Skip to main content

The Mitochondrion as a Target for Cancer Chemotherapy

  • Chapter
Mitochondrial DNA Mutations in Aging, Disease and Cancer

Abstract

Despite an intensive and prolonged effort to combat the disease, cancer remains a leading health threat worldwide today. Significantly, during 1996 there were more than 550,000 cancer deaths in the United States alone, with the vast majority of these attributed to cancers of epithelial origin. Traditional chemotherapies, aimed at DNA replication in actively dividing cells, have achieved only limited success in the treatment of carcinomas due largely to their lack of specificity for cells of turnorigenic origin. It is important, therefore, to search for novel cellular targets that are sufficiently different between normal cells and carcinoma cells so as to provide a basis for selective cytotoxicity. The mitochondrion may be one such target.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Warburg O. In: Metabolism of Tumors. London: Arnold Constable, 1930.

    Google Scholar 

  2. Pedersen PL, Tumor mitochondria and the bioenergetics of cancer cells. Prog Exp Tumor Res 1978; 22: 190–274.

    PubMed  CAS  Google Scholar 

  3. Weinhouse S. Oxidative metabolism of neoplastic tissues. Adv Cancer Research 1955; 3269-325.

    Google Scholar 

  4. Carafoli E. Mitochondria and disease. Molec Aspects Med 1980; 3: 295–429.

    Article  CAS  Google Scholar 

  5. Chang LL, Schnaitman CA, Morris HP. Comparison of the mitochondrial membrane proteins in rat liver hepatomas. Cancer Res 1971; 31: 108–118.

    PubMed  CAS  Google Scholar 

  6. Irwin CC, Malkin LI. Differences in total mitochondrial proteins and mitochondrially-synthesized proteins from rat liver and Morris hepatomas. Fed Proc Am Soc Exp Biol 1976; 35: 1583.

    Google Scholar 

  7. Catterall WA, Pedersen PL. Adenosine triphosphatase from rat liver mitochondria: purification, homogeneity and physiscal properties. J Biol Chem 1971; 246: 4987–4994.

    PubMed  CAS  Google Scholar 

  8. Catterall WA, Coty WA, Pedersen PL. Adenosine triphosphatase from rat liver mitochondria: subunit composition. J Biol Chem 1973; 248: 7427–7431.

    Google Scholar 

  9. Feo F, Canuto RA, Garcea R, Gabriel L. Effect of cholesterol content on some physical and functional properties of mitochondria isolated from adult rat liver, fetal liver, cholesterol enriched liver and hepatomas AH-130, 3924A and 5123. Biochim et Biophys Acta 1975; 413:116–134.

    Google Scholar 

  10. Parlo RA, Coleman PS. Enhanced rate of citrate export from cholesterol-rich hepatoma mitochondria: the truncated Krebs cycle and other metabolic ramifications of mitochondrial membrane cholesterol. J Biol Chem 1984; 259: 9997–10003.

    Google Scholar 

  11. Johnson LV, Walsh ML, Chen LB. Localization of mitochondria in living cells with rhodamine 123. Proc Natl Acad Sci USA 1980; 77: 990–994.

    Article  PubMed  CAS  Google Scholar 

  12. Summerhayes IC, Lampidis TJ, Bernal SD, Nadakavukaren JJ, Nadakavukaren KK, Shepherd EL, Chen LB. Unusual retention of rhodamine 123 by mitochondria in muscle and carcinoma cells. Proc Natl Acad Sci USA 1982; 79: 5292–5296.

    Article  PubMed  CAS  Google Scholar 

  13. Johnson LV, Walsh ML, Bockus BJ, Chen LB. Monitoring of relative mitochondrial membrane potential in living cells by fluorescence microscopy. J Cell Biol 1981; 88:526-535.

    Google Scholar 

  14. Bernal SD, Lampidis TJ, Summerhayes IC, Chen LB, Rhodamine-123 selectively reduces clonal growth of carcinoma cells in vitro. Science 1982; 218: 1117–1118.

    Article  PubMed  CAS  Google Scholar 

  15. Lampidis TJ, Bernal SD, Summerhayes IC, Chen LB, Selective toxicity of rhodamine 123 in carcinoma cells in vitro. Cancer Res 1983; 43: 716–720.

    Google Scholar 

  16. Bernal SD, Lampidis TJ, Mclsaac RM, Chen LB. Anticarcinoma activity in vivo of rhodamine 123, a mitochondrial-specific dye. Science (Washington, DC) 1983; 22: 169–172.

    Article  Google Scholar 

  17. Modica-Napolitano JS, Aprille JR. Basis for the selective cytotoxicity of rhodamine 123. Cancer Res 1987; 47:4361-4365.

    Google Scholar 

  18. Davis S, Weiss MJ, Wong JR, Lampidis TJ, Chen LB. Mitochondrial and plasma membrane potentials cause unusual accumulation and retention of rhodamine 123 by human breast adenocarcinoma-derived MCF-7 cells. J Biol Chem 1985; 260: 13844–13850.

    Google Scholar 

  19. Modica-Napolitano JS, Weiss MJ, Chen LB, Aprille JR. Rhodamine 123 inhibits bioenergetic function in isolated rat liver mitochondria. Biochem Biophys Res Comm 1984; 118: 717–723.

    Article  PubMed  CAS  Google Scholar 

  20. Emaus RK, Grunwald R, Lemasters JJ. Rhodamine 123 as a probe of transmembrane potential in isolated rat liver mitochondria: Spectral and metabolic properties. Biochem Biophys Acta 1986; 850:436-448.

    Google Scholar 

  21. Anderson WM, Delinck DL, Benninger L, Wood JM, Smiley ST, Chen LB. Cytotoxic effect of thiacarbocyanine dyes on human colon carcinoma cells and inhibition of bovine heart mitochondrial NADH-ubiquinone reductase activity via a rotenone-type mechanism by two of the dyes. Biochem Pharmacol 1993; 45: 691–696.

    Google Scholar 

  22. Bleday R, Weiss MJ, Salem RR, Wilson RE, Chen LB, Steele G Jr. Inhibition to rat colon tumor isograft growth with dequalinium chloride. Arch Surg 1986; 121: 1271–1275.

    Article  Google Scholar 

  23. Weiss MJ, Wong JR, Ha CS, Bleday R, Salem RR, Steele G Jr, Chen LB. Dequalinium, a topical antimicrobial agent, displays anticarcinoma activity based on selective mitochondrial accumulation. Proc Natl Acad Sci USA 1987; 84:5444-5448.

    Google Scholar 

  24. Koya K, Li Y, Wang H, Ukai T, Tatsuta N, Kawakami M, Shishido T, Chen LB. MKT-o77, a novel rhodacyanine dye in clinical trials, exhibits anticarcinoma activity in preclinical studies based on selective mitochondrial accumulation. Cancer Res 1996; 56: 538–543.

    Google Scholar 

  25. Sun X, Wong JR, Hu J, Garlid KD, Chen LB. AA1, a newly synthesiszed monovalent lipophilic cation exhibits potent in vivo antitumor activity. Cancer Res 1994; 541465-1471.

    Google Scholar 

  26. Rideout D, Bustamante A, Patel J. Mechanism of inhibition of FaDu hypopharyngeal carcinoma cell growth by tetraphenylphosphonium chloride. Int J Cancer 57:247-253.

    Google Scholar 

  27. Modica-Napolitano JS, Koya K, Weisberg E, Brunelli BT, Li Y, Chen LB. Selective damage to carcinoma mitochondria by the rhodacyanine MKT-o77. Cancer Res 1996; 56:544-550.

    Google Scholar 

  28. Weisberg EL, Koya K, Modica-Napolitano JS, Li Y, Chen LB. In vivo administration of MKT-o77 causes partial yet reversible impairment of mitochondrial function. Cancer Res 1996; 56:551–555.

    Google Scholar 

  29. Modica-Napolitano JS, Joyal JL, Ara G, Oseroff AR, Aprille JR. Mitochondrial toxicity of cationic photosensitizers for photochemotherapy. Cancer Res 1990; 50: 7876–7881.

    PubMed  CAS  Google Scholar 

  30. Lampidis TJ, Salet C, Moreno G, Chen LB. Effects of the mitochondrial probe rhodamine 123 and related analogs on the function and viability of pulsating myocardial cells in culture. Agents and Actions 1984; 14: 751–757.

    Google Scholar 

  31. Dougherty TJ, Weishaupt KR, Boyle DG. Photodynamic sensitizers. In: DeVita VT, Hellman S, Rosenberg SA, eds. Cancer: Principles and Practice of Oncology. Philadelphia: J.B. Lipincott Co 1985: 2272–2279.

    Google Scholar 

  32. Wilson BC, Jeeves WP. Photodynamic therapy of cancer. In: Ben-Hur E, Rosenthal I, eds. Photomedicine, Vol. 2. Boca Raton, Fl: CRC Press, 1987: 127–177.

    Google Scholar 

  33. Powers SK. Photo chemotherapy. In: Cerullo LJ, ed. Application of Lasers in Neurosurgery. Chicago: Year Book Medical Publishers, Inc.,1988:137-155•

    Google Scholar 

  34. Wadwa K, Smith S, Oseroff AR. Cationic triarylmethane photosensitizers for selective photochemotherapy: Victoria blue-BO, victoria blue-R and malachite green. SPIE vol. 997, Advances in Photochemotherapy, 1988.

    Google Scholar 

  35. Oseroff AR, Ara G, Ohuoha D, Aprille JR, Bommer JC, Yarmush ML, Foley J, Cincotta L. Strategies for selective cancer photochemistry: Antibody-targeted and selective carcinoma photolysis. Photochem Photobiol 1987; 46: 83–96.

    Google Scholar 

  36. Powers SK, Pribil S, Gillespie GY, Watkins PJ. Laser photochemotherapy of rhodamine-123 sensitized human glioma cells in vitro. J Neurosurgery 1986; 64: 918–923.

    Article  CAS  Google Scholar 

  37. Beckman WC Jr, Powers SK, Brown JT, Gillespie GY, Bigner DD, Camps JC Jr. Differential retention of rhodamine 123 by avian sarcoma virus-induced glioma and normal brain tissue of the rat in vivo. Cancer 1987; 59: 266–270.

    Google Scholar 

  38. Powers SK, Walstaed DL, Brown JT, Detty M, Watkins PJ. Photosensitization of human glioma cells by chalcogenapyrylium dyes. J Neuroncology 1989; 7: 179–188.

    Article  CAS  Google Scholar 

  39. Oseroff AR, Ohuoha D, Ara G, McAuliffe D, Foley J, Cincotta L, Intramitochondrial dyes allow selective in vitro photolysis of carcinoma cells. Proc Natl Acad Sci USA, 1986; 83:9729-9733.

    Google Scholar 

  40. Ara G, Aprille JR, Malis CD, Kane SB, Cincotta L, Foley J, Bonventre JV, Oseroff AR. Mechanisms of mitochondrial photosensitization by the cationic dye, N,N’bis(2-ethyl-1,3-dioxylene) kryptocyanine (EDKC): preferential inactivation of the electron transport chain. Cancer Res 1987; 47:6580-6585.

    Google Scholar 

  41. Walstad DL, Brown JT, Powers SK. The effects of a chalcogenapyrylium dye with and without photolysis on mitochondrial function in normal and tumor cells. Photochem Photobiol 1989; 49:285-291.

    Google Scholar 

  42. Modica-Napolitano JS, Joyal JL, Ara G, Oseroff AR, Aprille JR. Mitochondrial toxicity of cationic photosensitizers for photochemotherapy. Cancer Res 1991; 50: 7876–7881.

    Google Scholar 

  43. Modica-Napolitano JS, Brunelli BT, Koya K, Chen LB. Photoactivation enhances the mitochondrial toxicity of the cationic rhodacyanine MKT-o77. Cancer Res 1998; 58:71-75.

    Google Scholar 

  44. Dairkee SH, Hackett AJ. Differential retention of rhodamine 123 by breast carcinoma and normal human mammary tissue. Breast Cancer Res Treat 1991; 18: 57–61.

    Article  PubMed  CAS  Google Scholar 

  45. Pedersen PL, Morris HP. Uncoupler stimulated adenosine triphosphatase activity: deficiency in intact mitochondria from Morris hepatomas and acites tumor cells. J Biol Chem 1974; 249:3327-3334.

    Google Scholar 

  46. Chan SHP, Barbour RL. Adenine nucleotide transport in hepatoma mitochondria: characterization of factors influencing the kinetics of ADP and ATP uptake. Biochim et Biophys Acta 1983; 723: 104–113.

    Article  CAS  Google Scholar 

  47. Sul HS, Shrago E, Goldfarb S, Rose F. Comparison of the adenine nucleotide translocase in hepatomas and rat liver mitochondria. Biochem et Biophys Acta 1979; 551: 148–156.

    Article  CAS  Google Scholar 

  48. Woldegiorgis G, Shrago E. Adenine nucleotide translocase activity and sensitivity to inhibitors in hepatomas: Comparison of the ADP/ATP carrier in mitochondria and in purified reconstituted liposome system. J Biol Chem 1985; 260: 7585–7590.

    CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Modica-Napolitano, J.S. (1998). The Mitochondrion as a Target for Cancer Chemotherapy. In: Singh, K.K. (eds) Mitochondrial DNA Mutations in Aging, Disease and Cancer. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-12509-0_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-12509-0_16

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-12511-3

  • Online ISBN: 978-3-662-12509-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics