Skip to main content

Part of the book series: Springer Series in Materials Science ((SSMATERIALS,volume 57))

Abstract

This chapter gives an overview of the main radiation defects in the group IV elemental semiconductors silicon and germanium and their Sil-X,Gex alloys (x the percentage fraction). As shown in Chap. 2, a high energetic particle or ion may loose part of its energy by interaction with the nuclei of the target material. This initially results in the creation of vacancy-interstitial pairs, of which only a small fraction escapes direct recombination. These intrinsic point defects are generally highly mobile and may, therefore, interact with other point defects and impurities to form more stable radiation defects. The nature of these defects depends strongly on the irradiation and/or annealing temperature, so that different damage regimes can be identified. Usually, increasing the annealing temperature leads to a further clustering or aggregation of the point defects into larger, more stable defects. Small clusters may, however, also directly form in the ‘cluster damage’ region induced by high energy neutrons or ions, where a high density of primary V-I pairs is created.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Watkins GD (1999) Vacancies and interstitials and their interactions with other defects in silicon. In: Abe T, Bullis WM, Kobayashi S, Lin W, Wagner P (eds) Proc third int symposium on defects in silicon. The Electrochem Soc, Pennington, NJ, vol 99–1, pp 38–52

    Google Scholar 

  2. Watkins GD (2000) Intrinsic defects in silicon. Mat Sci Semicond Processing 3: 227–235

    Google Scholar 

  3. Hazdra P, Rubes J, Vobecky J (1999) Divacancy profiles in MeV helium irradiated silicon from reverse I-V measurement. Nucl Instrum Meth Phys Research B 159: 207–217

    ADS  Google Scholar 

  4. Simoen E, Claeys C, Gaubas E, Ohyama H (2000) Impact of the divacancy (?) on the generation-recombination properties of 10 MeV proton irradiated Float-Zone silicon diodes. Nucl Instrum Meth Phys Research A 439: 310–318

    ADS  Google Scholar 

  5. Lee Y-H, Corbett JW (1976) EPR studies of defects in electron-irradiated silicon: A triplet state of vacancy-oxygen complexes. Phys Rev B 13: 2653–2666

    Google Scholar 

  6. Trauwaert M-A, Vanhellemont J, Maes HE, Van Bavel A-M, Langouche G, Clauws P (1995) Low-temperature anneal of the divacancy in p-type silicon: A transformation from V2 to VA complexes? Appl Phys Lett 66: 3057–3058

    ADS  Google Scholar 

  7. Privitera V, Coffa S, Priolo F, Rimini E (1998) Migration and interaction of point defects at room temperature in crystalline silicon. Rivista Nuovo Cimento 21: 1–52

    Google Scholar 

  8. Kimerling LC, Asom MT, Benton JL, Drevinsky PI, Caefer CE (1989) Interstitial defect reactions in silicon. Mat Science Forum 38–41: 141–150

    Google Scholar 

  9. Trauwaert M-A, Vanhellemont J, Maes HE, Van Bavel A-M, Langouche G, Stesmans A, Clauws P (1996) Influence of oxygen and carbon on the generation and annihilation of radiation defects in silicon. Mat Science Engineering B36: 196–199

    Google Scholar 

  10. Davies G (1989) The optical properties of luminescence in silicon. Phys Reports 176: 83–188

    ADS  Google Scholar 

  11. Lee Y-H, Gerasimenko NN, Corbett JW (1976) EPR study of neutron-irradiated silicon: A positive charge state of the <100> split diinterstitial. Phys Rev B 14: 4506–4520

    ADS  Google Scholar 

  12. Lee YH (1998) Silicon di-interstitial in ion-implanted silicon. Appl Phys Lett 73: 1119–1121

    ADS  Google Scholar 

  13. Lefèvre H (1980) Trap-centers of self-interstitials in silicon. Appl Phys 22: 15–22

    ADS  Google Scholar 

  14. Lefèvre H (1982) Annealing behavior of trap-centers in silicon containing A-swirl defects. Appl Phys A 29: 105–111

    ADS  Google Scholar 

  15. Watts SJ, Matheson J, Hopkins-Bond IH, Holmes-Siedle A, Mohammadzadeh A, Pace R (1996) A new model for generation-recombination in silicon depletion regions after neutron irradiation. IEEE Trans Nucl Sci 43: 2587–2594

    ADS  Google Scholar 

  16. Watts SJ (1998) Radiation induced defects in silicon. In: Claeys CL, Rai-Choudhury P, Watanabe M, Stallhofer P, Dawson HJ (eds) High purity silicon V. The Electrochem Soc, Pennington, NJ, vol 98–13, pp 355–370

    Google Scholar 

  17. Stolk PA, Gossmann H-J, Eaglesham DJ, Jacobson DC, Poate JM, Luftman HS (1995) Trap-limited interstitial diffusion and enhanced boron clustering in silicon. Appl Phys Lett 66: 568–570

    ADS  Google Scholar 

  18. Benton JL, Libertino S, Kringhtój P, Eaglesham DJ, Poate JM (1997) Evolution from point to extended defects in ion implanted silicon. J Appl Phys 82: 120–125

    ADS  Google Scholar 

  19. Giles MD (1991) Transient phosphorus diffusion below the amorphization threshold. J Electrochem Soc 138: 1160–1165

    Google Scholar 

  20. Hobler G, Pelaz L, Rafferty CS (2000) Dose, energy, and ion species dependence of the effective plus factor for transient enhanced diffusion. J Electrochem Soc 147: 3494–3501

    Google Scholar 

  21. Benton JL, Libertino S, Eaglesham DJ, Coffa S (1998) Defect evolution in ion implanted silicon. In: Claeys CL, Rai-Choudhury P, Watanabe M, Stallhofer P, Dawson HJ (eds) High purity silicon V. The Electrochem Soc, Pennington, NJ, vol 98–13, pp 328–340

    Google Scholar 

  22. Benton JL, Halliburton K, Libertino S, Eaglesham DJ, Coffa S (1998) Electrical signatures and thermal stability of interstitial clusters in ion implanted silicon. J Appl Phys 84: 4749–4756

    ADS  Google Scholar 

  23. Claverie A, Colombeau B, Ben Assayag G, Bonafos C, Cristiano F, Omri M, de Mauduit B (2000) Thermal evolution of extended defects in implanted Si: impact on dopant diffusion. Mat Sci Semicond Processing 3: 269–277

    Google Scholar 

  24. Cowern NEB, Mannino G, Stolk PA, Roozeboom F, Huizing HGA, van Berkum JGM, Cristiano F, Claverie A, Jaraíz M (1999) Energetics of self-interstitial clusters in Si. Phys Rev Lett 82: 4460–4463

    ADS  Google Scholar 

  25. Cowern NEB, Mannino G, Stolk PA, Roozeboom F, Huizing HGA, van Berkum JGM, Cristiano F, Claverie A, Jaraíz M (1999) Cluster ripening and transient enhanced diffusion in silicon. Mat Sci Semicond Processing 2: 369–376

    Google Scholar 

  26. Schiettekatte F, Roorda S, Poirier R, Fortin MO, Chazal S, Héliou R (2000) Direct evidence for 8-interstitial-controlled nucleation of extended defects in c-Si. Appl Phys Lett 77: 4322–4324

    ADS  Google Scholar 

  27. Davies G, Lightowlers EC, Ciechanowska ZE (1987) The 1018 meV (W or I) vibronic band in silicon. J Phys C: Solid State Phys 20: 191–205

    ADS  Google Scholar 

  28. Schultz PJ, Thompson TD, Elliman RG (1992) Activation energy for the photoluminescence W center in silicon. Appl Phys Lett 60: 59–61

    ADS  Google Scholar 

  29. Nakamura M, Nagai S, Aoki Y, Naramoto H (1998) Oxygen participation in the formation of the photoluminescence W center and the center’s origin in ion-implanted crystals. Appl Phys Lett 72: 1347–1349

    ADS  Google Scholar 

  30. Estreicher SK, Weber J, Derecskei-Kovacs A, Marynick DS (1997) Noble-gas-related defects in Si and the origin of the 1018 meV photoluminescence line. Phys Rev B 55: 5037–5044

    ADS  Google Scholar 

  31. Giri PK, Coffa S, Rimini E (2001) Evidence for small interstitial clusters as the origin of photoluminescence W band in ion-implanted silicon. Appl Phys Lett 78: 291–293

    ADS  Google Scholar 

  32. Schmidt DC, Svensson BG, Seibt M, Jagadish C, Davies G (2000) Photoluminescence, deep level transient spectroscopy and transmission electron microscopy measurements on MeV self-ion implanted and annealed n-type silicon. J Appl Phys 88: 2309–2317

    ADS  Google Scholar 

  33. Hallén A, Keskitalo N, Masszi F, Nâgl V (1996) Lifetime in proton irradiated silicon. J Appl Phys 79: 3906–3914

    ADS  Google Scholar 

  34. Bleichner H, Jonsson P, Keskitalo N, Nordlander E (1996) Temperature and injection dependence of the Shockley-Read-Hall lifetime in electron irradiated n-type silicon. J Appl Phys 79: 9142–9148

    ADS  Google Scholar 

  35. Keskitalo N, Jonsson P, Nordgren K, Bleichner H, Nordlander E (1998) Temperature and injection dependence of the Shockley-Read-Hall lifetime in electron-irradiated p-type silicon. J Appl Phys 83: 4206–4212

    ADS  Google Scholar 

  36. Evwaraye AO, Baliga BJ (1977) The dominant recombination centers in electron-irradiated semiconductor devices. J Electrochem Soc 124: 913–916

    Google Scholar 

  37. Kaniava A, Vanhellemont J, Simoen E, Claeys C, Gaubas E (1996) Characterisation of high-energy proton irradiation induced recombination centers in silicon. Solid State Phenomena 47–48: 371–376

    Google Scholar 

  38. Baliga RJ, Evwaraye AO (1983) Correlation of lifetime with recombination centers in electron-irradiated p-type silicon. J Electrochem Soc 130: 1916–1918

    Google Scholar 

  39. Hüppi MW (1990) Proton irradiation of silicon: Complete electrical characterization of the induced recombination centers. J Appl Phys 68: 2702–2707

    ADS  Google Scholar 

  40. Kuchinskii PV, Lomako VM (1986) The effect of thermal and radiation defects on the recombination properties of the base region of diffused silicon p-n structures. Solid-State Electron 29: 1041–1051

    ADS  Google Scholar 

  41. Germany RS, Campisano SU (1992) Room-temperature recombination of point defects produced in silicon p-n junctions by light ion irradiation. Appl Phys Lett 60: 1726–1728

    ADS  Google Scholar 

  42. Simoen E, Vanhellemont J, Claeys C (1996) Effective generation-recombination parameters in high-energy proton irradiated silicon diodes. Appl Phys Lett 69: 2858–2860

    ADS  Google Scholar 

  43. Iles PA (2001) Evolution of space solar cells. Solar Energy Mat & Solar Cells 68: 1–13

    Google Scholar 

  44. Gill K, Hall G, MacEvoy B (1997) Bulk damage effects in irradiated silicon detectors due to clustered divacancies. J Appl Phys 82: 126–136

    ADS  Google Scholar 

  45. MacEvoy BC, Hall G (2000) Defect kinetics in novel detector materials. Mat Sci Semicond Processing 3: 243–249

    Google Scholar 

  46. Feick H, Fretwurst E, Moll M, Lindström G (1997) Correlation of radiation damage effects in high resistivity silicon detectors with results from deep level spectroscopy. IEEE Trans Nucl Sci 44: 825–833

    ADS  Google Scholar 

  47. Svensson BG, Mohadjeri B, Hallén A, Svensson JH, Corbett JW (1991) Divacancy acceptor levels in ion-irradiated silicon. Phys Rev B 43: 2292–2298

    ADS  Google Scholar 

  48. Moll M, Feick H, Fretwurst E, Lindström G, Schütze C (1997) Comparison of defects produced by fast neutrons and 60Co-gammas in high-resistivity silicon detectors using deep-level transient spectroscopy. Nucl Instrum Methods Phys Research A 388: 335–339

    ADS  Google Scholar 

  49. Hardalov ChM, Stefanov KD, Sueva D (1995) On the applicability of deep-level transient spectroscopy for the investigation of deep centers in silicon created by fast neutron irradiation. Appl Phys A 61: 107–109

    ADS  Google Scholar 

  50. Stefanov KD, Hardalov ChM, Sueva D (1997) Investigation of radiation damage in silicon produced by fast neutron irradiation with lifetime measurements and deep level transient spectroscopy. Phys Stat Sol (a) 163: 27–32

    ADS  Google Scholar 

  51. Passeri D, Bilei GM, Ciampolini P (1999) A comprehensive analysis of low-resistivity silicon radiation detectors. IEEE Trans Nucl Sci 46: 260–265

    ADS  Google Scholar 

  52. Passeri D, Ciampolini P, Bilei GM, Moscatelli F (2001) Comprehensive modeling of bulk-damage effects in silicon radiation detectors. In: Proc RADECS 2000, pp. 188–193

    Google Scholar 

  53. Osborne MD, Hobson PR, Watts SJ (2000) Numerical simulation of neutron radiation effects in avalanche photodiodes. IEEE Trans Nucl Sci 47: 529–535

    Google Scholar 

  54. Khan A, Yamaguchi M, Kaneiwa M, Saga T, Abe T, Annzawa O, Matsuda S (2000) Influence of the dopant species on radiation-induced defects in Si single crystals. J Appl Phys 87: 8389–8392

    ADS  Google Scholar 

  55. Dezillie B, Li Z, Eremin V, Bruzzi M, Pirollo S, Pandey SU, Li CJ (1999) Improved neutron radiation hardness for Si detectors: Application of low resistivity starting material and/or manipulation of Neff by selective filling of radiation-induced traps at low temperatures. IEEE Trans Nucl Sci 46: 221–227

    ADS  Google Scholar 

  56. Lindström G, Fretwurst E, Feick H, Moll M, Vasilescu A, Watts SJ (2000) Radiation hard silicon detectors — Developments by the RD48 (ROSE) collaboration. In: Claeys C (ed) Proc 2nd ENDEASD Workshop, pp 225–243

    Google Scholar 

  57. Ruzin A, Casse G, Glaser M, Lemeilleur F, Matheson J, Watts S, Zanet A (2000) Radiation effects in silicon detectors processed on carbon and oxygen-rich substrates. Mat Sci Semicond Processing 3: 257–261

    Google Scholar 

  58. Simoen E, Claeys C, Ohyama H (1998) Factors determining the damage coefficients and the low-frequency noise in MeV proton-irradiated silicon diodes. IEEE Trans Nucl Sci 45: 89–97

    ADS  Google Scholar 

  59. Brelot A (1971) Tin as a vacancy trap in silicon at room temperature. IEEE Trans Nucl Sci 19: 220–226

    ADS  Google Scholar 

  60. Brelot A, Charlemagne J (1971) Infrared studies of low temperature electron irradiated silicon containing germanium, oxygen and carbon. Radiation Effects 9: 65–73

    ADS  Google Scholar 

  61. Watkins GD (1975) Defects in irradiated silicon: EPR of the tin-vacancy pair. Phys Rev B 12: 4383–4390

    MathSciNet  ADS  Google Scholar 

  62. Simoen E, Claeys C, Neimash VB, Kraitchinskii A, Kras’ko M, Puzenko O, Blondeel A, Clauws P (2000) Deep levels in high-energy proton-irradiated tin-doped n-type Czochralski silicon. Appl Phys Lett 76: 2838–2840

    ADS  Google Scholar 

  63. Nylandsted Larsen A, Goubet JJ, Mejlholm P, Sherman Christensen J, Fanciulli M, Gunnlaugsson HP, Weyer G, Wulff Petersen J, Resende A, Kaukonen M, Jones R, Öberg S, Briddon PR, Svensson BG, Lindström JL, Dannefaer S (2000) Tin-vacancy acceptor levels in electron-irradiated n-type silicon. Phys Rev B 62: 4535–4544

    ADS  Google Scholar 

  64. Goubet JJ, Sherman Christensen J, Mejlholm P, Nylandsted Larsen A (2000) Tin-related deep levels in p-and n-type silicon In: Claeys C (ed) Proc 2nd ENDEASD Workshop, pp 137–142

    Google Scholar 

  65. Da Via C (2000) Heavily irradiated Si detectors operated at cryogenic temperatures: the Lazarus effect. In: Claeys C (ed) Proc 2nd ENDEASD Workshop, pp 110–116

    Google Scholar 

  66. Fage-Pedersen J, Nylandsted Larsen A, Mesh A (2000) Irradiation-induced defects in Ge studied by transient spectroscopies. Phys Rev B 62: 10116–10125

    ADS  Google Scholar 

  67. Wolf J, Katterloher R, Lemke D, Grözinger U, Hermans L, Frenzl O, Engemann D, Beeman J, Fabbricotti M (1996) Far-infrared stressed Ge:Ga array for FIRST. In: Proc 30th ESLAB symposium on submillimetre and far-infrared space instrumentation, ESA SP-388, pp 25–28

    Google Scholar 

  68. Patrashin M, Fouks B, Grözinger U, Lemke D, Wolf J (1997) Residual conductivity of stressed Ge:Ga photoconductors after low-dose gamma irradiation. J Appl Phys 82: 1450–1453

    ADS  Google Scholar 

  69. Beeman JW, Hansen WL, Haller EE (1996) Extrinsic germanium photoconductors for far-IR astronomy: Research results and works in progress. In: Proc 30th ESLAB symposium on submillimetre and far-infrared space instrumentation, ESA SP-388, pp. 21–24

    Google Scholar 

  70. Haller EE, Itoh KM, Beeman JW (1996) Neutron transmutation doped (NTD) germanium thermistors for sub-mm bolometer applications. In: Proc 30th ESLAB symposium on submillimetre and far-infrared space instrumentation, ESA SP-388, pp 115–118

    Google Scholar 

  71. Simoen E, Clauws P, Broeckx J, Vennik J, Van Sande M, De Laet L (1982) Correlation between DLTS-measurements and the performance of high purity germanium detectors IEEE Trans Nucl Sci 29: 789–792

    Google Scholar 

  72. Blondeel A, Clauws P (1999) Photoinduced current transient spectroscopy of deep defects in n-type ultrapure germanium. J Appl Phys 86: 940–945

    ADS  Google Scholar 

  73. Chung MA, Meier DL, Szedon JR, Bartko J (1988) Electron radiation and annealing of MOCVD GaAs and GaAs/Ge solar cells. In: Proc 20th photovoltaic specialists conference. The IEEE, New York, pp 924–929

    Google Scholar 

  74. Anspaugh BE (1991) Proton and electron damage coefficients for GaAs/Ge solar cells. In: Proc 22nd photovoltaic specialists conference. The IEEE, New York, pp 1593–1598

    Google Scholar 

  75. Gobeli GW (1958) Alpha-particle irradiation of Ge at 4.2 K. Phys Rev 112: 732–739

    ADS  Google Scholar 

  76. MacKay JW, Klontz EE (1959) Low-temperature annealing studies in Ge. J Appl Phys 30: 1269–1274

    ADS  Google Scholar 

  77. Callcot TA, MacKay JW (1967) Irradiation damage in n-type germanium at 4.2 K. Phys Rev 161: 698–710

    ADS  Google Scholar 

  78. Bourgoin J, Mollot F (1971) Behaviour of primary defects in electron-irradiated germanium. Phys Stat Sol B 43: 343–355

    ADS  Google Scholar 

  79. Ehrhart P, Zillgen H (1999) Vacancies and interstitial atoms in eirradiated germanium. J Appl Phys 85: 3503–3511

    ADS  Google Scholar 

  80. Fukuoka N, Saito H (1974) The defects produced by electron irradiation and annealed at about 360K in n-type germanium. Jpn J Appl Phys 13: 1524–1532

    ADS  Google Scholar 

  81. Fukuoka N, Saito H (1976) Radiation induced defects in germanium single crystals of high purity. Jpn J Appl Phys 15: 237–242

    ADS  Google Scholar 

  82. Emtsev VV, Mashovets TV, Miknovich VV (1992) Frenkel pairs in germanium and silicon. Soy Phys Semicond 26: 12–25

    Google Scholar 

  83. Mooney PM, Poulin F, Bourgoin JC (1983) Annealing of electron-induced defects in n-type germanium. Phys Rev B 28: 3372–3377

    ADS  Google Scholar 

  84. Fourches N, Huck A, Walter G, Bourgoin JC (1989) Fast neutron irradiation induced defects in high purity germanium. Materials Science Forum 38–41: 1233–1238

    Google Scholar 

  85. Fourches N, Walter G, Bourgoin JC (1991) Neutron-induced defects in high-purity germanium. J Appl Phys 69: 2033–2043

    ADS  Google Scholar 

  86. Swanson ML (1960) Low-temperature neutron-irradiation damage and its recovery in high-purity germanium. Can J Phys 44: 2181–2199

    ADS  Google Scholar 

  87. Haesslein H, Sielemann R, Zistl C (1998) Vacancies and self-interstitials in germanium observed by perturbed angular correlation spectroscopy. Phys Rev Lett 80: 2626–2629

    ADS  Google Scholar 

  88. Poulin F, Bourgoin JC (1982) Characteristics of the electron traps produced by electron irradiation in n-type germanium. Phys Rev B 26: 6788–6794

    ADS  Google Scholar 

  89. Ito K, Corbett JW (1983) Interaction of point defects with hydrogen in germanium. Jpn J Appl Phys 22: L724 - L726

    ADS  Google Scholar 

  90. Fukuoka N, Saito H (1983) The hole trapping defects in irradiated germanium as studied by DLTS. Physica 116B: 343–348

    Google Scholar 

  91. Li SS, Choi CG, Loo RY (1985) Studies of radiation-induced defects in one-MeV electron and low energy proton irradiated germanium and AlxGa1−x As p-n junction solar cells. In: Proc 18th photovoltaic specialists conference. The IEEE, New York, pp 640–645

    Google Scholar 

  92. Fukuoka N, Honda M, Nishioka Y, Atobe K, Matsukawa T (1995) Property of radiation-induced defects in germanium single crystals. Jpn J Appl Phys 34: 3204–3208

    ADS  Google Scholar 

  93. Nagesh V, Farmer JW (1988) Study of irradiation-induced defects in germanium. J Appl Phys 63: 1549–1553

    ADS  Google Scholar 

  94. Marie P, Levalois M, Bogdanski P (1993) Irradiation-induced defects in n-type germanium. J Appl Phys 74: 868–871

    ADS  Google Scholar 

  95. Marie P, Levalois M, Paumier E (1996) Swift-heavy-ion induced damage in germanium: An evaluation of defect introduction rates. J Appl Phys 79: 7555–7562

    ADS  Google Scholar 

  96. Colder A, Levalois M, Marie P (2000) Study of electron, proton and swift heavy ion irradiation of n-type germanium using deep level transient spectroscopy. J Appl Phys 88: 3082–3084

    ADS  Google Scholar 

  97. Fukuoka N, Saito H (1982) Defect states in n-type germanium irradiated with 1.5 MeV electrons. Jpn J Appl Phys 21: 930–935

    ADS  Google Scholar 

  98. Fourches N (1995) High defect density regions in neutron irradiated high-purity germanium: Characteristics and formation mechanisms. J Appl Phys 77: 3684–3689

    ADS  Google Scholar 

  99. Patrashin M, Shibai H, Okuda H, Hiromoto N, Fujiwara M, Fouks B (1996) Suppression of the radiation-induced effects in Ge:Ga detectors. In: Proc 30th ESLAB symposium on submillimetre and far-infrared space instrumentation, ESA SP-388, pp 29–32

    Google Scholar 

  100. Lang DV, People R, Bean JC, Sergent AM (1985) Measurement of the band gap of GexSi1−x/Si strained-layer heterostructures. Appl Phys Lett 47: 1333–1335

    ADS  Google Scholar 

  101. Maiti CK, Bera LK, Chattopadhyay S (1998) Strained-Si heterostructure field effect transistors. Semicond Sci Technol 13: 1225–1246

    ADS  Google Scholar 

  102. Honda T, Suezawa M, Sumino K (1996) Growth and characterization of bulk Si-Ge single crystals. Jpn J Appl Phys 35: 5980–5985

    ADS  Google Scholar 

  103. Jain SC, Hayes W (1991) Structure, properties and applications of GexSi1−x strained layers and superlattices. Semicond Sci Technol 6: 547–576

    ADS  Google Scholar 

  104. Osten HJ (1998) Band-gap changes and band offsets for ternary Si1−x−yGexCy alloys on Si(001). J Appl Phys 84: 2716–2721

    ADS  Google Scholar 

  105. Franz M, Pressel K, Gaworzewski P (1998) Alloy effects in boron doped Si-rich SiGe bulk crystals. J Appl Phys 84: 709–712

    ADS  Google Scholar 

  106. Wolf M, Brendel R, Werner JH, Queisser HJ (1998) Solar cell efficiency and carrier multiplication in Si1−xGex alloys. J Appl Phys 83: 4213–4221

    ADS  Google Scholar 

  107. Said K, Poortmans J, Libezny M, Caymax M, Nijs J, Mertens R, Vinckier C, Vyncke D, Seifert W, Kittler M, Silier I, Gutjahr A, Konuma M (1997) Low-temperature passivation for SiGe-alloy solar cells. In: Proc 14th European photovoltaic solar energy conference, pp 986–992

    Google Scholar 

  108. LeGoues FL, Meyerson BS, Morar JF, Kirchner PD (1992) Mechanism and conditions for anomalous strain relaxation in graded thin films and superlattices. J Appl Phys 71: 4230–4243

    ADS  Google Scholar 

  109. Cressler JD (1995) Status and trends in the cryogenic operation of SiGe bipolar technology. In: Claeys CL, Raider SI, Kirschman R, Brown WD (eds) Proc symposium on low temperature electronics and high temperature superconductivity. The Electrochem Soc, Pennington, NJ, proc vol 95–9, pp 159–177

    Google Scholar 

  110. Nayak DK, Woo JCS, Park JS, Wang KL, MacWilliams KP (1991) Enhancement-mode quantum-well GexSi1_x PMOS. IEEE Electron Device Lett 12: 154–156

    ADS  Google Scholar 

  111. O’Neill AG, Antoniadis DA (1996) Deep submicron CMOS based on silicon germanium technology. IEEE Trans Electron Devices 43: 911–918

    ADS  Google Scholar 

  112. Weiser J, Hoyt JL, Gibbons JF (1994) Electron mobility enhancement in strained-Si n-type metal-oxide-semiconductor field-effect transistor. IEEE Electron Device Lett 15: 100–102

    ADS  Google Scholar 

  113. De Meyer K, Biesemans S, Collaert N, Kubicek S, Verheyen P (1998) New architectures for deep submicron MOSFETs. In: Touboul A, Danto Y, Klein JP, Grünbacher H (eds) Proc ESSDERC ‘88. Editions Frontières, Paris, France, pp 63–68

    Google Scholar 

  114. Karunasiri RPG, Wang KL (1991) Quantum devices using SiGe/Si heterostructures. J Vac Sci Technol B 9: 2064–2071

    Google Scholar 

  115. Nur O, Willander M, Turan R, Sardela Jr MR, Hansson GV (1996) Metal-semiconductor junctions on p-type strained Si1_xGex layers. Appl Phys Lett 68: 1084–1086

    ADS  Google Scholar 

  116. Dentel D, Kubler L, Bischoff JL, Chattopadhyay S, Bera LK, Ray SK, Maiti CK (1998) Molecular beam epitaxial growth of strained Si1−xGex layers on graded Si1−xGex for Pt silicide Schottky diodes. Semicond Sci Technol 13: 214–219

    ADS  Google Scholar 

  117. Jung TG, Chang CY, Liu CS, Chang TC, Lin HC, Tsai WC, Huang GW, Chen LP (1994) Characterization of the Si/SiGe heterojunction diode grown by ultrahigh vacuum chemical vapor deposition. Appl Phys Lett 76: 4921–4923

    Google Scholar 

  118. Vonsovici A, Vescan L, Apetz R, Koster A, Schmidt K (1998) Room temperature photocurrent spectroscopy of SiGe/Si p-i-n photodiodes grown by selective epitaxy. IEEE Trans Electron Devices 45: 538–542

    Google Scholar 

  119. Chang S-J, Nayak DK, Shiraki Y (1998) 1.54 pm electroluminescence from erbium-doped SiGe light emitting diodes. J Appl Phys 83: 1426–1428

    Google Scholar 

  120. Budtz-Jorgensen CV, Kringhoj P, Nylansted Larsen A, Abrosimov NV (1998) Deep-level transient spectroscopy of the Ge-vacancy pair in Ge-doped n-type silicon. Phys Rev B 58: 1110–1113

    ADS  Google Scholar 

  121. Kawasuso A, Okada S, Yonenaga I, Honda T, Suezawa M (1997) Positron annihilation study of electron-irradiated silicon-germanium bulk alloys. Materials Science Forum 258–263: 127–132

    Google Scholar 

  122. Kawasuso A, Okada S, Suezawa M, Honda T, Yonenaga I (1997) Positron annihilation in electron-irradiated SixGel_x bulk crystal. J Appl Phys 81: 2916–2918

    ADS  Google Scholar 

  123. Schmalz K, Emtsev VV (1994) Radiation-induced defects in Czochralski-grown silicon doped with germanium. Appl Phys Lett 65: 1575–1577

    ADS  Google Scholar 

  124. Mesh A, Nylandsted Larsen A (1999) Vacancy in relaxed p-type Si1_xGex alloys: Evidence for strong disorder induced relaxation. Phys Rev Lett 83: 148–151

    Google Scholar 

  125. Goubet JJ, Stievenard D, Mathiot D, Zazoui M (1992) Electron-irradiation-induced defects in Si-Ge alloys. Phys Rev B 46: 10113–10118

    ADS  Google Scholar 

  126. Goubet JJ, Stievenard D (1995) Annealing study of electron irradiation-induced defects in SiGe alloys. Appl Phys Lett 66: 1409–1411

    ADS  Google Scholar 

  127. Kringhoj P, Nylandsted Larsen A (1995) Irradiation-induced defect states in epitaxial n-type Si1−xGex alloy layers. Phys Rev B 52: 16333–16336

    ADS  Google Scholar 

  128. Nylandsted Larsen A (1997) Defects in SiGe. Materials Science Forum 258–263: 83–90

    Google Scholar 

  129. Monakhov EV, Nylandsted Larsen A, Kringhoj P (1997) Electronic defect levels in relaxed, epitaxial p-type Si1−xGex layers produced by MeV proton irradiation. J Appl Phys 81: 1180–1183

    ADS  Google Scholar 

  130. Drevinsky PJ, Caefer CE, Tobin SP, Mikkelsen Jr JC, Kimerling LC (1988)Influence of oxygen and boron on defect production in irradiated silicon. Mat Res Soc Symp Proc 104: 167–172

    Google Scholar 

  131. Goodman SA, Auret FD, Nauka K, Malherbe JB (1997) Defect characterization of n-type Si1−xGex after 1.0 keV helium-ion etching. J Electron Mater 26: 463–469

    ADS  Google Scholar 

  132. Goodman SA, Auret FD, Mamor M, Deenapanray PNK, Meyer WE (1997) Electronic properties of defects introduced in n-and p-type Si1−xGex during ion etching. Materials Science Forum 258–263: 133–138

    Google Scholar 

  133. Vanhellemont J, Trauwaert M-A, Poortmans J, Caymax M, Clauws P (1992) 1 MeV electron irradiation induced degradation of boron doped strained Si1−xGex layers. Thin Solid Films 222: 166–172

    Google Scholar 

  134. Vanhellemont J, Trauwaert M-A, Poortmans J, Caymax M, Clauws P (1993) Fast degradation of boron-doped strained Si1−xGex layers by 1-MeV electron irradiation. Appl Phys Lett 62: 309–311

    ADS  Google Scholar 

  135. Ohyama H, Vanhellemont J, Sunaga H, Poortmans J, Caymax M, Clauws P (1994) On the degradation of 1-MeV electron irradiated Si1−xGex diodes. IEEE Trans Nucl Sci 41: 487–494

    ADS  Google Scholar 

  136. Ohyama H, Vanhellemont J, Takami Y, Hayama K, Sunaga H, Poortmans J, Caymax M, Clauws P (1994) Germanium content dependence of radiation damage in strained Si1−xGex epitaxial devices. IEEE Trans Nucl Sci 41: 2437–2442

    ADS  Google Scholar 

  137. Ohyama H, Vanhellemont J, Takami Y, Hayama K, Sunaga H, Poortmans J, Caymax M (1995) Degradation of Si1_XGe, epitaxial heterojunction bipolar transistors by 1-MeV fast neutrons, IEEE Trans Nucl Sci 42: 1550–1557

    ADS  Google Scholar 

  138. Ohyama H, Vanhellemont J, Takami Y, Hayama K, Sunaga H, Poortmans J, Caymax M (1996) Radiation source dependence of degradation and recovery of irradiated Si1−xGex epitaxial devices. In: Proc RADECS ‘85. The IEEE, New York, pp 66–71

    Google Scholar 

  139. Ohyama H, Hayama K, Vanhellemont J, Poortmans J, Caymax M, Takami Y, Sunaga H, Nashiyama I, Uwatoko Y (1996) Degradation of Si1−xGex epitaxial devices by proton irradiation. Appl Phys Lett 69: 2429–2431

    ADS  Google Scholar 

  140. Ohyama H, Vanhellemont J, Takami Y, Hayama K, Sunaga H, Nashiyama I, Uwatoko Y, Poortmans J, Caymax M (1996) Degradation and recovery of proton irradiated Si1−xGex epitaxial devices. IEEE Trans Nucl Sci 43: 3089–3096

    ADS  Google Scholar 

  141. Ohyama H, Vanhellemont J, Takami Y, Sunaga H, Nashiyama I, Uwatoko Y, Poortmans J, Caymax M (1997) Degradation of SiGe devices by proton irradiation. Radiat Phys Chem 50: 341–346

    ADS  Google Scholar 

  142. Ohyama H, Simoen E, Claeys C, Vanhellemont J, Takami Y, Sunaga H, Poortmans J, Caymax M (1997) Lattice defects in Si1−xGex devices by proton irradiation and their effect on device performance. Solid State Phenomena 57–58: 239–244

    Google Scholar 

  143. Ohyama H, Simoen E, Claeys C, Takami Y, Hayama K, Hakata T, Kobayashi K, Sunaga H, Poortmans J, Caymax M (1998) The impact of the Ge content on the characteristics of strained Si1−xGex epitaxial diodes before and after degradation by high energy particles. In: Touboul A, Danto Y, Klein JP, Grünbacher H (eds), Proc ESSDERC ‘88. Les Editions Frontières, Paris, France, pp 548–551

    Google Scholar 

  144. Ohyama H, Simoen E, Claeys C, Takami Y, Hayama K, Hakata T, Sunaga H, Poortmans J, Caymax M (1998) Impact of high energy particle irradiation on the electrical performance of Si1−xGex epitaxial diodes. In: Proc 2nd international conference on materials for microelectronics, The Institute of Materials, London, UK, pp 11–18

    Google Scholar 

  145. Wang KL, Lee YH, Corbett JW (1978) Defect distribution near the surface of electron-irradiated silicon. Appl Phys Lett 33: 547–548

    ADS  Google Scholar 

  146. Mamor M, Auret FD, Goodman SA, Myburg G (1998) Electrical characterization of defects introduced in p-Si1−xGex during electron-beam deposition of Sc Schottky barrier diodes. Appl Phys Lett 72: 1069–1071

    ADS  Google Scholar 

  147. Mamor M, Auret FD, Goodman SA, Myburg G, Deenapanray PNK, Meyer WE (1997) Electrical characterization of electron beam induced defects in epitaxially grown Si1−xGex. Materials Science Forum 258–263: 115–120

    Google Scholar 

  148. Lie DYC (1998) Doping and processing epitaxial Si1−xGex films on Si(100) by ion implantation for Si-based heterojunction devices applications. J Electron Mater 27: 377–401

    ADS  Google Scholar 

  149. Haynes TE, Holland OW (1992) Damage accumulation during ion implantation of un-strained Si1−xGex alloy layers. Appl Phys Lett 61: 61–63

    ADS  Google Scholar 

  150. Holland OW, Haynes TE (1992) Damage saturation during high-energy ion implantation of Si1−xGex. Appl Phys Lett 61: 3148–3150

    ADS  Google Scholar 

  151. Nylandsted Larsen A, O’Raifeartaigh C, Barklie RC, Holm B, Priolo F, Franzo G, Lulli G, Bianconi M, Nipoti R, Lindner JKN, Mesh A, Grob JJ, Cristiano F, Hemment PLF (1997) MeV ion implantation induced damage in relaxed Si1−xGex. J Appl Phys 81: 2208–2218

    ADS  Google Scholar 

  152. Lindner JKN (1996) Radiation damage of 2 MeV Si ions in Si0.75Ge0.25: optical measurements and damage modelling. Nucl Instrum Methods Phys Research B 112: 316–320

    ADS  Google Scholar 

  153. Willander M, Shen G-D, Xu D-X, Ni W-X (1988) Current transport in strained n-Si1−xGex/p-Si heterojunction diodes. J Appl Phys 63: 5036–5039

    ADS  Google Scholar 

  154. Xu DX, Shen GD, Willander M, Knall J, Hasan M-A, Hansson GV (1990) The influence of defects on device performance of MBE-grown Si homojunction and strained Si1−xGex/Si heterostructures. J Electron Materials 19: 1033–1041

    ADS  Google Scholar 

  155. Park JS, Lin TL, Jones EW, Gunapala SD, Soli GA, Wilson BA (1993) Proton irradiation effects on strained Si1−xGex/Si heterostructures. Appl Phys Lett 63: 3497–3499

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Claeys, C., Simoen, E. (2002). Displacement Damage in Group IV Semiconductor Materials. In: Radiation Effects in Advanced Semiconductor Materials and Devices. Springer Series in Materials Science, vol 57. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-04974-7_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-04974-7_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-07778-4

  • Online ISBN: 978-3-662-04974-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics