While the most important examples of microprobe analysis have come from the use of an electron probe to produce excited states in the specimen and an X-ray analyzer to detect the radiative decay of these excited states, other forms of local excitation have also been used, for example, a focussed ion beam or a focussed or collimated photon beam. The signals that result from the local excitation can also assume many additional forms such as backscattered electrons, secondary electrons or ions, and optical radiation. Some of these signals obtained with electron beam excitation have been discussed in W. C. Nixon’s review paper at this conference [1].


Electron Probe Microprobe Analysis Auger Electron Focal Spot Size Copper Nickel Alloy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Nixow, W. C.: This conference.Google Scholar
  2. 2.
    For a comprehensive bibliography covering work up to 1965, see Heinrich, K. F. J., The Electron Microprobe, ed. by T. Mckinley et al., p. 841–974. New York: John Wiley & Sons 1965.Google Scholar
  3. 3.
    Liebmann, G.: Proc. Phys. Soc. (London) 68, 737 (1955).ADSCrossRefGoogle Scholar
  4. 4.
    Henke, B. L.: Optique des rayons X et microanalyse, p. 168–180. Paris: Hermann 1966.Google Scholar
  5. 5.
    Fernandes-Moran, H.: Electron Microscopy, vol. 1, p. 27. Tokyo: Marusen 1966.Google Scholar
  6. 6.
    Cosslett, V. E., and M. E. Haine: Proc. Int. Conf. Electron Microscopy, London 1954, p. 639 (1956).Google Scholar
  7. 7.
    Pattes, H. H., Jr.: X-ray Microscopy and Microanalysis, ed. by V. E. COSSLETT et al., p. 367373. New York: Academic Press 1957.Google Scholar
  8. 8.
    Wittry, D. B.: Thesis California Institute of Technology 1957.Google Scholar
  9. 9.
    Marton, L., R. A. Sheack, and R. B. Placious: X-ray microscopy and microanalysis, ed. by V. E. Cosslett et al., p. 287. New York: Academic Press 1957.Google Scholar
  10. 10.
    Crewe, A. V., D. N. Eggenberger, J. Wall, and L. M. Welter: Rev. Sci. Instr. 39, 576–583 (1968).ADSCrossRefGoogle Scholar
  11. 11.
    Brosrs, A. N.: J. Appl. Phys. 38, 1991–1992 (1967); erratta: J. Appl. Phys. 38, 3040 (1967).ADSGoogle Scholar
  12. 12.
    Le Poole, J. B.: Proc. Third Regional Conf. on Electron Microscopy, Prague 1964, p. 439.Google Scholar
  13. 13.
    These proceedings, paper Nos. 12, 39, 41, 54, 64.Google Scholar
  14. 14.
    Davidson, E., and H. Neuhaus: First National Conf. on Electron Probe Microanalysis, College Park, Md. 1966, paper No. 9.Google Scholar
  15. 15.
    Nicholson, J.: Third National Conf. on Electron Microprobe Analysis, Chicago 1968, paper No. 30.Google Scholar
  16. Nicholson, J. B., and M. F. Hassler: Advances in X-ray analysis, vol. 9, p. 420. New York: Plenum Press 1966.Google Scholar
  17. 16.
    Braybrook, R. F., A. Franks, F. J. Kirby, and K. Lindsey: Optique des Rayons X et Microanalyse, p. 477–479. Paris: Hermann 1966.Google Scholar
  18. 17.
    To be published.Google Scholar
  19. 18.
    Fitzgerald, R., K. Keil, and K. F. J. Heinrich: Science 159, 528–529 (1968).ADSCrossRefGoogle Scholar
  20. 19.
    Available for MS 46 DLC, Elmisonde.Google Scholar
  21. 20.
    Available for SEM 2A, EMX-SM, XMA 5, JXA 3A, JXA 5.Google Scholar
  22. 21.
    Available as for transmission except XMA 5.Google Scholar
  23. 22.
    Available for SEM 2A, AMX, EMX.Google Scholar
  24. 23.
    Available for EMX (SHIMADzu), JXA 3A, JXA 5, Model 400 S.Google Scholar
  25. 24.
    Available for EMX-SM.Google Scholar
  26. 25.
    Nearly all models.Google Scholar
  27. 26.
    Used in MS 46 DLC, XMA 5, JXA 3A, JXA 5.Google Scholar
  28. 27.
    Used in Microscan III, Microscan V.Google Scholar
  29. 28.
    Available in SEM 2A, MS 46 DLC.Google Scholar
  30. 29.
    Neuhaus, H.: Third National Conf. on Electron Microprobe Analysis, Chicago 1968, paper No. 19.Google Scholar
  31. 30.
    A comprehensive review of Scanning Electron Probe Microanalysis was recently published by K. F. J. Heinrich, National Bureau of Standards Technical Note 278 (1967).Google Scholar
  32. 31.
    Ong, P. S.: Third National Conf. on Electron Microprobe Analysis, Chicago 1968, paper no. 23.Google Scholar
  33. 32.
    Hughes, K. A., D. V. Sulway, R. C. Wayte, and P. R. Thornton: J. Appl. Phys. 38, 4922 (1967).ADSCrossRefGoogle Scholar
  34. 33.
    These proceedings, paper No. 100.Google Scholar
  35. 34.
    These proceedings, paper No. 41.Google Scholar
  36. 35.
    These proceedings, paper No. 39.Google Scholar
  37. 36.
    K Square Corporation, Pennwood and Lamar, Pittsburgh, Pa. 15221.Google Scholar
  38. 37.
    Duncumr, P.: Fifth International Conf. on Electron Microscopy, Philadelphia, paper KK 4. New York: Academic Press 1962.Google Scholar
  39. 38.
    Shippert, M. A., S. H. Moll, and R. E. Ogilvie: Anal. Chem. 39, 867–876 (1967).CrossRefGoogle Scholar
  40. 39.
    Browning, G. W., D. Cooknell, K. Heathcoat, I. P. Openshaw, J. L. Williams, and P. W. Wright: Second National Conf. on Electron Microprobe Analysis, Boston, Mass. 1967, paper No. 62.Google Scholar
  41. 40.
    Long, J. V. P.: Dept. of Mineralogy, Cambridge University, private communication.Google Scholar
  42. 41.
    Lifshin, E., and R. E. Hanneman: General Electric Research Report 66-C-250 (1966).Google Scholar
  43. 42.
    Dorfler, G.: Quantitative evaluation methods of alloy microstructures by microprobe methods, Seminar on Quantitative Microprobe Analysis, National Bureau of Standards; to be published as an NBS monograph.Google Scholar
  44. 43.
    Theisen, R.: Z. Metallk. 55, 128–134 (1964).Google Scholar
  45. 44.
    Melford, D. A., and R. Widdington: Optique des Rayons X et Microanalyse, p. 497–505. Paris: Hermann 1966.Google Scholar
  46. 45.
    Tong, M., C. Conty, and R. Lewis: Third National Conf. on Electron Microprobe Analysis, Chicago, 1968, paper No. 21; see also these proceedings, paper No. 100.Google Scholar
  47. 46.
    These proceedings, paper No. 77.Google Scholar
  48. 47.
    These proceedings, paper No. 34.Google Scholar
  49. 48.
    Wittry, D. B.: Optique des Rayons X et Microanalyse, p. 168–180. Paris: Hermann 1966.Google Scholar
  50. 49.
    Harris, L. A.: J. Appl. Phys. 39, 1419–1427, 1428–1431 (1968).Google Scholar
  51. 50.
    Palmberg, P. W.: J. Appl. Phys. 38, 2137–2147 (1967).ADSCrossRefGoogle Scholar
  52. 51.
    Tharp, L. N., and E. J. Schreibner: J. Appl. Phys. 38, 2320–2330 (1967).CrossRefGoogle Scholar
  53. 52.
    Weber, R. E., and W. T. Peria: J. Appl. Phys. 38, 4355–4359 (1967).ADSCrossRefGoogle Scholar
  54. 53.
    Castaing, R., and G. Slodzian: Compt. Rend. 255, 1893 (1962);Google Scholar
  55. Castaing, R., and G. Slodzian: J. Microscopie 1, 395 (1962).Google Scholar
  56. 54.
    Castaing, R., and G. Slodzian: Optique des Rayons X et Microanalyse, p. 48–63. Paris: Hermann 1966.Google Scholar
  57. 55.
    These proceedings, paper No. 88.Google Scholar
  58. 56.
    Long, J. V. P.: Brit. J. Appl. Phys. 16, 1277 (1965).ADSCrossRefGoogle Scholar
  59. 57.
    Drummond, T. W., and J. V. P. Long: Nature 215, 950–952 (1967).ADSCrossRefGoogle Scholar
  60. 58.
    Leibl, H.: J. Appl. Phys. 38, 5277–5283 (1967).ADSCrossRefGoogle Scholar
  61. 59.
    These proceeding“, paper Nos. 89, 90.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1969

Authors and Affiliations

  • D. B. Wittry
    • 1
  1. 1.Departments of Materials Science and Electrical EngineeringUniversity of Southern CaliforniaLos AngelesUSA

Personalised recommendations