nuclear and mtDNA of yeast irradiated with low doses of ultraviolet light. J Mol Biol 1975; 98t781–795.

    Google Scholar 

  74. Anderson CTM, Friedberg EC. The presence of nuclear and mitochondrial uracilDNA glycosylase in extracts of human KB cells. Nucleic Acids Res 1980; 8: 875–888.

    Article  PubMed  CAS  Google Scholar 

  75. Chuen-cheh S, Wertelecki W, Driggers WJ, LeDoux SP, Wilson GL. Repair of mitochondrial DNA damage induced by bleomycin in human cells. Mut Res 1995; 337: 19–23.

    Article  Google Scholar 

  76. Driggers WJ, LeDoux SP, Wilson GL. Repair of oxidative damage within the mitochondrial DNA of RINr 38 cells. J Biol Chem 1993; 268: 22042–22045.

    PubMed  CAS  Google Scholar 

  77. Kang D, Nishida J-I, Iyama A et al. Intracellular localization of 8-oxo-dGTPase in human cells, with special reference to the role of the enzyme in mitochondria. J Biol Chem 1995; 270: 14659–14665.

    Article  PubMed  CAS  Google Scholar 

  78. LeDoux SP, Wilson GL, Beecham EJ et al. Repair of mitochondrial DNA after various types of DNA damage in Chinese hamster ovary cells. Carcinogenesis 1992; 13: 1967–1973.

    Article  PubMed  CAS  Google Scholar 

  79. LeDoux SP, Patton NJ, Avery LJ et al. Repair of N-methylpurines in the mitochondrial DNA of xeroderma pigmentosum complementation group D cells. Carcinogenesis 1993; 14: 913–917.

    Article  PubMed  CAS  Google Scholar 

  80. LeDoux SP, Wilson GL, Bohr VA. Mitochondrial DNA repair and cell injury. In: Jones DP, Lash LH, eds. Mitochondrial Dysfunction, Methods in Toxicology. Acad Press, 1993: 461–476.

    Google Scholar 

  81. Moustacchi E and Heude M. Mutagenesis and repair in yeast mtDNA. In: Molecular and cellular mechanisms of mutagenesis. Ed JF Lemontt and WM Generoso, pp 273–301. New Yprk: Plenum. 1982.

    Chapter  Google Scholar 

  82. Pettepher CC, LeDoux SP, Bohr VA et al. Repair of alkali-labile sites within the mitochondrial DNA of RINr38 cells after exposure to the nitrosourea streptozotocin. J Biol Chem 1991; 266:3n3–3n7.

    Google Scholar 

  83. Pirsel M, Bohr VA. Methyl methanesulfonate adduct formation and repair in the DHFR gene and in mitochondrial DNA in hamster cells. Carcinogenesis 1993; 14: 2105–2108.

    Article  PubMed  CAS  Google Scholar 

  84. Sena EP, Revet B, Moustacchi E. In vivo homologous recombination intermediates of yeast mtDNA analyzed by electron microscopy. Mol Gen Genet 1986; 202: 421–428.

    Article  PubMed  CAS  Google Scholar 

  85. Snyderwine EG, Bohr VA. Gene-and strand-specific damage and repair in Chinese Hamster Ovary cells treated with 4-nitroquinoline 1-oxide, Cancer Res 1992; 52: 4183–4189.

    PubMed  CAS  Google Scholar 

  86. Tomkinson AE, Bonk RT, Linn S. Mitochondrial endonuclease activities specific for apurinic/apyrimidinic sites in DNA from mouse cells. J Biol Chem 1988; 263: 12532–12537.

    PubMed  CAS  Google Scholar 

  87. Myers KA, Saffhill R, O’Connor PJ. Repair of alkylated purines in the hepatic DNA of mitochondria and nuclei in the rat. Carcinogenesis 1988; 9: 285–292.

    Article  PubMed  CAS  Google Scholar 

  88. Bolden A, Pedrali NG, Weissbach A. DNA polymerase is a gamma-polymerase. J Biol Chem 1977; 252: 3351–3356.

    PubMed  CAS  Google Scholar 

  89. Levin CJ, Zimmerman SB. A DNA ligase from mitochondria of rat liver. Biochem Biophys Res Commun 1976; 69: 514–520.

    Article  PubMed  CAS  Google Scholar 

  90. Ryoji M, Katayama H, Fusamae H et al. Repair of DNA damage in a mitochondrial lysate of Xenopus laevis oocytes. Nucleic Acids Res 1996; 24: 4057–4062.

    Article  PubMed  CAS  Google Scholar 

  91. Linn S. DNA repair in mitochondria: How is it limited? What is its function? In: Esser K, Martin GM, eds. Molecular Aspects of Aging. New York: John Wiley and Sons, 1995.

    Google Scholar 

  92. Foury F, Lahaye A. Cloning and sequencing of the PIF gene involved in repair and recombination of yeast mitochondrial DNA. EMBO J 1987; 6: 1441–1449.

    PubMed  CAS  Google Scholar 

  93. Evans DH, Kolodner R. Effect of DNA structure and nucleotide sequence on Holliday junction resolution by the Saccharomyces cerevisiae endonuclease. J Mol Biol 1988; 201: 69–80.

    Article  PubMed  CAS  Google Scholar 

  94. Ezekiel UR, Zassenhaus HP. Localization of a cruciform cutting endonuclease to yeast mitochondria. Mol Gen Genet 1993; 240: 414–418.

    PubMed  CAS  Google Scholar 

  95. Thyagarajan B, Padua RA, Campbell C. Mammalian mitochondria possess homologous DNA recombination activity. J Biol Chem 1996; 271: 27536–27543.

    Article  PubMed  CAS  Google Scholar 

  96. Bernstein H, Byerly HC, Hopf FA et al. Genetic damage, mutation and the evolution of sex. Science 1985; 2291277–1281.

    Google Scholar 

  97. Campbell A. Types of recombination: common problems and common strategies. Cold Spring Harbor Symp Quant Biol1984; 49: 839–844.

    Google Scholar 

  98. Cox MM. Relating biochemistry to biology. Bioessays 1993; 15: 617–673.

    Article  PubMed  CAS  Google Scholar 

  99. Roca A, Cox M. The RecA protein: structure and function. Crit Rev Biochem Mol Biol 1990; 25: 415–456.

    Article  PubMed  CAS  Google Scholar 

  100. Shinohara A, Ogawa H et al. Cloning of human, mouse, and fission yeast recombination genes homolgous to RAD51 and recA. Nature Genetics 1993, 4: 239–243.

    Article  PubMed  CAS  Google Scholar 

  101. Ogawa T, Shinohara A, Nabetani A et al. RecA-like recombination proteins in eukaryotes: functions and structures of RAD51 genes. Cold Spring Harb Symp Quant Biol 1993; 58: 567–576.

    Article  PubMed  CAS  Google Scholar 

  102. Cerutti H, Johnson AM, Boynton JE et al. Inhibition of chloroplast DNA recombination and repair by dominant negative mutants of Escherichia coli RecA. Mol Cell Biol 1995, 153003–3011.

    Google Scholar 

  103. Schon EA, Rizzuto R et al. A direct repeat is a hotspot for large scale deletion of human mitochondrial DNA. Science 1989, 244: 346–349.

    Article  PubMed  CAS  Google Scholar 

  104. Devereux J, Haeberli P, Smithies O. A comprehensive set of sequence analysis program for the VAX. Nucl Acids Res 1984, 12: 387.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Rasmussen, L.J., Singh, K.K. (1998). Genetic Integrity of the Mitochondrial Genome. In: Singh, K.K. (eds) Mitochondrial DNA Mutations in Aging, Disease and Cancer. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-12509-0_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-12509-0_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-12511-3

  • Online ISBN: 978-3-662-12509-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics