Skip to main content

Pathophysiologie der Hirnischämie

  • Chapter
Zerebrale Ischämien

Zusammenfassung

Das Gewicht des Gehirns beträgt nur 2% des Körpergewichtes, es erhält aber 15% des Herzminutenvolumens und verbraucht 20% des gesamten O2-Bedarfs des Körpers. Die Energieversorgung wird fast ausschließlich über den Glukosemetabolismus gedeckt. Dabei ist der Substratvorrat im Gehirn in Form von Glukose oder Glykogen begrenzt und reicht nur zur Deckung des Energiebedarfs für etwa 1 min aus. Infolgedessen besteht ein empfindliches Gleichgewicht zwischen O2-Versorgung und Nährstoffzufuhr über das Blut und dem Energiebedarf des Gehirns. Schon nach wenigen Sekunden der Ischämie treten (zunächst noch keine bleibenden) neurologischen Funktionsstörungen auf.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 44.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  • Astrup J, Siesjo BK, Symon L (1981) Thresholds in cerebral ischemia. The ischemic penumbra. Stroke 12: 723

    Google Scholar 

  • Astrup J, Symon L, Branston NM (1979) Cortical evoked potentials in brain ischemia. Stroke 8: 51

    Article  Google Scholar 

  • Carafoli E, Crompton M (1978) The regulation of intracellular calcium. Curr Top Membr Transp 10: 151

    Article  CAS  Google Scholar 

  • Chien S (1982) Rheology in the microcirculation in normal and low flow states. Adv Shock Res 8: 71

    PubMed  CAS  Google Scholar 

  • Demopoulos HB, Flamm ES, Pietronigro DD (1980) The free radical pathology and the microcirculation in the major central nervous system disorders. Acta Physiol Scand (Suppl) 492: 91

    CAS  Google Scholar 

  • Farber JL, Chien KR, Mittnacht S jr (1981) The pathogenesis of irreversible cell injury in ischemia. Am J Pathol 102: 271

    PubMed  CAS  Google Scholar 

  • Harper AM (1966) Autoregulation of the cerebral blood flow: Influence of the arterial blood pressure on the blood flow through the cerebral cortex. J Neurol Neurosurg Psychiatry 29: 398

    Article  PubMed  CAS  Google Scholar 

  • Harper AM, Glass HI (1965) Effect of alterations in the arterial carbon dioxide tension on the blood flow through the cerebral cortex at normal and low arterial blood pressure. J Neurol Neurosurg Psychiatry 28: 449

    Article  PubMed  CAS  Google Scholar 

  • Hass WK (1981) Beyond cerebral blood flow, metabolism and ischemic thresholds. An examination of the role of calcium in the initiation of cerebral infarction. In: Meyer JS, Lechner H, Reivich M, Ott EO, Arabinar A (eds) Cerebral vascular disease 3. Excerpta Medica, Amsterdam, p 3

    Google Scholar 

  • Langfitt TW, Weinstein JD, Kassell NF (1965) Cerebral vasomotor paralysis produced by intracranial hypertension. Neurology 15: 622

    Article  PubMed  CAS  Google Scholar 

  • Lassen NA (1961) The luxury perfusion syndrome and its possible relation to acute metabolic acidosis localised within the brain. Lancet II: 1113

    Google Scholar 

  • Lassen NA, Palvölgyi R (1968) Cerebral steal during hypercapnia and inverse reaction during hypocapnia observed by the 133-xenon technique in man. Scand J Lab Invest 30: 113

    Article  Google Scholar 

  • Lund-Anderson M (1979) Transport of glucose from blood to brain. Physiol Ref 59: 305

    Google Scholar 

  • MacDowall DG (1966) Interrelationships between blood oxygen tensions and cerebral blood flow. In: Payne, Hill (eds) Oxygen measurements in blood flow and tissues. Churchill, London, p 205

    Google Scholar 

  • Nayler WG, Horowitz JD (1983) Calcium antagonists: A new class of drugs. Pharmacol Ther 20: 203

    Google Scholar 

  • Nelson E, Rennels M (1970) Innervation of intracranial arteries. Brain 93: 475

    Article  PubMed  CAS  Google Scholar 

  • Schweitzer ES, Blaustein MP (1980) Calcium buffering in presynaptic nerve terminals: Free calcium levels measured with arsenazo III. Biochem Biophys Acta 600: 912

    Google Scholar 

  • Siesjö BK (1981) Cell damage in the brain: A speculative hypothesis. J Cereb Blood Flow Metab 1: 155

    Article  PubMed  Google Scholar 

  • Siesjö BK (1984) Cerebral circulation and metabolism. J Neurosurg 60: 883

    Article  PubMed  Google Scholar 

  • Somjen GG (1979) Extracellular potassium in the mammalian central nervous system. Ann Rev Physiol 41: 159

    Article  CAS  Google Scholar 

  • Strandgaard S (1976) Autoregulation of cerebral blood flow in hypertensive patients. Circulation 53: 720

    Article  PubMed  CAS  Google Scholar 

  • Winn HR, Rubio GR, Berne RM (1981) The role of adenosine in the regulation of cerebral blood flow. J Cereb Blood Flow Metabol 1: 239

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Gelmers, HJ., Krämer, G., Hacke, W., Hennerici, M. (1989). Pathophysiologie der Hirnischämie. In: Zerebrale Ischämien. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-10993-9_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-10993-9_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-10994-6

  • Online ISBN: 978-3-662-10993-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics