Skip to main content
  • 213 Accesses

Abstract

Because of their symbiotic origin, mitochondria are often regarded as semiauto-nomous, bacteria-like structures suspended in the cytoplasm. Nevertheless, the structure and distribution of mitochondria are dependent on the activity and architecture of the whole cell, and the synthesis of mitochondrial components depends almost entirely on nuclear genes and cytoplasmic ribosomes. In turn, the eukaryotic cell invests mitochondria with metabolic activities on which survival, and sometimes suicide, depend.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alberts B, Bray D, Lewis J, Raff M, Roberts K, Watson JD. Molecular Biology of the Cell. 3rd ed. New York: Garland Publishing, 1994: 1–1294.

    Google Scholar 

  2. Lodish L, Baltimore D, Berk A, Zipursky SL, Matsudaira P, Darnell J. Molecular Cell Biology. 3rd ed. New York: Scientific American Books, 19951–1344.

    Google Scholar 

  3. Gillham NW. Organelle genes and genomes. New York: Oxford University Press, 1994: 424.

    Google Scholar 

  4. Cooper GM. The Cell, A Molecular Approach. Herndon, VA: ASM Press, 1997: 650.

    Google Scholar 

  5. Hannavy K, Rospert S, Schatz G. Protein import into mitochondria: a paradigm for the translocation of polypeptides across membranes. Curr Opin Cell Biol 1993; 5: 694–700.

    Article  PubMed  CAS  Google Scholar 

  6. Lithgow T, Glick BS, Schatz G. The protein import receptor of mitochondria. Trends Biochem Sci 1995; 20:98-loi.

    Google Scholar 

  7. Pon L, Schatz G. Biogenesis of yeast mitochondria. In: Broach JR, Pringle JR, Jones EW, eds. The Molecular and Cellular Biology of the Yeast Saccharomyces cerevisiae. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press, 1991: 333–406.

    Google Scholar 

  8. Schatz G, Dobberstein B. Common principles of protein translocation across membranes. Science 1996; 271: 1519–1526.

    Article  PubMed  CAS  Google Scholar 

  9. Pfanner N, Craig EA, Meijer J. The import machinery of the inner mitochondrial membrane. Trends in Biochem Sci 1994; 19368–372.

    Google Scholar 

  10. Kiebler M, Becker K, Pfanner N, Neupert W. Mitochondrial protein import: specific recognition and membrane translocation of preproteins. J Membr Biol 1993; 135: 191–207.

    PubMed  CAS  Google Scholar 

  11. Pfanner N, Rassow J, van der Klei IJ, Neupert W. A dynamic model of the mitochondrial protein import machinery. Cell 1992; 68: 999–1002.

    Article  PubMed  CAS  Google Scholar 

  12. Glick B, Schatz G. Import of proteins into mitochondria. Annu Rev Genet 1991; 25:21-44.

    Google Scholar 

  13. Daum G. Lipids of mitochondria. BBA 1985; 882: 1–42.

    Google Scholar 

  14. Fawcett DW. An Atlas of Fine Structure: The Cell, Its Organelles and Inclusions. Philadelphia: W.B. Saunders, 1966: 1–446.

    Google Scholar 

  15. Reers M, Smiley ST, Mottola Hartshorn C, Chen A, Lin M, Chen LB. Mitochondrial membrane potential monitored by JC-1 dye. Methods Enzymol 1995; 260: 406–417.

    Article  PubMed  CAS  Google Scholar 

  16. Johnson LV, Walsh ML, Chen LB. Localization of mitochondria in living cells with rhodamine 123. Proc Natl Acad Sci 1980; 77:990-995.

    Google Scholar 

  17. Johnson JV, Walsh ML, Bockus BL, Chen LB. Monitoring of relative mitochondrial membrane potential in living cells by fluorescence microscopy. J Cell Biol 1981; 88: 526–535.

    Article  PubMed  CAS  Google Scholar 

  18. Adams RJ. Organelle movement in axons depends on ATP. Nature 1982; 297: 327–329.

    Article  PubMed  CAS  Google Scholar 

  19. Aufderheide KJ. Saltatory motility of uninserted trichocysts and mitochondria in Paramecium tetraurelia. Science 1977; 198: 299–300.

    Article  PubMed  CAS  Google Scholar 

  20. Bereiter-Hahn J. Behaivior of mitochondria in the living cell. International Review of Cytology 1990; 122: 1–63.

    Article  PubMed  CAS  Google Scholar 

  21. Aufderheide KJ. Mitochondrial associations with specific microtubular components of the cortex of Tetrahymena thermophila. II. Response of the mitochondrial pattern to changes in the microtubule pattern. J Cell Sci 1980; 42: 247–260.

    PubMed  CAS  Google Scholar 

  22. Heggeness MH, Simon M, Singer SJ. Association of mitochondria with microtubules in cultured cells. Proc Natl Acad Sci U S A 1978; 75: 3863–3866.

    Article  PubMed  CAS  Google Scholar 

  23. Summerhayes IC, Wong D, Chen LB. Effect of microtubules and intermediate filaments on mitochondrial distribution. J Cell Sci 1983; 61: 87–105.

    PubMed  CAS  Google Scholar 

  24. Yaffe MP, Harata D, Verde F, Eddison M, Toda T, Nurse P. Microtubules mediate mitochondrial distribution in fission yeast. Proc Nail Acad Sci 1996; 93: 11664–11668.

    Article  CAS  Google Scholar 

  25. Smith MG, Simon VR, O’Sullivan H, Pon LA. Organelle-cytoskeletal interactions: Actin mutations inhibit meiosis-dependent mitochondrial rearrangement in the budding yeast Saccharomyces cerevisiae. Mol Biol Cell 1995; 6: 1381–1396.

    PubMed  CAS  Google Scholar 

  26. Cascarano J, Chambers PA, Schwartz E, Poorkaj P, Gondo RE. Organellar clusters formed by mitochondrial-rough endoplasmic reticulum associations: an ordered arrangement of mitochondria in hepatocytes. Hepatology 1995; 22: 837–846.

    PubMed  CAS  Google Scholar 

  27. Song J, Lee C, Lin CH, Chen LB. Electron microscopic studies of the endoplasmic reticulum in whole-mount cultured cells fixed with potassium permanganate. J Struct Biol 1991; 107: 106–115.

    Article  PubMed  CAS  Google Scholar 

  28. Ardail D, Lerme F, Louisot P. Involvement of contact sites in phosphatidylserine import into liver mitochondria. J Biol Chem 1991; 266: 7978–7981.

    PubMed  CAS  Google Scholar 

  29. Stuhne Sekalec L, Stanacev NZ. Biosynthesis of microsomal phospholipids and mitochondrial polyglycerophosphatides in rapidly sedimenting endoplasmic reticulum. Can J Biochem 1982; 60: 877–881.

    Article  Google Scholar 

  30. Meier PJ, Spycher MA, Meyer UA. Isolation and characterization of rough endoplasmic reticulum associated with mitochondria from normal rat liver. Biochim Biophys Acta 1981; 646: 283–297.

    Article  PubMed  CAS  Google Scholar 

  31. Pickett CB, Rosenstein NR, Jeter RL. The physical association between rat liver mitochondria and rough endoplasmic reticulum. II. Possible role RER-MT complexes play in the biosynthesis of cytochrome P-450. Exp Cell Res 1981; 132: 225–234.

    Article  PubMed  CAS  Google Scholar 

  32. Shore GC, Tata JR. Two fractions of rough endoplasmic reticulum from rat liver. I. Recovery of rapidly sedimenting endoplasmic reticulum in association with mitochondria. J Cell Biol 1977; 72: 714–725.

    Article  PubMed  CAS  Google Scholar 

  33. Vance JE. Phospholipid synthesis in a membrane fraction associated with mitochondria. J Biol Chem 1990; 265: 7248–7256.

    PubMed  CAS  Google Scholar 

  34. Hackenbrock CR. Ultrastructural basis for metabolically linked mechanical activity of mitochondria. II. Electron-transport linked ultrastructural transformations in mitochondria. J Cell Biol 1968; 37: 345–354.

    Article  PubMed  CAS  Google Scholar 

  35. Brdiczka D. Contact sites between mitochondrial envelope membranes. Structure and function in energy-and protein-transfer. Biochim Biophys Acta 1991; 1071: 291–312.

    Article  PubMed  CAS  Google Scholar 

  36. Lea PJ, Hollenberg MJ. Mitochondrial structure revealed by high resolution scanning electron microscopy. Am J Anat. 1989; 184: 245–257.

    Article  PubMed  CAS  Google Scholar 

  37. Winslow JL, Hollenberg MJ, Lea PJ. Resolution limit of serial sections for 3D reconstruction of tubular cristae in rat liver mitochondria. J Electron Microsc Tech 1991; 18: 241–248.

    Article  PubMed  CAS  Google Scholar 

  38. Mannella CA, Marko M, Penczek P, Barnard D, Frank J. The internal compartmentation of rat-liver mitochondria: tomographic study using the high-voltage transmission electron microscope. Microsc Res Tech 1994; 27. 278–283.

    Article  PubMed  CAS  Google Scholar 

  39. Mannella CA, Marko M, Buttle K. Reconsidering mitochondrial structure: new views of an old organelle. Trends in Biochem Sci 1997; 2237–38.

    Google Scholar 

  40. Walker JE, Collinson IR, Van Raaij MJ, Runswick MJ. Structural analysis of ATP synthase from bovine heart mitochondria. Methods Enzymol 1995; 260: 163–190.

    Article  PubMed  CAS  Google Scholar 

  41. Van Raaij MJ, Abrahams JP, Leslie AG, Walker JE. The structure of bovine F1ATPase complexed with the antibiotic inhibitor aurovertin B. Proc Natl Acad Sci U S A 1996; 93: 6913–6917.

    Article  PubMed  Google Scholar 

  42. Abrahams JP, Leslie AG, Lutter R, Walker JE. Structure at 2.8 A resolution of FiATPase from bovine heart mitochondria. Nature 1994; 370: 621–628.

    Article  PubMed  CAS  Google Scholar 

  43. Tsukihara T, Aoyama H, Yamashita E, Tomizaki T, Yamaguchi H, Shinzawa Itoh K, Nakashima R, Yaono R, Yoshikawa S. The whole structure of the 13-subunit oxidized cytochrome c oxidase at 2.8 A. Science 1996; 272: 1136–1144.

    Article  PubMed  CAS  Google Scholar 

  44. Tsukihara T, Aoyama H, Yamashita E, Tomizaki T, Yamaguchi H, Shinzawa Itoh K, Nakashima R, Yoshikawa S. Structures of metal sites of oxidized bovine heart cytochrome c oxidase at 2.8 Angstroms. Science 1995; 269: 1069–1074.

    Article  PubMed  CAS  Google Scholar 

  45. Iwata S, Ostermeier C, Ludwig B, Michel H. Structure at 2.8 A resolution of cytochrome c oxidase from Paracoccus denitrificans. Nature 1995; 376: 660–669.

    Article  PubMed  CAS  Google Scholar 

  46. Yu CA, Xia JZ, Kachurin AM, Yu L, Xia D, Kim H, Deisenhofer J. Crystallization and preliminary structure of beef heart mitochondrial cytochrome-bc1 complex. Biochim Biophys Acta 1996; 1275: 47–53.

    Article  PubMed  Google Scholar 

  47. Walker JE, Skehel JM, Buchanan SK. Structural Analysis of NADH:Ubiquinone Oxidoreductase from bovine heart mitochondria. Methods Enzymol 1995; 260x4-34.

    Google Scholar 

  48. Srere PA. The infrastructure of the mitochondrial matrix. Trends in Biochem Sci 1980; 5: 120–121.

    Article  CAS  Google Scholar 

  49. Srere PA. Complexes of sequential metabolic enzymes. Ann Rev Biochem 1987; 56: 89–124.

    Article  PubMed  CAS  Google Scholar 

  50. Robinson JB, Jr., Inman L, Sumegi B, Srere PA. Further characterization of the Krebs tricarboxylic acid cycle metabolon. J Biol Chem 1987; 262: 1786–1790.

    PubMed  CAS  Google Scholar 

  51. Barnes SJ, Weitzman PD. Organization of citric acid cycle enzymes into a multi-enzyme cluster. FEBS Lett 1986; 201: 267–270.

    Article  PubMed  CAS  Google Scholar 

  52. King MP, Attardi G. Isolation of human cell lines lacking mitochondrial DNA. In: Attardi GM, Chomyn A, eds. Methods in Enzymology: Mitochondrial Biogenesis and Genetics. San Diego: Academic Press, 1996: 304–313.

    Chapter  Google Scholar 

  53. Baker KP, Scaniel A, Vestweber D, Schatz G. A yeast mitochondrial outer membrane protein essential for protein import and cell viability. Nature 1990; 348: 605–609.

    Google Scholar 

  54. Blom J, Kubrich M, Rassow J, Voos W, Dekker PJ, Maarse AC, Meijer M, Pfanner N. The essential yeast protein MIM44 (encoded by MPI1) is involved in an early step of preprotein translocation across the mitochondrial inner membrane. Mol Cell Biol 1993; 13: 7364–7371.

    Google Scholar 

  55. Shigenaga MK, Hagen TM, Ames BN. Oxidative damage and mitochondrial decay in aging. Proc Natl Acad Sci U S A 1994; 91: 10771–10778.

    Article  PubMed  CAS  Google Scholar 

  56. Lebovitz RM, Zhang H, Vogel H, Cartwright J, Jr., Dionne L, Lu N, Huang S, Matzuk MM. Neurodegeneration, myocardial injury, and perinatal death in mitochondrial superoxide dismutase-deficient mice. Proc Natl Acad Sci U S A 1996; 939782–9787.

    Google Scholar 

  57. Schulte U, Weiss H. Generation and characterization of NADH:ubiquinone oxidoreductase mutants in Neurospora crassa. Methods Enzymol 1995; 260: 3–14.

    Article  PubMed  CAS  Google Scholar 

  58. Hatefi Y. Resolution of complex II and isolation of succinate dehydrogenase. Methods Enzymol 1978; LIII:27-35.

    Google Scholar 

  59. Schaegger H, Brandt U, Gencic S, Von Jagow G. Ubiquinol-cytochrome c reduc-tase from human and bovine mitochondria. Methods Enzymol 1995; 260: 82–96.

    Article  CAS  Google Scholar 

  60. Hackenbrock CR. Lateral diffusion and electron transport in the mitochondrial inner membrane. Trends in Biochem Sci 1981; 6: 151–154.

    Article  CAS  Google Scholar 

  61. Palmieri F, Indiveri C, Bisaccia F, Iacobazzi V. Mitochondrial metabolite carrier proteins: Purification, reconstitution, and transport studies. Methods Enzymol 1995; 260:349-369.

    Google Scholar 

  62. Klingenberg M, Winkler E, Huang S-G. ADP/ATP carrier and uncoupling protein. Methods Enzymol 1995; 260:369-389.

    Google Scholar 

  63. Li K, Neufer D, Williams RS. Nuclear responses to depletion of mitochondrial DNA. Am J Physiol 1995; 269: C1265 - C1270.

    PubMed  CAS  Google Scholar 

  64. Schirmer T, Rosenbusch JP. Prokaryotic and eukaryotic porins. Current Opinion in Structural Biology 1991; 1: 539–545.

    Article  CAS  Google Scholar 

  65. Zalman LS, Nikaido H, Kagawa Y. Mitochondrial outer membrane contains a protein producing nonspecific diffusion channels. J Biol Chem 1997; 2551771–1774.

    Google Scholar 

  66. Brdiczka D. Function of the outer mitochondrial compartment in regulation of energy metabolism. Biochim Biophys Acta 1994; 1187: 264–269.

    Article  PubMed  CAS  Google Scholar 

  67. Wicker U, Bucheler K, Gellerich FN, Wagner M, Kapischke M, Brdiczka D. Effect of macromolecules on the structure of the mitochondrial inter-membrane space and the regulation of hexokinase. Biochim Biophys Acta 1993; 1142: 228–239.

    Article  PubMed  CAS  Google Scholar 

  68. Bucheler K, Adams V, Brdiczka D. Localization of the ATP/ADP translocator in the inner membrane and regulation of contact sites between mitochondrial envelope membranes by ADP. A study on freeze-fractured isolated liver mitochondria. Biochim Biophys Acta 1991; 1056: 233–242.

    Article  PubMed  CAS  Google Scholar 

  69. Feigner PL, Messer JL, Wilson JE. Purification of a hexokinase-binding protein from the outer mitochondrial membrane. J Biol Chem 1979; 254: 4946–4949.

    Google Scholar 

  70. Hockenbery D, Nunez G, Milliman C, Schreiber RD, Korsmeyer SJ. Bd-2 is an inner mitochondrial membrane protein that blocks programmed cell death. Nature 1990; 348: 334–336.

    Article  PubMed  CAS  Google Scholar 

  71. Akao Y, Otsuki Y, Kataoka S, Ito Y, Tsujimoto Y. Multiple subcellular localization of bd-2: detection in nuclear outer membrane, endoplasmic reticulum membrane, and mitochondrial membranes. Cancer Res 1994; 54: 2468–2471.

    PubMed  CAS  Google Scholar 

  72. Kluck RM, Bossy-Wetzel E, Green DR, Newmeyer DD. The release of cytochrome c from mitochondria: a primary site for Bd-2 regulation of Apoptosis. Science 1997; 275: 1132–1136.

    Google Scholar 

  73. Yang J, Liu X, Bhalla B, Kim CN, Ibrado AM, Cai J, Peng T-I, Jones DP, Wang X. Prevention of apoptosis by Bd-2: Release of cytochrome c from mitochondria blocked. Science 1997; 275: 1129–1132.

    CAS  Google Scholar 

  74. Anderson S, Bankier AT, Barrell BG, de Bruijn HML, Coulson AR, Drouin J, Eperon IC, Nierlich DP, Roe BA, Sanger F, Scheier PH, Smith AJH, Young IG. Sequence and organization of the human mitochondrial genome. Nature 1981; 290: 457–474.

    Article  PubMed  CAS  Google Scholar 

  75. Chomyn A, Cleeter MW, Ragan CI, Riley M, Doolittle RF, Attardi G. URF6, last unidentified reading frame of human mtDNA, codes for an NADH dehydrogenase subunit. Science 1986; 234: 614–618.

    Article  PubMed  CAS  Google Scholar 

  76. Simbeni R, Tangemann K, Schmidt M, Ceolotto C, Paltauf F, Daum G. Import of phosphatidylserine into isolated yeast mitochondria. Biochim Biophys Acta 1993; 1145: 1–7.

    Article  PubMed  CAS  Google Scholar 

  77. Vance JE, Shiao YJ. Intracellular trafficking of phospholipids: Import of phosphatidylserine into mitochondria. Anticancer Res 1996; 16: 1333–1339.

    PubMed  CAS  Google Scholar 

  78. Yaffe MP, Kennedy EP. Intracellular phospholipid movement and the role of phospholipid transfer proteins in animal cells. Biochemistry 1983; 22: 1497–1507.

    Article  PubMed  CAS  Google Scholar 

  79. Corazzi L, Pistolesi R, Carlini E, Arienti G. Transport of phosphatidylserine from microsomes to the inner mitochondrial membrane in brain tissue. J Neurochem 1993; 60: 50–56.

    Article  PubMed  CAS  Google Scholar 

  80. Shiao YJ, Lupo G, Vance JE. Evidence that phosphatidylserine is imported into mitochondria via a mitochondria-associated membrane and that the majority of mitochondrial phosphatidylethanolamine is derived from decarboxylation of phosphatidylserine. J Biol Chem 1995; 270: 11190–11198.

    Article  PubMed  CAS  Google Scholar 

  81. Gaigg B, Simbeni R, Hrastnik C, Paltauf F, Daum G. Characterization of a microsomal subfraction associated with mitochondria of the yeast, Saccharomyces cerevisiae. Involvement in synthesis and import of phospholipids into mitochondria. Biochim Biophys Acta 1995; 1234: 214–220.

    Google Scholar 

  82. Asagami H, Hino Y, Kang D, Minakami S, Takeshige K. Preferential heme transport through endoplasmic reticulum associated with mitochondria in rat liver. Biochim Biophys Acta 1994; 1193345–352.

    Google Scholar 

  83. Hurt EC, Pesold-Hurt B, Schatz G. The amino-terminal region of an imported mitochondrial precursor polypeptide can direct cytoplasmic dihydrofolate reductase into the mitochondrial matrix. EMBO J 1984; 3: 3149–3156.

    PubMed  CAS  Google Scholar 

  84. Hurt EC, Pesold-Hurt B, Suda K, Oppliger W, Schatz G. The first twelve amino acids (less than half of the pre-sequence) of an imported mitochondrial protein can direct mouse cytosolic dihydrofolate reductase into the yeast mitochondrial matrix. EMBO J 1985; 4: 2061–2068.

    PubMed  CAS  Google Scholar 

  85. Martin J, Mahlke K, Pfanner N. Role of an energized inner membrane in mitochondrial protein import. J Biol Chem 1991; 266: 18051–18057.

    PubMed  CAS  Google Scholar 

  86. Pfanner N, Hartl F, Neupert W. Import of proteins into mitochondria: A multistep process. Eur J Biochem 1988; 175: 205–212.

    Article  PubMed  CAS  Google Scholar 

  87. Pfanner N, Mueller HK, Harmey MA, Neupert W. Mitochondrial protein import: Involvement of the mature part of a cleavable protein in binding to receptor sites. EMBO J 1987; 6: 3449–3454.

    PubMed  CAS  Google Scholar 

  88. Wienhues U, Neupert W. Protein translocation across mitochondrial membranes. Bioessays 1992; 14: 17–23.

    Article  PubMed  CAS  Google Scholar 

  89. Stuart RA, Gruhler A, van der Klei I, Guiard B, Koll H, Neupert W. The requirement of matrix ATP for the import of precursor proteins into the mitochondrial matrix and intermembrane space. Eur J Biochem 1994; 220: 9–18.

    Article  PubMed  CAS  Google Scholar 

  90. Gavel Y, von Heijne G. The distribution of charged amino acids in mitochondrial inner membrane proteins suggests different modes of membrane integration of nuclearly and mitochondrially encoded proteins. Eur J Biochem 1992; 205: 1207–1215.

    Article  PubMed  CAS  Google Scholar 

  91. Hachiya N, Alam R, Sakasegawa Y, Sakaguchi M, Mihara K, Omura T. A mitochondrial import factor purified from rat liver cytosol is an ATP-dependent conformational modulator for precursor proteins. EMBO J 1993; 12: 1579–1586.

    PubMed  CAS  Google Scholar 

  92. Deshaies RJ, Koch BD, Werner-Washburne M, Craig EA, Schekman R. A subfamily of stress proteins facilitates translocation of secretory and mitochondrial precursor polypeptides. Nature 1988; 332: 800–805.

    Article  PubMed  CAS  Google Scholar 

  93. Caplan AJ, Cyr DM, Douglas MG. YDJip facilitates polypeptide translocation across different intracellular membranes by a conserved mechanism. Cell 1992; 71: 1143–1155.

    Article  PubMed  CAS  Google Scholar 

  94. Cyr DM, Langer T, Douglas MG. DnaJ-like proteins: Molecular chaperones and specific regulators of Hsp70. Trends Biochem Sci 1994; 19: 176–181.

    Article  PubMed  CAS  Google Scholar 

  95. Hachiya N, Mihara K, Suda K, Horst M, Schatz G, Lithgow T. Reconstitution of the initial steps of mitochondrial protein import. Nature 1995; 376:705-709.

    Google Scholar 

  96. Pfanner N, Douglas MG, Endo T, Hoogenraad N, Jensen RE, Meijer M, Neupert W, Schatz G, Schmitz UK, Shore GC. Uniform nomenclature for the protein import machinery of the mitochondrial membranes. Trends in Biochem Sci 1996; 21: 51–52.

    CAS  Google Scholar 

  97. Lithgow T, Glick BS, Schatz G. The protein import receptor of mitochondria. Trends in Biochem Sci 1995; 20:98–1o1.

    Google Scholar 

  98. Hines V, Brandt A, Griffiths G, Horstmann H, Bruetsch H, Schatz G. Protein import into yeast is accelerated by the outer membrane protein MAS7o. EMBO J 1990; 9: 3191–3200.

    PubMed  CAS  Google Scholar 

  99. Soellner T, Griffiths G, Pfaller R, Pfanner N, Neupert W. Mom19, an import receptor for mitochondrial precursor proteins. Cell 1989; 59: 1061–1070.

    Article  Google Scholar 

  100. Jascur T, Goldenberg DP, Vestweber D, Schatz G. Sequential translocation of an artificial precursor protein across the two mitochondrial membranes. J Biol Chem 1992; 267: 13636–13641.

    PubMed  CAS  Google Scholar 

  101. Gratzer S, Lithgow T, Bauer RE, Lamping E, Paltauf F, Kohlwein SD, Haucke V, Junne T, Schatz G, Horst M. Mas37p, a novel receptor subunit for protein import into mitochondria. J Cell Biol 1995; 129:25-34.

    Google Scholar 

  102. Horst M, Jeno P, Kronidou NG. Isolation of protein import components from Saccharomyces cerevisiae mitochondria. Methods Enzymol 1995; 260: 232–241.

    Article  PubMed  CAS  Google Scholar 

  103. Bauer MF, Sirrenberg C, Neupert W, Brunner M. Role of Tim23 as voltage sensor and presequence receptor in protein import into mitochondria. Cell 1996; 87: 33–41.

    Article  PubMed  CAS  Google Scholar 

  104. Rassow J, Maarse AC, Krainer E, Kubrich M, Muller H, Meijer M, Craig EA, Pfanner N. Mitochondrial protein import: Biochemical and genetic evidence for interaction of matrix hsp7o and the inner membrane protein MIM44. J Cell Biol 1994; 127: 1547–1556.

    Article  PubMed  CAS  Google Scholar 

  105. Kronidou NG, Oppliger W, Bolliger L, Hannavy K, Glick BS, Schatz G, Horst M. Dynamic interaction between Isp45 and mitochondrial hsp7o in the protein import system of the yeast mitochondrial inner membrane. Proc Natl Acad Sci U S A 1994; 91: 12818–12822.

    Article  PubMed  CAS  Google Scholar 

  106. Reading DS, Hallberg RL, Myers AM. Charaterization of the yeast HSP6o gene coding for a mitochondrial assembly factor. Nature 1989; 337: 655–659.

    Article  PubMed  CAS  Google Scholar 

  107. Stuart RA, Cyr DM, Craig EA, Neupert W. Mitochondrial molecular chaperones: their role in protein translocation. Trends in Biochem Sci 1994; 19: 87–92.

    Article  CAS  Google Scholar 

  108. Suzuki CK, Suda K, Wang N, Schatz G. Requirement for the yeast gene LON in intramitochondrial proteolysis and maintenance of respiration. Science 1994; 264: 273–276.

    Article  PubMed  CAS  Google Scholar 

  109. Schneider A. Import of RNA into mitochondria. Trends in Cell Biology 1994; 4: 282–286.

    Article  PubMed  CAS  Google Scholar 

  110. Entelis NS, Krasheninnikov IA, Martin RP, Tarassov IA. Mitochondrial import of a yeast cytoplasmic tRNA (Lys): possible roles of aminoacylation and modified nucleosides in subcellular partitioning. FEBS Lett 1996; 384: 38–42.

    Article  PubMed  CAS  Google Scholar 

  111. Tarassov I, Entelis N, Martin RP. Mitochondrial import of a cytoplasmic lysinetRNA in yeast is mediated by cooperation of cytoplasmic and mitochondrial lysyltRNA synthetases. EMBO J 1995; 14: 3461–3471.

    Google Scholar 

  112. Topper JN, Bennett JL, Clayton DA. A role for RNAase MRP in mitochondrial RNA processing. Cell 1992; 70: 16–20.

    Article  PubMed  CAS  Google Scholar 

  113. Gold HA, Topper JN, Clayton DA, Craft J. The RNA processing enzyme RNase MRP is identical to the Th RNP and related to RNase P. Science 1989; 245: 1377–1380.

    Article  PubMed  CAS  Google Scholar 

  114. Chang DD, Clayton DA. Mouse RNAase MRP RNA is encoded by a nuclear gene and contains a decamer sequence complementary to a conserved region of mitochondrial RNA substrate. Cell1989; 56: 131–139.

    Google Scholar 

  115. Li K, Smagula CS, Parsons WJ, Richardson JA, Gonzalez M, Hagler HK, Williams RS. Subcellular partitioning of MRP RNA assessed by ultrastructural and biochemical analysis. J Cell Biol 1994; 124: 871–882.

    Article  PubMed  CAS  Google Scholar 

  116. Doersen CJ, Guerrier Takada C, Altman S, Attardi G. Characterization of an RNase P activity from HeLa cell mitochondria. Comparison with the cytosol RNase P activity. J Biol Chem 1985; 260:5942-5949.

    Google Scholar 

  117. Mahapatra S, Adhya S. Import of RNA into Leishmania mitochondria occurs through direct interaction with membrane-bound receptors. J Biol Chem 1996; 271: 20432–20437.

    Article  PubMed  CAS  Google Scholar 

  118. Sanyal A, Getz GS. Import of Transcription Factor MTF1 into yeast mitochondria takes place through an unusual pathway. J Biol Chem 1995; 270: 11970–11976.

    Google Scholar 

  119. Miller BR, Cumsky MG. Intramitochondrial sorting of the precursor to yeast cytochrome c oxidase subunit Va. J Cell Biol 1993; 121: 1021–1029.

    Article  PubMed  CAS  Google Scholar 

  120. Gaines G, Attardi G. Highly efficient RNA-synthesizing system that uses isolated human mitochondria: New initiation events and in vivo-like processing patterns. Mol Cell Biol 1984; 4: 1605–1617.

    PubMed  CAS  Google Scholar 

  121. Montoya J, Gaines GL, Attardi G. The pattern of transcription of the human mitochondrial rRNA genes reveals two overlapping transcription units. Cell 1983; 34151–159.

    Google Scholar 

  122. Bibb MJ, Van Etten RA, Wright CT, Walberg MW, Clayton DA. Sequence and gene organization of mouse mitochondrial DNA. Cell 1981; 26: 167–180.

    Article  PubMed  CAS  Google Scholar 

  123. Battey J, Clayton DA. The transcription map of human mitochondrial DNA implicates transfer RNA excision as a major processing event. J Biol Chem 1980; 255: 11599–11606.

    PubMed  CAS  Google Scholar 

  124. Pietromonaco SF, Denslow ND, O’Brien TW. Proteins of mammalian mitochondrial ribosomes. Biochimie 1991; 73: 827–835.

    Article  PubMed  CAS  Google Scholar 

  125. O’Brien TW, Denslow ND, Anders JC, Courtney BC. The translation system of mammalian mitochondria. Biochim Biophys Acta 1990; 1050: 174–178.

    Article  PubMed  Google Scholar 

  126. Cahill A, Baio DL, Cunningham CC. Isolation and characterization of rat liver mitochondrial ribosomes. Anal Biochem 1995; 232: 47–55.

    Google Scholar 

  127. Ma J, Spremulli LL. Expression, purification, and mechanistic studies of bovine mitochondrial translational initiation factor 2. J Biol Chem 1996; 271: 5805–5811.

    Article  PubMed  CAS  Google Scholar 

  128. Woriax VL, Burkhart W, Spremulli LL. Cloning, sequence analysis and expression of mammalian mitochondrial protein synthesis elongation factor Tu. Biochim Biophys Acta 1995; 1264: 347–356.

    Google Scholar 

  129. Barker C, Makris A, Patriotis C, Bear SE, Tsichlis PN. Identification of the gene encoding the mitochondrial elongation factor G in mammals. Nucleic Acids Res 1993; 21: 2641–2647.

    Google Scholar 

  130. Liao HX, Spremulli LL. Initiation of protein synthesis in animal mitochondria. Purification and characterization of translational initiation factor 2. J Biol Chem 1991; 266: 20714–20719.

    PubMed  CAS  Google Scholar 

  131. Vambutas A, Ackerman SH, Tzagoloff A. Mitochondrial translational-initiation and elongation factors in Saccharomyces cerevisiae. Eur J Biochem 1991; 201: 643–652.

    Article  PubMed  CAS  Google Scholar 

  132. Michaelis U, Rodel G. Identification of CBS2 as a mitochondrial protein in Saccharomyces cerevisiae. Mol Gen Genet 1990; 223: 394–400.

    PubMed  CAS  Google Scholar 

  133. McMullin TW, Fox TD. COX3 mRNA-specific translational activator proteins are associated with the inner mitochondrial membrane in Saccharomyces cerevisiae. J Biol Chem 1993; 268x1737–11741.

    Google Scholar 

  134. Brown NG, Costanzo MC, Fox TD. Interactions among three proteins that specifically activate translation of the mitochondrial COX3 mRNA in Saccharomyces cerevisiae. Mol Cell Biol 1994; 14:1045-1053.

    Google Scholar 

  135. Church C, Chapon C, Poyton RO. Cloning and characterization of PETioo, a gene required for the assembly of yeast cytochrome c oxidase. J Biol Chem 1996; 271: 18499–18507.

    Article  PubMed  CAS  Google Scholar 

  136. Paul MF, Tzagoloff A. Mutations in RCA1 and AFG3 inhibit F1-ATPase assembly in Saccharomyces cerevisiae. FEBS Lett 1995; 373: 66–70.

    Article  PubMed  CAS  Google Scholar 

  137. Glerum DM, Koerner TJ, Tzagoloff A. Cloning and characterization of COX14, whose product is required for assembly of yeast cytochrome oxidase. J Biol Chem 1995; 270:15585-15590.

    Google Scholar 

  138. Ackerman SH, Martin J, Tzagoloff A. Characterization of ATP11 and detection of the encoded protein in mitochondria of Saccharomyces cerevisiae. J Biol Chem 1992; 267:7386-7394.

    Google Scholar 

  139. Bowman S, Ackerman SH, Griffiths DE, Tzagoloff A. Characterization of ATP12, a yeast nuclear gene required for the assembly of the mitochondrial F1-ATPase. J Biol Chem 1991; 266: 7517–7523.

    PubMed  CAS  Google Scholar 

  140. Ackerman SH, Gatti DL, Gellefors P, Douglas MG, Tzagoloff A. ATP13, a nuclear gene of Saccharomyces cerevisiae essential for the expression of subunit 9 of the mitochondrial ATPase. FEBS Lett 1991; 278:234-238.

    Google Scholar 

  141. Bard J, Bourque DP, Hildebrand M, Zaitlin D. In vitro expression of chloroplast genes in lysates of higher plant chloroplasts. Proc Natl Acad Sci USA 1985; 82:3983-3987.

    Google Scholar 

  142. Sazer S, Sherwood SW. Mitochondrial growth and DNA synthesis occur in the absence of nuclear DNA replication in fission yeast. J Cell Sci 1990; 97:509-516.

    Google Scholar 

  143. Wiesner RJ, Aschenbrenner V, Ruegg JC, Zak R. Coordination of nuclear and mitochondrial gene expression during the development of cardiac hypertrophy in rats. Am J Physiol 1994; 267:C229-35.

    Google Scholar 

  144. Williams RS, Salmons S, Newsholme EA, Kaufman RE, Mellor J. Regulation of nuclear and mitochondrial gene expression by contractile activity in skeletal muscle. J Biol Chem 1997; 261: 376–380.

    Google Scholar 

  145. Wiesner RJ, Kurowski TT, Zak R. Regulation by thyroid hormone of nuclear and mitochondrial genes encoding subunits of cytochrome-c oxidase in rat liver and skeletal muscle. Mol Endocrinol 1992; 6: 1458–1467.

    Article  PubMed  CAS  Google Scholar 

  146. Nelson BD, Luciakova K, Li R, Betina S. The role of thyroid hormone and promoter diversity in the regulation of nuclear encoded mitochondrial proteins. Biochim Biophys Acta 1995; 1271: 85–91.

    Article  PubMed  Google Scholar 

  147. Evans MJ, Scarpulla RC. NRF-1: S trans-activator of nuclear-encoded respiratory genes in animal cells. Genes Dev 1990; 4: 1023–1034.

    Article  PubMed  CAS  Google Scholar 

  148. Gopalakrishnan L, Scarpulla RC. Differential regulation of respiratory chain subunits by a CREB-dependent signal transduction pathway. Role of cyclic AMP in cytochrome c and COXIV gene expression. J Biol Chem 1994; 269: 105–113.

    PubMed  CAS  Google Scholar 

  149. Virbasius JV, Scarpulla RC. Transcriptional activation through ETS domain binding sites in the cytochrome c oxidase subunit IV gene. Mol Cell Biol 1991; 11: 5631–5638.

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Lewin, A.S. (1998). Mitochondrial Structure, Function and Biogenesis. In: Singh, K.K. (eds) Mitochondrial DNA Mutations in Aging, Disease and Cancer. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-12509-0_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-12509-0_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-12511-3

  • Online ISBN: 978-3-662-12509-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics