Skip to main content

Abstract

In this survey we present current views on the origin, evolution, maintenance and expression of the separate DNA genome inside mitochondria, that encodes a small subset of genes required for the functions of this organelle. Since the rest of this book is devoted to a description of the involvement of the mitochondrial genetic system (MGS) in human disease, we shall focus principally on human mitochondrial DNA (mtDNA). Notwithstanding, an enormous amount has been learned about mitochondrial function from studies in other organisms. Such model systems illuminate mechanisms that are very likely to operate in similar ways in humans and thereby provide a powerful paradigm to inform future research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Grivell LA. Nucleo-mitochondrial interactions in mitochondrial gene-expression. Grit Rev Biochem Mol Biol 1995; 30: 121–164.

    Article  CAS  Google Scholar 

  2. Gray MW. The endosymbiont hypothesis revisited. Int Rev Cytol 1992; 141: 233–357.

    Article  PubMed  CAS  Google Scholar 

  3. Baldauf SL, Palmer JD, Doolittle WF. The root of the universal tree and the origin of eukaryotes based on elongation factor phylogeny. Proc Natl Acad Sci USA 1996; 93: 7749–7754.

    Article  PubMed  CAS  Google Scholar 

  4. Martin W, Schnarrenberger C. The evolution of the Calvin cycle from prokaryotic to eukaryotic chromosomes: A case study of functional redundancy in ancient pathways through endosymbiosis. Curr Genet 1997; (in press).

    Google Scholar 

  5. Gupta RS. Evolution of the chaperonin families (Hsp6o, Hspio and Tcp-i) proteins and the origin of eukaryotic cells. Mol Microbiol 1995; 15:1-n.

    Google Scholar 

  6. Gray MW. Organelle Genome Megasequencing Program (OGMP). See: http:/ /megasun.bch.umontreal.ca/ogmpproj.html.

    Google Scholar 

  7. Schneider A, Martin J, Agabian N. A nuclear-encoded transfer RNA of Trypanosoma brucei is imported into mitochondria. Mol Cell Biol 1994; 14: 2317–2322.

    Article  PubMed  CAS  Google Scholar 

  8. Miyakawa I, Fumoto S, Kuroiwa T, Sando N. Characterization of DNA binding proteins involved in the assembly of mitochondrial nucleoids in the yeast Saccharomyces cerevisiae. Plant Cell Physiol 1995; 36: 1179–1188.

    PubMed  CAS  Google Scholar 

  9. Echeverria M, Robert D, Carde JP, Litvak S. Isolation from wheat mitochondria of a membrane-associated high molecular-weight complex involved in DNA synthesis. Plant Mol Biol 1991; 16: 301–315.

    Article  PubMed  CAS  Google Scholar 

  10. Clayton DA, Doda JN, Friedberg EC. The absence of a pyrimidine dimer repair mechanism in mammalian mitochondria Proc Natl Acad Sci USA 1974; 71: 2777–2781.

    CAS  Google Scholar 

  11. Thyagarajan B, Padua RA, Campbell C. Mammalian mitochondria possess homologous DNA recombination activity. J Biol Chem 1996; 271: 27536–27543.

    Article  PubMed  CAS  Google Scholar 

  12. Shen CC, Wertelecki W, Driggers WJ, Ledoux SP, Wilson GL. Repair of mitochondria DNA damage induced by bleomycin in human cells. Mut Res 1995; 337: 19–23.

    Article  CAS  Google Scholar 

  13. Taffe BG, Larminat F, Laval J, Croteau DL, Anson RM, Bohr VA. Gene-specific nuclear and mitochondrial repair of formamido-pyrimidine DNA glycosylase-sensitive sites in Chinese hamster ovary cells. Mut Res 1996; 364: 183–192.

    Article  CAS  Google Scholar 

  14. Yakes FM, Van Houten B. Mitochondrial DNA damage is more extensive and persists longer than nuclear DNA damage in human cells following oxidative stress. Proc Natl Acad Sci USA 1997; 94: 514–519.

    Article  PubMed  CAS  Google Scholar 

  15. Anderson S, Bankier AT, Barrell BG, De Bruijn MHL, Coulson AR, Drouin J, Eperon IC, Nierlich DP, Roe BA, Sanger F, Schreier PH, Smith AJH, Staden R, Young IG. Sequence and organization of the human mitochondrial genome. Nature 1981; 290: 457–465.

    Article  PubMed  CAS  Google Scholar 

  16. Chomyn A, Attardi G. Mitochondrial gene products. Curr Top Bioenerget 1987; 15: 295–329.

    CAS  Google Scholar 

  17. Shadel GS, Clayton DA. Mitochondrial DNA maintenance in vertebrates. Ann Rev Biochem 1997; 66409–435.

    Google Scholar 

  18. Ojala D, Montoya J, Attardi G. Transfer RNA punctuation model of RNA processing in human mitochondria. Nature 1981; 290: 470–474.

    Article  PubMed  CAS  Google Scholar 

  19. Marchington DR, Poulton J, Sellar A, Holt IJ. Do sequence variants in the major noncoding region of the mitochondrial genome influence mitochondrial mutations associated with disease. Hum Mol Genet 1996; 5: 473–479.

    Article  PubMed  CAS  Google Scholar 

  20. Marchington DR, Hartshorne GM, Barlow D, Poulton J. Homopolymeric tract heteroplasmy in mtDNA from tissues and single oocytes: Support for a genetic bottleneck. Am J Hum Genet 1997; 60: 408–416.

    CAS  Google Scholar 

  21. Bendall KE, Macaulay VA, Baker JR, Sykes BC. Heteroplasmic point mutations in the human mtDNA control region. Am J Hum Genet 1996; 59: 1276–1287.

    PubMed  CAS  Google Scholar 

  22. King MP, Attardi G. Human cells lacking mtDNA-repopulation with exogenous mitochondria by complementation. Science 1989; 246: 500–503.

    Article  PubMed  CAS  Google Scholar 

  23. Desjardins P, Demuys JM, Morais R. An established avian fibroblast cell-line without mitochondrial DNA. Som Cell Mol Genet 1986; 12: 133–139.

    Article  CAS  Google Scholar 

  24. Kuroiwa T, Ohta T, Kuroiwa H, Shigeyuki K. Molecular and cellular mechanisms of mitochondrial nuclear division and mitochondriokinesis. Microscopy Res Technique 1994; 27: 220–232.

    Article  CAS  Google Scholar 

  25. Bereiter-Hahn J, Voth M. Dynamics of mitochondria in living cells-shape changes, dislocations, fusion, and fission of mitochondria. Microscopy Res Technique 1994; 27: 198–219.

    Article  CAS  Google Scholar 

  26. Miyakawa I, Higo K, Osaki F, Sando N. Double staining of mitochondria and mitochondrial nucleoids in the living yeast during the life cycle. J Gen Appl Microbiol 1994; 40: 1–14.

    Article  CAS  Google Scholar 

  27. Nunnari J, Marshall WF, Straight A, Murray A, Sedat JW, Walter P. Mitochondrial transmission during mating in Saccharomyces cerevisiae is determined by mitochondrial fusion and fission and the intramitochondrial segregation of mitochondrial DNA. Mol Biol Cell 1997; 8: 1233–1242.

    PubMed  CAS  Google Scholar 

  28. Berger KH, Yaffe MP. Mitochondrial distribution and inheritance. Experientia 1996; 52: 1111–1116.

    Article  PubMed  CAS  Google Scholar 

  29. Hayashi JI, Takemitsu M, Goto Y, Nonaka I. Human mitochondria and mitochondrial genome function as a single dynamic cellular unit. J Cell Biol 1994; 12543–50.

    Google Scholar 

  30. Takai D, Inoue K, Goto Y, Nonaka I, Hayashi JI. The interorganellar interaction between distinct human mitochondria with deletion mutant mtDNA from a patient with mitochondrial disease and with HeLa mtDNA. J Biol Chem 1997; 272: 6028–6033.

    Article  PubMed  CAS  Google Scholar 

  31. Yoneda M, Miyatake T, Attardi G. Complementation of mutant and wild-type human mitochondrial DNAs coexisting since the mutation event and lack of complementation of DNAs introduced separately into a cell within distinct organelles. Mol Cell Biol 1994; 14: 2699–2712.

    Article  PubMed  CAS  Google Scholar 

  32. Davis AF, Clayton DA. In situ localization of mitochondrial DNA replication in intact mammalian cells. J Cell Biol 1996; 135: 883–893.

    Article  PubMed  CAS  Google Scholar 

  33. Madsen CS, Ghivizzani SC, Hauswirth WW. Protein binding to a single termination-associated sequence in the mitochondrial DNA D-loop region. Mol Cell Biol 1993; 13: 2162–2171.

    PubMed  CAS  Google Scholar 

  34. Suzuki H, Suzuki S, Sakurai T, Kumar S, Ozawa T. A bovine mtDNA-binding protein to a conserved sequence adjacent to the termination associated sequence in the vertebrate mitochondrial displacement loop region. Biochem Mol Biol Int 1996; 38: 275–283.

    PubMed  CAS  Google Scholar 

  35. Qureshi SA, Jacobs HT. Two distinct, sequence-specific DNA-binding proteins interact independently with the major replication pause region of sea urchin mtDNA. Nucl Acids Res 1993; 21: 2801–2808.

    Article  PubMed  CAS  Google Scholar 

  36. Qureshi SA, Jacobs HT. Characterization of a high-affinity binding site for a DNA-binding protein from sea urchin embryo mitochondria. Nucl Acids Res 1993; 21: 811–816.

    Article  PubMed  CAS  Google Scholar 

  37. Mayhook AG, Rinaldi A-M, Jacobs HT. Replication origins and pause sites in sea urchin mitochondrial DNA. Proc Roy Soc Lond B 1992; 248: 85–94.

    Article  CAS  Google Scholar 

  38. Chang DD, Clayton DA. A novel endoribonuclease cleaves at a priming site of mouse mitochondrial DNA replication. EMBO J 1987; 6: 409–417.

    PubMed  CAS  Google Scholar 

  39. Xu BJ, Clayton DA. RNA-DNA hybrid formation at the human mitochondrial heavy-strand origin ceases at replication start sites-an implication for RNA-DNA hybrids serving as primers. EMBO J 1996; 15: 3135–3143.

    PubMed  CAS  Google Scholar 

  40. Li K, Smagula CS, Parsons WJ, Richardson JA, Gonzalez M, Hagler HK, Williams RS. Sub cellular partitioning of MRP RNA assessed by ultrastructural and biochemical analysis. J Cell Biol 1994; 124: 871–882.

    Article  PubMed  CAS  Google Scholar 

  41. Cote J, Ruiz-Carrillo A. Primers for mitochondrial DNA replication generated by endonuclease G. Science 1993; 261: 765–769.

    Article  PubMed  CAS  Google Scholar 

  42. Wong TW, Clayton DA. Isolation and characterization of a DNA primase from human mitochondria. J Biol Chem 1985; 260: 1530–1535.

    Google Scholar 

  43. Wang J, Kearney K, Derby M, Wernette CM. On the relationship of the ATP-independent, mitochondrial associated DNA topoisomerase of Saccharomyces cerevisiae to the nuclear topoisomerase I. Biochem Biophys Res Commun 1995; 214723–729.

    Google Scholar 

  44. Komori K, Kuroe K, Yanagisawa K, Tanaka Y. Cloning and characterization of the gene encoding a mitochondrially localized DNA topoisomerase II in Dictyostelium discoideum-Western blot analysis. Biochim Biophys Acta 1997; 1352: 63–72.

    Article  PubMed  CAS  Google Scholar 

  45. Lecrenier N, Van Der Bruggen P, Foury F. Mitochondrial DNA polymerases from yeast to man: A new family of polymerases. Gene 1997; 185: 147–152.

    Google Scholar 

  46. Foury F, Van Der Straeten S. Yeast mitochondrial DNA mutators with deficient proofreading exonucleolytic activity. EMBO J 1992; 11: 2717–2726.

    PubMed  CAS  Google Scholar 

  47. Wang YX, Farr CL, Kaguni LS. Accessory subunit of mitochondrial DNA polymerase from Drosophila embryos-Cloning, molecular analysis, and association in the native enzyme. J Biol Chem 1997; 272: 13640–13646.

    Article  PubMed  CAS  Google Scholar 

  48. Torn AF, Englund PT. A DNA polymerase beta in the mitochondrion of the trypanosomatid Crithidia fasciculata. J Biol Chem 1995; 270: 3495–3497.

    Article  Google Scholar 

  49. Naviaux RK, Barshop BA, Nyhan WL, Haas RH. Reverse transcription and the bipotential replication of mitochondrial DNA. Ann Neurol 1996; 40: 29.

    Google Scholar 

  50. Van Dyck E, Foury F, Stillman B, Brill SJ. A single-stranded DNA binding-protein required for mitochondrial DNA replication in Saccharomyces cerevisiae is homologous to Escherichia coli SSB. EMBO J 1992; 11: 3421–3430.

    PubMed  Google Scholar 

  51. Lahaye A, Stahl H, Thines-Sempoux D, Foury F. PIF-1-a DNA helicase in yeast mitochondria. EMBO J 1991; 10: 997–1007.

    PubMed  CAS  Google Scholar 

  52. Jacobs MA, Payne SR, Bendich AJ. Moving pictures and pulsed-field gel electrophoresis show only linear mitochondrial DNA molecules from yeasts with linear-mapping and circular-mapping mitochondrial genomes. Curr Genet 1996; 30: 3–11.

    Article  PubMed  CAS  Google Scholar 

  53. Maleszka R, Skelly PJ, Clark-Walker GD. Rolling circle replication of DNA in yeast mitochondria. EMBO J 1991; 10: 3923–3929.

    PubMed  CAS  Google Scholar 

  54. Leighton J, Schatz G. An ABC transporter in the mitochondrial inner membrane is required for normal growth of yeast. EMBO J 1995; 1995; 14: 188–195.

    Google Scholar 

  55. Kispal G, Steiner H, Court DA, Rolinski B, Lill R. Mitochondrial and cytosolic branched-chain amino-acid transaminases from yeast, homologs of the Myc oncogene-regulated Eca39 protein. J Biol Chem 1996; 2712445–24464.

    Google Scholar 

  56. Wilson RB, Roof DM. Respiratory deficiency due to loss of mitochondrial DNA in yeast lacking the frataxin homologue. Nat Genet 1997; 16: 352–357.

    Article  PubMed  CAS  Google Scholar 

  57. Babcock M, de Silva D, Oaks R, Davis-Kaplan S, Jiralerspong S, Montermini L, Pandolfo M, Kaplan J. Regulation of mitochondrial iron accumulation by Yfhip, a putative homolog of frataxin. Science 1997; 276: 1709–1712.

    Article  PubMed  CAS  Google Scholar 

  58. Zelenaya-Troitskaya O, Perlman PS, Butow RA. An enzyme in yeast mitochondria that catalyzes a step in branched-chain amino-acid biosynthesis also functions in mitochondrial DNA stability. EMBO J 1995; 14: 3268–3276.

    PubMed  CAS  Google Scholar 

  59. Zeviani M, Petruzzella V, Carrozzo R. Disorders of nuclear-mitochondrial intergenomic signalling. J Bioenerget Biomembranes 1997; 29: 121–130.

    Article  CAS  Google Scholar 

  60. Nilsen H, Otterlei M, Haug T, Solum K, Nagelhus TA, Skorpen F, Krokan HE. Nuclear and mitochondrial uracil-DNA glycosylases are generated by alternative splicing and transcription from different positions in the UNG gene. Nucl Acids Res 1997; 25: 750–755.

    Article  PubMed  CAS  Google Scholar 

  61. Pontkingdon GA, Okada NA, Macfarlane JL, Beagley CT, Wolstenholme DR, Cavalier-Smith T, Clark-Walker GD. A coral mitochondrial MutS gene. Nature 1995; 375: 109–11.

    Article  CAS  Google Scholar 

  62. Chi NW, Kolodner RD. Purification and characterization of MSH1, a yeast mitochondrial protein that binds to DNA mismatches. J Biol Chem 1994; 269: 29984–29992.

    PubMed  CAS  Google Scholar 

  63. Zassenhaus HP, Denniger G. Analysis of the role of the NUCi endo/exonuclease in yeast mitochondrial DNA recombination. Currr Genet 1994; 25: 142–149.

    Article  CAS  Google Scholar 

  64. Ling F, Makishima F, Morishima N, Shibata T. A nuclear mutation defective in mitochondrial recombination in yeast. EMBO J 1995; 14: 4090–4101.

    PubMed  CAS  Google Scholar 

  65. Holt IJ, Dunbar DR, Jacobs HT. Behaviour of a population of partially duplicated mitochondrial DNA molecules in cell culture: segregation, maintenance and recombination dependent upon nuclear background. Hum Mol Genet 1997; 6: 1251–1260.

    Article  PubMed  CAS  Google Scholar 

  66. Ryoji M, Katayama H, Fusamae H, Matsuda A, Sakai F, Utano H. Repair of DNA damage in a mitochondrial lysate of Xenopus laevis oocytes. Nucl Acids Res 1996; 24: 4057–4062.

    Article  PubMed  CAS  Google Scholar 

  67. Petri B, Von Haeseler A, Paabo S. Extreme sequence heteroplasmy in bat mitochondrial DNA. Biol Chem 1996; 377: 661–667.

    PubMed  CAS  Google Scholar 

  68. Cesaroni D, Venanzetti F, Allegrucci G, Sbordoni V. Mitochondrial DNA length variation and heteroplasmy in natural populations of the European sea bass, Dicentrarchus labrax. Mol Biol Evol 1997; 14: 560–568.

    Article  Google Scholar 

  69. Jazin EE, Cavelier L, Eriksson I, Oreland L, Gyllensten U. Human brain contains high levels of heteroplasmy in the noncoding regions of mitochondrial DNA. Proc Natl Acad Sci USA 1996; 93: 12382–12387.

    Article  PubMed  CAS  Google Scholar 

  70. Bentlage HACM, Attardi G. Relationship of genotype to phenotype in fibroblast-derived transmitochondrial cell-lines carrying the 3243-mutation associated with the MELAS encephalomyopathy-shift towards mutant genotype and role of mtDNA copy number. Hum Mol Genet 1996; 5: 197–205.

    Article  PubMed  CAS  Google Scholar 

  71. Dunbar DR, Moonie PA, Young H, Jacobs HT, Holt IJ. Different cellular backgrounds confer a marked advantage to either mutant or wild-type mitochondrial genomes. Proc Natl Acad Sci USA 1995; 92: 6562–6566.

    Article  PubMed  CAS  Google Scholar 

  72. Attardi G, Yoneda M, Chomyn A. Complementation and segregation behavior of disease-causing mitochondrial DNA mutations in cellular model systems. Biochim Biophys Acta 1995; 1271: 214: 248.

    Google Scholar 

  73. Spelbrink JN, Zwart R, Van Galen MJM, Van den Bogert C. Preferential amplification and phenotypic selection in a population of deleted and wild-type mitochondrial DNA in cultured cells. Curr Genet 1997; (in press).

    Google Scholar 

  74. Ezekiel UR, Zassenhaus HP. Localization of a cruciform cutting endonuclease to yeast mitochondria. Mol Gen Genet 1993; 240: 414–418.

    PubMed  CAS  Google Scholar 

  75. Lockshon D, Zweifel SG, Freeman-Cook LL, Lorimer HE, Brewer BJ, Fangman WL. A role for recombination junctions in the segregation of mitochondrial DNA in yeast. Cell 1995; 81: 947–955.

    Article  PubMed  CAS  Google Scholar 

  76. Lorimer HE, Brewer BJ, Fangman WL. A test of the transcription model for biased inheritance of yeast mitochondrial DNA. Mol Cell Biol 1995; 15: 4803–4809.

    PubMed  CAS  Google Scholar 

  77. Yaffe MP, Harata D, Verde F, Eddison M, Toda T, Nurse P. Microtubules mediate mitochondrial distribution in fission yeast. Proc Natl Acad Sci USA 1996; 9311664–11668.

    Google Scholar 

  78. Berezovskaya OL, Rusakov DA, Skibo GG, Bulavka AV, Leterrier JF. Interaction between neurofilaments and mitochondria in cultured cells of the rat hippocampus. Neurophysiol 1995; 27: 1–7.

    Google Scholar 

  79. Simon VR, Swayne TC, Pon LA. Actin-dependent mitochondrial motility in mitotic yeast and cell-free systems-identification of a motor-activity on the mitochondrial surface. J Cell Biol 1995; 130: 345–354.

    Article  PubMed  CAS  Google Scholar 

  80. Simon VR, Karmon SL, Pon LA. Mitochondrial inheritance: Cell cycle and actin cable dependence of polarized mitochondrial movements in Saccharomyces cerevisiae. Cell Motil Cytoskel 1997; 37199–210.

    Google Scholar 

  81. Pereira AJ, Dalby B, Stewart RJ, Doxsey SJ, Goldstein LSB. Mitochondrial association of a plus end-directed microtubule motor expressed during mitosis in Drosophila. J Cell Biol 1997; 136: 1081–1090.

    Article  PubMed  CAS  Google Scholar 

  82. Shapiro TA, Englund PT. Structure and replication of kinetoplast DNA. Ann Rev Microbiol 1995; 49117–143.

    Google Scholar 

  83. Jenuth JP, Peterson AC, Fu K, Shoubridge EA. Random genetic drift in the female germline explains the rapid segregation of mammalian mitochondria) DNA. Nat Genet 1996; 14: 146–151.

    Article  PubMed  CAS  Google Scholar 

  84. Jenuth JP, Peterson AC, Shoubridge EA. Tissue-specific selection for different mtDNA genotypes in heteroplasmic mice. Nat Genet 1997; 16: 93–95.

    Article  PubMed  CAS  Google Scholar 

  85. Van den Bogert C, De Vries H, Holtrop M, Muus P, Dekker HL, Van Galen MJM, Bolhuis PA, Taanman J. Regulation of the expression of mitochondrial proteins: Relationship between mtDNA copy number and cytochrome c oxidase activity in human cells and tissues. Biochim Biophys Acta 1993; 1144: 177–183.

    Article  PubMed  CAS  Google Scholar 

  86. Bogenhagen D, Clayton DA. Mouse cell mitochondrial DNA molecules are selected randomly for replication throughout the cell cycle. Cell 1977; 11: 719–722.

    Article  PubMed  CAS  Google Scholar 

  87. Wiesner RJ, Ruegg JC, Morano I. Counting target molecules by exponential polymerase chain-reaction-copy number of mitochondrial DNA in rat tissues. Biochem Biophys Res Commun 1992; 183: 553–559.

    Article  PubMed  CAS  Google Scholar 

  88. Van den Bogert C, De Vries H, Holtrop M, Muus P, Dekker HL, Van Galen MJM, Bolhuis PA, Taanman JW. Regulation of the expression of mitochondrial proteins-relationship between mtDNA copy number and cytochrome c oxidase activity in human-cells and tissues. Biochim Biophys Acta 1993; 1144177–183.

    Google Scholar 

  89. Marin-Garcia J, Ananthakrishnan R, Agrawal N, Goldenthal MJ. Mitochondrial gene-expression during bovine cardiac growth and development. J Mol Cell Cardiol 1994; 26: 1029–1036.

    Google Scholar 

  90. Hixson JE, Clayton DA. Initiation of transcription from each of the 2 human mitochondrial promoters requires unique nucleotides at the transcriptional start sites. Proc Natl Acad Sci USA 1985; 82: 2660–2664.

    Article  PubMed  CAS  Google Scholar 

  91. Montoya J, Gaines GL, Attardi G. The pattern of transcription of the human mitochondrial ribosomal RNA genes reveals 2 overlapping transcription units. Cell 1983; 34: 151–159.

    Article  PubMed  CAS  Google Scholar 

  92. Montoya J, Christianson T, Levens D, Rabinowitz M, Attardi G. Identification of initiation sites for heavy-strand and light-strand transcription in human mitochondrial-DNA. Proc Natl Acad Sci USA 1982; 79: 7195–7199.

    Article  PubMed  CAS  Google Scholar 

  93. Kruse B, Narasimhan N, Attardi G. Termination of transcription in human mitochondria-identification and purification of a DNA-binding protein factor that promotes termination. Cell 1989; 58: 391–397.

    Article  PubMed  CAS  Google Scholar 

  94. Valverde JR, Marco R, Garesse R. A conserved heptamer motif for ribosomal-RNA transcription termination in animal mitochondria. Proc Natl Acad Sci USA 1994; 91: 5368–5371.

    Article  PubMed  CAS  Google Scholar 

  95. Fisher RP, Clayton DA. A transcription factor required for promoter recognition by human mitochondrial RNA polymerase-accurate initiation at the heavy-strand and light-strand promoters dissected and reconstituted in vitro. J Biol Chem 1985; 260: 1330–1338.

    Google Scholar 

  96. Parisi MA, Clayton DA. Similarity of human mitochondrial transcription factor I to high mobility group proteins. Science 1991; 252: 965–969.

    Article  PubMed  CAS  Google Scholar 

  97. Masters BS, Stohl LL, Clayton DA. Yeast mitochondrial RNA polymerase is homologous to those encoded by bacteriophage T3 and bacteriophage T7. Cell 1987; 51: 89–99.

    Article  PubMed  CAS  Google Scholar 

  98. Tiranti V, Savoia A, Forti F, D’Apolito MF, Centra M, Racchi M, Zeviani M. Identification of the gene encoding the human mitochondrial RNA polymerase (hmtRPOL) by cyberscreening of the expressed sequence tags database. Hum Mol Genet 1997; 6: 615–625.

    Article  PubMed  CAS  Google Scholar 

  99. Cermakian N, Ikeda TM, Cedergren R, Gray MW. Sequences homologous to yeast mitochondrial and bacteriophage T3 and bacteriophage T7 RNA polymerases are widespread throughout the eukaryotic lineage. Nucl Acids Res 1996; 24: 648–654.

    Article  PubMed  CAS  Google Scholar 

  100. Jong SH, Jaehning JA. The yeast mitochondrial RNA polymerase specificity fac- tor, MTF1, is similar to bacterial sigma factors. J Biol Chem 1991; 266: 22671–22677.

    Google Scholar 

  101. Bogenhagen DF. Interaction of mtTFB and mtRNA polymerase at core promoters for transcription of Xenopus laevis mtDNA. J Biol Chem 1996; 271: 12036–12041.

    PubMed  CAS  Google Scholar 

  102. Lang BF, Burger G, O’Kelly CJ, Cedergren R, Golding GB, Lemieux C, Sankoff D, Turmel M, Gray MW. An ancestral mitochondrial DNA resembling a eubacterial genome in miniature. Nature 1997; 387: 493–497.

    Article  PubMed  CAS  Google Scholar 

  103. Dieckmann CL, Staples RR. Regulation of mitochondrial gene expression in Saccharomyces cerevisiae. Int Rev Cytol 1994; 152: 145–181.

    Article  PubMed  CAS  Google Scholar 

  104. Enriquez JA, Fernandez-Silva P, Perez-Martos A, Lopez-Perez MJ, Montoya J. The synthesis of messenger RNA in isolated-mitochondria can be maintained for several hours and is inhibited by high-levels of ATP. Eur J Biochem 1996; 237: 601–610.

    Article  PubMed  CAS  Google Scholar 

  105. Wiesner RJ, Aschenbrenner V, Ruegg JC, Zak R. Co-ordination of nuclear and mitochondrial gene expression during the development of cardiac hypertrophy in rats. Am J Physiol 1994; 267: C229 - C235.

    PubMed  CAS  Google Scholar 

  106. Elliott DJ, Jacobs HT. Mutually exclusive synthetic pathways for sea urchin mitochondrial rRNA and mRNA. Mol Cell Biol 1989; 9: 1069–1082.

    PubMed  CAS  Google Scholar 

  107. Crawford DR, Wang YH, Schools GP, Kochheiser J, Davies KJA. Downregulation of mammalian mitochondrial RNAs during oxidative stress. Free Radical Biol Med 1997; 22: 551–559.

    Article  CAS  Google Scholar 

  108. Pillar TM, Seitz HJ. Thyroid hormone and gene expression in the regulation of mitochondrial respiratory function. Eur J Endocrinol 1997; 136231–239.

    Google Scholar 

  109. Scarpulla RC. Nuclear control of respiratory chain expression in mammalian cells. J Bioenerget Biomembranes 1997; 29x09–119.

    Google Scholar 

  110. Alcivar-Warren A, Trasler JM, Awoniyi CA, Zirkin BR, Hecht NB. Differential expression of ornithine decarboxylase, poly(ADP)ribose polymerase, and mitochondrial messenger RNAs following testosterone administration to hypophysectomized rats. Mol Reprod Dev 1996; 43: z83 - z89.

    Article  Google Scholar 

  111. Suzuki H, Suzuki S, Kumar S, Ozawa T. Human nuclear and mitochondrial Mt element binding proteins to regulatory regions of the nuclear respiratory genes and to the mitochondrial promoter region. Biochem Biophys Res Commun 1995; 213: 204–210.

    Article  PubMed  CAS  Google Scholar 

  112. Sewards R, Wiseman B, Jacobs HT. Apparent functional independence of the mitochondrial and nuclear transcription systems in cultured human cells. Mol Gen Genet 1994; 245: 760–768.

    Article  PubMed  CAS  Google Scholar 

  113. Davis AF, Ropp PA, Clayton DA, Copeland WC. Mitochondrial DNA polymerase gamma is expressed and translated in the absence of mitochondrial DNA maintenance and replication. Nucl Acids Res 1996; 24: 2753–2759.

    Article  PubMed  CAS  Google Scholar 

  114. Wang H, Morais R. Upregulation of nuclear genes in response to inhibition of mitochondrial DNA expression in chicken cells. Biochim Biophys Acta 1997; 1352: 325–334.

    Article  PubMed  CAS  Google Scholar 

  115. Li K, Neufer PD, Williams RS. Nuclear responses to depletion of mitochondrial DNA in human cells. Am J Physiol 1995; 38: C1265 - C127o.

    Google Scholar 

  116. Lambowitz AM, Perlman PS. Involvement of aminoacyl-transfer RNA-synthetases and other proteins in group-I and group-II intron splicing. Trends Biochem Sci 1990; 15: 440–444.

    Article  PubMed  Google Scholar 

  117. Wallis MG, Groudinsky 0, Slonimski PP, Dujardin G. The NAM1 protein (NAMip), which is selectively required for COX1, Cytb and ATP6 transcript processing/ stabilisation, is located in the yeast mitochondrial matrix. Eur J Biochem 1994; 222: 27–32.

    Article  PubMed  CAS  Google Scholar 

  118. Escaighaye F, Grigoriev V, Peranzi G, Lestienne P, Fournier JG. Analysis of human mitochondrial transcripts using electron-microscopic in situ hybridization. J Cell Sci 1991; 100: 851–862.

    Google Scholar 

  119. Manam S, Van Tuyle GC. Separation and characterization of 5’-transfer and 3’-transfer RNA processing nucleases from rat-liver mitochondria. J Biol Chem 1987; 262: 10272–10279.

    PubMed  CAS  Google Scholar 

  120. Rossmanith W, Tullo A, Potuschak T, Karwan R, Sbisa E. Human mitochondrial transfer RNA processing. J Biol Chem 1995; 270: 12885–12891.

    Article  PubMed  CAS  Google Scholar 

  121. Rossmanith W. Processing of human mitochondrial tRNA(Ser(AGY))(GCU): A novel pathway in tRNA biosynthesis. J Mol Biol 1997; 265: 365–371.

    Article  PubMed  CAS  Google Scholar 

  122. Bindoff LA, Howell N, Poulton J, McCullough DA, Morten KJ, Lightowlers RN, Turnbull DM, Weber K. Abnormal RNA processing associated with a novel transfer RNA mutation in mitochondrial DNA-a potential disease mechanism. J Biol Chem 1993; 268: 19559–19564.

    PubMed  CAS  Google Scholar 

  123. Kaufmann P, Koga Y, Shanske S, Hirano M, Di Mauro S, King MP, Schon EA. Mitochondrial DNA and RNA processing in MELAS. Ann Neurol 1996; 40: 172–180.

    Article  PubMed  CAS  Google Scholar 

  124. Reid FM, Rovio A, Holt IJ, Jacobs HT. Molecular phenotype of a human lymphoblastoid cell-line homoplasmic for the np 7445 deafness-associated mitochondrial mutation. Hum Mol Genet 1997; 6: 443–449.

    Article  PubMed  CAS  Google Scholar 

  125. Yokobori S, Paabo S. Polyadenylation creates the discriminator nucleotide of chicken mitochondrial tRNA(Tyr). J Mol Biol 1997; 26595–99.

    Google Scholar 

  126. Benne R. RNA editing in trypanosomes. Eur J Biochem 1994; 221: 9–23.

    Article  PubMed  CAS  Google Scholar 

  127. Sierzputowskagracz H, Sochacka E, Malkiewicz A, Kuo K, Gehrke CW, Agris PF. Chemistry and structure of modified uridines in the anticodon, wobble position of transfer RNA are determined by thiolation. J Am Chem Soc 1987; 109: 7171–7177.

    Article  CAS  Google Scholar 

  128. Borner GV, Morl M, Janke A, Paabo S. RNA editing changes the identity of a mitochondrial transfer RNA in marsupials. EMBO J 1996; 15: 5949–5957.

    Google Scholar 

  129. Mueller SO, Slany RK. Structural-analysis of the interaction of the transfer RNA modifying enzymes TGT and QueA with a substrate transfer RNA. FEBS Lett 1995; 361: 259–264.

    Article  PubMed  CAS  Google Scholar 

  130. Martin NC, Hopper AK. How single genes provide transfer RNA processing enzymes to mitochondria, nuclei and the cytosol. Biochimie 1994; 76: 1161–1167.

    Article  PubMed  CAS  Google Scholar 

  131. Sirum-Connolly K, Peltier JM, Crain PF, McCloskey JA, Mason TL. Implications of a functional large ribosomal RNA with only 3 modified nucleotides. Biochimie 1995; 77: 30–39.

    Article  PubMed  CAS  Google Scholar 

  132. Jacobs HT. Do ribosomes regulate mitochondrial RNA synthesis? BioEssays 1989; 11: 27–34.

    Article  PubMed  CAS  Google Scholar 

  133. Chrzanowska-Lightowlers ZMA, Preiss T, Lightowlers RN. Stability of nuclear-encoded respiratory gene transcripts. J Biol Chem 1994; 269: 27322–27328.

    PubMed  CAS  Google Scholar 

  134. Steele DF, Butler CA, Fox TD. Expression of a recoded nuclear gene inserted into yeast mitochondrial DNA is limited by messenger RNA-specific translational activation. Proc Natl Acad Sci USA 1996; 93: 5253–5257.

    Article  PubMed  CAS  Google Scholar 

  135. Au HC, Scheffler IE. A respiration-deficient Chinese hamster cell line with a defect in mitochondrial protein synthesis: Rapid turnover of some mitochondrial transcripts. Som Cell Mol Genet 1997; 23: 27–35.

    Article  CAS  Google Scholar 

  136. Andersson SGE, Kurland CG. Genomic evolution drives the evolution of the translation system. Biochem Cell Biol 1995; 73: 775–787.

    Article  PubMed  CAS  Google Scholar 

  137. Cahill A, Baio DL, Cunningham CC. Isolation and characterization of rat-liver mitochondrial ribosomes. Anal Biochem 1995; 232: 47–55.

    Article  PubMed  CAS  Google Scholar 

  138. Grohmann L, Kitakawa M, Isono K, Goldschmidt-Reisin S, Graack HR. The yeast nuclear gene MRP-L13 codes for a protein of the large subunit of the mitochondrial ribosome. Curr Genet 1994; 26: 8–14.

    Article  PubMed  CAS  Google Scholar 

  139. Dmochowska A, Konopinska A, Krzymowska M, Szczesniak B, Boguta M. The NAM9–1 suppressor mutation in a nuclear gene encoding ribosomal mitochondrial protein of Saccharomyces cerevisiae. Gene 1995; 162: 81–85.

    Article  PubMed  CAS  Google Scholar 

  140. Royden CS, Pirrotta V, Jan LY. The tko locus site of a behavioural mutation in D. melanogaster codes for a protein homologous to prokaryotic ribosomal protein S12. Cell 1987; 51: 165–173.

    Article  PubMed  CAS  Google Scholar 

  141. Shah ZH, O’Dell K, Miller SCM, An X, Jacobs HT. Metazoan nuclear genes for mitoribosomal protein S12. Gene 1997; (in press).

    Google Scholar 

  142. Engel JE, Wu CF. Altered mechanoreceptor response in Drosophila bang-sensitive mutants. Behav Physiol 1994; 175 267–278.

    CAS  Google Scholar 

  143. Prezant TR, Agapian JV, Bohlman MC, Bu XD, Oztas S, Qiu W-Q, Amos KS, Cortopassi GA, Jaber I, Rotter JI, Shohat M, Fischel-Ghodsian N. Mitochondrial ribosomal RNA mutation associated with both antibiotic-induced and nonsyndromic deafness. Nat Genet 1993; 4 289–294.

    Article  PubMed  CAS  Google Scholar 

  144. Denslow ND, Michaels GS, Montoya J, Attardi G, O’Brien TW. Mechanism of messenger RNA binding to bovine mitochondrial ribosomes. J Biol Chem 1989; 264: 8328–8338.

    Google Scholar 

  145. Farwell MA, Schirawski J, Hager PW, Spremulli LL. Analysis of the interaction between bovine mitochondrial 28S ribosomal subunits and messenger RNA. Biochim Biophys Acta 1996; 1309: 122–130.

    Article  PubMed  Google Scholar 

  146. Ma JH, Spremulli LL. Expression, purification, and mechanistic studies of bovine mitochondrial translational initiation-factor-2. J Biol Chem 1996; 271: 5805–5811.

    Article  PubMed  CAS  Google Scholar 

  147. Ma JH, Spremulli LL. Cloning and sequence-analysis of the human mitochondrial translational initiation-factor-2 cDNA. J Biol Chem 1995; 270: 1859–1865.

    Article  PubMed  CAS  Google Scholar 

  148. Takemoto C, Koike T, Yokogawa T, Benkowski L, Spremulli LL, Ueda TA, Nishikawa K, Watanabe K. The ability of bovine mitochondrial transfer-RNA(met) to decode AUG and AUA codons. Biochimie 1995; 77: 104–108.

    Article  PubMed  CAS  Google Scholar 

  149. Woriax VL, Bullard JM, Ma L, Yokogawa T, Spremulli LL. Mechanistic studies of the translational elongation cycle in mammalian mitochondria. Biochim Biophys Acta 1997; 1352: 91–101.

    Article  PubMed  CAS  Google Scholar 

  150. Woriax VL, Burkhart W, Spremulli LL. Cloning, sequence analysis and expression of mammalian mitochondrial protein synthesis elongation factor Tu. Biochim Biophys Acta 1995; 1264: 347–356.

    Article  PubMed  Google Scholar 

  151. Wells J, Henkler F, Leversha M, Koshy RA. Mitochondrial elongation factor-like protein is over expressed in tumors and differentially expressed in normal tissues. FEBS Lett 1995; 358: 119–125.

    Article  PubMed  CAS  Google Scholar 

  152. Xin H, Woriax V, Burkhart W, Spremulli LL. Cloning and expression of mitochondrial translational elongation factor Ts from bovine and human liver. J Biol Chem 1995; 270: 17243–17249.

    Article  PubMed  CAS  Google Scholar 

  153. Fox TD, Costanzo MC, Strick CA, Marykwas DL, Seaver EC, Rosenthal JK. Translational regulation of mitochondrial gene expression by nuclear genes of Saccharomyces cerevisiae. Phil Trans Roy Soc Lond B 1988; 319: 97–105.

    Article  CAS  Google Scholar 

  154. Brown NG, Costanzo MC, Fox TD. Interactions among 3 proteins that specifically activate translation of the mitochondrial COX3 messenger RNA in Saccharomyces cerevisiae. Mol Cell Biol 1994; 141045–1053.

    Google Scholar 

  155. McMullin TW, Fox TD. COX3 messenger RNA-specific translational activator proteins are associated with the inner mitochondrial-membrane in Saccharomyces cerevisiae. J Biol Chem 1993; 268: 11737–11741.

    PubMed  CAS  Google Scholar 

  156. Costanzo MC, Fox TD. A point mutation in the 5’-untranslated leader that affects translational activation of the mitochondrial COX3 messenger RNA. Curr Genet 1995; 28: 6o - 66.

    Google Scholar 

  157. Wiesenberger G, Costanzo MC, Fox TD. Analysis of the Saccharomyces cerevisiae mitochondrial COX3 messenger RNA 5’ untranslated leader-translational activation and messenger RNA processing. Mol Cell Biol 1995; 15: 3291–3300.

    PubMed  CAS  Google Scholar 

  158. Kwast KE, Hand SC. Acute depression of mitochondrial protein-synthesis during anoxia-contributions of oxygen sensing, matrix acidification, and redox state. J Biol Chem 1996; 271: 7313–7319.

    Article  PubMed  CAS  Google Scholar 

  159. Ostronoff LK, Izquierdo JM, Enriquez JA, Montoya J, Cuezva JM. Transient activation of mitochondrial translation regulates the expression of the mitochondrial genome during mammalian mitochondrial differentiation. Biochem J 1996; 316: 183–191.

    PubMed  CAS  Google Scholar 

  160. Joyal JL, Hagen T, Aprille JR. Intramitochondrial protein-synthesis is regulated by matrix adenine-nucleotide content and requires calcium. Arch Biochem Biophys 1995; 319: 322–330.

    Article  PubMed  CAS  Google Scholar 

  161. Takai D, Inoue K, Shisa H, Kagawa Y, Hayashi JI. Age-associated changes of mitochondrial translation and respiratory function in mouse brain. Biochem Biophys Res Commun 1995; 217: 668–674.

    Google Scholar 

  162. Blackschaefer CL, McCourt JD, Poyton RO, McKee EE. Mitochondrial gene expression in Saccharomyces cerevisiae-proteolysis of nascent chains in isolated yeast mitochondria optimized for protein synthesis. Biochem J 1991; 274: 199–205.

    CAS  Google Scholar 

  163. Taanman JW, Burton MD, Marusich MF, Kennaway NG, Capaldi RA. Subunit-specific monoclonal antibodies show different steady-state levels of various cytochrome c oxidase subunits in chronic progressive external ophthalmoplegia. Biochim Biophys Acta 1996; 1315: 199–207.

    Article  PubMed  Google Scholar 

  164. Spelbrink JN, Van Oost BA, Van den Bogert C. The relationship between mitochondrial genotype and mitochondrial phenotype in lymphoblasts with a heteroplasmic mtDNA deletion. Hum Mol Genet 1994; 3: 1989–1997.

    Article  PubMed  CAS  Google Scholar 

  165. Neupert W. Protein import into mitochondria. Ann Rev Biochem 1997; 66: 863–917.

    Article  PubMed  CAS  Google Scholar 

  166. Avni D, Shama S, Loreni F, Meyuhas O. Vertebrate messenger RNAs with a 5’-terminal pyrimidine tract are candidates for translational repression in quiescent cells-characterization of the translational cis-regulatory element. Mol Cell Biol 1994; 14: 3822–3833.

    PubMed  CAS  Google Scholar 

  167. Fischer-Lindahl K, Hermel E, Loveland BE, Wang CR. Maternally transmitted antigen of mice-a model transplantation antigen. Ann Rev Immunol 1991; 9:351-372.

    Google Scholar 

  168. Shawar SM, Rich RR, Becker EL. Peptides from the amino-terminus of mouse mitochondrially encoded NADH dehydrogenase subunit 1 are potent chemoattractants. Biochem Biophys Res Commun 1995; 211: 812–818.

    Article  PubMed  CAS  Google Scholar 

  169. Torello AT, Overholtzer MH, Cameron VL, Bonnefoy N, Fox TD. Deletion of the leader peptide of the mitochondrially encoded precursor of Saccharomyces cerevisiae cytochrome c oxidase subunit II. Genetics 1997; 145: 903–910.

    PubMed  CAS  Google Scholar 

  170. Nijtmans LGJ, Spelbrink JN, Van Galen MJM, Zwaan M, Klement P, Van den Bogert C. Expression and fate of the nuclearly encoded subunits of cytochrome c oxidase in cultured human cells depleted of mitochondrial gene products. Biochim Biophys Acta 1995; 1265: 117–126.

    Article  PubMed  Google Scholar 

  171. Nijtmans LGJ, Klement P, Houstek J, Van den Bogert C. Assembly of mitochondrial ATP synthase in cultured human cells-implications for mitochondrial diseases. Biochim Biophys Acta 1995; 1272: 190–198.

    Article  PubMed  Google Scholar 

  172. Houstek J, Klement P, Hermanska J, Houstkova H, Hansikova H, Van Den Bogert C, Zeman J. Altered properties of mitochondrial ATP synthase in patients with a T-G mutation in the ATPase 6 (subunit a) gene at position-8993 of DNA. Biochim Biophys Acta 1995; 1271: 349–357.

    Article  PubMed  Google Scholar 

  173. Hofhaus G, Attardi G. Efficient selection and characterization of mutants of a human cell-line which are defective in mitochondrial DNA-encoded subunits of respiratory NADH dehydrogenase. Mol Cell Biol 1995; 15: 964–974.

    PubMed  CAS  Google Scholar 

  174. Cao J, Hosier J, Shapleigh J, Revzin A, Ferguson-Miller S. Cytochrome aa3 of Rhodobacter sphaeroides as a model for mitochondrial cytochrome c oxidasethe COXII/COXIII operon codes for structural and assembly proteins homologous to those in yeast. J Biol Chem 1992; 267: 24273–2427.

    PubMed  CAS  Google Scholar 

  175. Herrmann JM, Stuart RA, Craig EA, Neupert W. Mitochondrial heat-shock protein 70, a molecular chaperone for proteins encoded by mitochondrial DNA. J Cell Biol 1994; 127893–902.

    Google Scholar 

  176. Rep M, Grivell LA. The role of protein-degradation in mitochondrial-function and biogenesis. Curr Genet 1996; 30: 367–380.

    Article  PubMed  CAS  Google Scholar 

  177. Waldherr M, Ragnini A, Jank B, Teply R, Wiesenberger G, Schweyen RJ. A multitude of suppressors of group-II intron splicing defects in yeast. Curr Genet 1993; 24: 301–306.

    Article  PubMed  CAS  Google Scholar 

  178. Marty L, Taviaux S, Fort P. Expression and human chromosomal localization to 17Q25 of the growth-regulated gene encoding the mitochondrial ribosomal protein MRPL12. Genomics 1997; 41, 453–457.

    Article  PubMed  CAS  Google Scholar 

  179. Dang VD, Valens M, Bolotin-Fukuhara M, Daignan-Fornier B. A genetic screen to isolate genes regulated by the yeast CCAAT-box binding-protein HAP2p. Yeast 1994; 10: 1273–1283.

    Article  PubMed  CAS  Google Scholar 

  180. Chelstowska A, Butow RA. RTG genes is yeast that function in communication between mitochondria and the nucleus are also required for expression of genes encoding peroxisomal proteins. J Biol Chem 1995; 270: 18141–18146.

    Article  PubMed  CAS  Google Scholar 

  181. Freyssenet D, Berthon P, Denis C. Mitochondrial biogenesis in skeletal muscle in response to endurance exercises. Arch Physiol Biochem 1996; 104: 129–141.

    Article  PubMed  CAS  Google Scholar 

  182. Schillace R, Preiss T, Lightowlers RN, Capaldi RA. Developmental regulation of tissue-specific isoforms of subunit VIa of beef cytochrome c oxidase. Biochim Biophys Acta 1994; 1188: 391–397.

    Article  PubMed  Google Scholar 

  183. Ammendola R, Fiore F, Esposito F, Caserta G, Mesuraca M, Russo T, Cimino F. Differentially expressed messenger RNAs as a consequence of oxidative stress in intact cells. FEBS Lett 1995; 371: 209–213.

    Google Scholar 

  184. Gopalakrishnan L, Scarpulla RC. Differential regulation of respiratory-chain subunits by a CREB-dependent signal-transduction pathway-role of cyclic-AMP in cytochrome c and COXIV gene expression. J Biol Chem 1994; 269: 105–113.

    PubMed  CAS  Google Scholar 

  185. Oka Y. NIDDM-genetic-marker-glucose-transporter, glucokinase, and mitochondria gene. Diabetes Res Clin Practice 1994; 24:5117-Sin.

    Google Scholar 

  186. Newgard CB, Mcgarry JD. Metabolic coupling factors in pancreatic beta-cell signal-transduction. Ann Rev Biochem 1995; 64689–719.

    Google Scholar 

  187. Matschinsky FM. A lesson in metabolic regulation inspired by the glucokinase glucose sensor paradigm. Diabetes 1996; 45: 223–241.

    Article  PubMed  CAS  Google Scholar 

  188. Maechler P, Kennedy ED, Pozzan T, Wollheim CB. Mitochondrial activation directly triggers the exocytosis of insulin in permeabilized pancreatic beta-cells. EMBO J 1997; 16: 3833–3841.

    Article  PubMed  CAS  Google Scholar 

  189. Gerbitz KD, Gempel K, Brdiczka D. Mitochondria and diabetes-genetic, biochemical, and clinical implications of the cellular-energy circuit. Diabetes 1996; 45: 113–126.

    Article  PubMed  CAS  Google Scholar 

  190. Kroemer G, Petit P, Zamzami N, Vayssiere Jl, Mignotte B. The biochemistry of programmed cell death. FASEB J 1995; 91277–1287.

    Google Scholar 

  191. Schulzeosthoff K, Krammer Ph, Droge W. Divergent signaling via Apo-1 Fas and the TNF receptor, 2 homologous molecules involved in physiological cell death. EMBO J 1994; 13: 4587–4596.

    CAS  Google Scholar 

  192. Fiers W, Beyaert R, Boone E, Cornelis S, De Clercq W, De Coster E, De Necker G, De Puydt B, De Valck D, De Wilde G, Goossens V, Grooten J, Haegeman G, Heyninck K, Penning L, Plaisance S, Van Compernolle K, Van Criekinge W, Van den Abeele P, Van den Berghe W, Van de Craen M, Van de Voorde V, Vercammen D. TNF-induced intracellular signaling leading to gene induction or to cytotoxicity by necrosis or by apoptosis. J Inflammat 1996; 47: 67–75.

    CAS  Google Scholar 

  193. Higuchi M, Aggarwal BB, Yeh ETH. Activation of CPP32-like protease in tumor necrosis factor-induced apoptosis is dependent on mitochondrial function. J Clin Invest 1997; 991751–1758.

    Google Scholar 

  194. Martins LM, Earnshaw WC. Apoptosis: Alive and kicking in 1997. Trends Cell Biol 1997; 7: 111–114.

    Article  CAS  Google Scholar 

  195. Susin SA, Zamzami N, Castedo M, Hirsch T, Marchetti P, Macho A, Daugas E, Geuskens M, Kroemer G. Bc1–2 inhibits the mitochondrial release of an apoptogenic protease. J Exp Med 1996; 184x331–1341.

    Google Scholar 

  196. Eguchi Y, Shimizu S, Tsujimoto Y. Intracellular ATP levels determine cell death fate by apoptosis or necrosis. Cancer Res 1997; 57: 1835–1840.

    Google Scholar 

  197. Zha HB, Fisk HA, Yaffe MP, Mahajan N, Herman B, Reed JC. Structure-function comparisons of the proapoptotic protein Bax in yeast and mammalian cells. Mol Cell Biol 1996; 16:6494-6508.

    Google Scholar 

  198. Greenhalf W, Stephan C, Chaudhuri B. Role of mitochondria and C-terminal membrane anchor of Bcl-2 in Bax induced growth arrest and mortality in Saccharomyces cerevisiae FEBS Lett 1996; 380: 169–175.

    CAS  Google Scholar 

  199. Ali ST, Coggins JR, Jacobs HT. The study of cell death proteins in the outer mitochondrial membrane by chemical crosslinking. Biochem J 1997; 325321–324.

    Google Scholar 

  200. Wang HG, Rapp UR, Reed JC. Bd-2 targets the protein kinase Raf-i to mitochondria. Cell 1996; 87: 629–638.

    Article  PubMed  CAS  Google Scholar 

  201. Wilczynska Z, Barth C, Fisher PR. Mitochondrial mutations impair signal transduction in Dictyostelium discoideum slugs. Biochem Biophys Res Commun 1997; 234: 39–43.

    Article  PubMed  CAS  Google Scholar 

  202. Blackstone NW. A units-of-evolution perspective on the endosymbiont theory of the origin of the mitochondrion. Evolution 1995; 49: 785–796.

    Article  CAS  Google Scholar 

  203. Hess JF, Parisi MA, Bennett JL, Clayton DA. Impairment of mitochondrial transcription termination by a point mutation associated with the MELAS subgroup of mitochondrial encephalomyopathies. Nature 1991; 351: 236–239.

    Article  PubMed  CAS  Google Scholar 

  204. Dunbar DR, Moonie PA, Zeviani M, Holt IJ. Complex I deficiency is associated with 3243G/C mitochondrial DNA in osteosarcoma cell cybrids. Hum Mol Genet 1996; 5: 123–129.

    Article  PubMed  CAS  Google Scholar 

  205. Kovalenko SA, Tanaka M, Yoneda N, Iakovlev AF, Ozawa T. Accumulation of somatic nucleotide substitutions in mitochondrial DNA associated with the 3243 A to G transfer-RNA (leu(UUR)) mutation in encephalomyopathy and cardiomyopathy. Biochem Biophys Res Commun 1996; 222: 201–207.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Jacobs, H.T., Holt, I.J. (1998). The Mitochondrial Genetic System. In: Singh, K.K. (eds) Mitochondrial DNA Mutations in Aging, Disease and Cancer. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-12509-0_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-12509-0_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-12511-3

  • Online ISBN: 978-3-662-12509-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics