Skip to main content

Cryopreservation of Australian Species — The Role of Plant Growth Regulators

  • Chapter
Cryopreservation of Plant Germplasm II

Part of the book series: Biotechnology in Agriculture and Forestry ((AGRICULTURE,volume 50))

Abstract

Cryostorage of shoot apices has become an important tool for the preservation of plant tissues that cannot be maintained using conventional technologies. In recent years, the development and modification of procedures has led to the successful cryostorage of a large number of diverse agricultural, horticultural and endangered taxa (see Reinhoud et al. 2000; Sakai 2000). In particular, the vitrification procedure has been developed and employed prominently over the last decade, with over 140 species and cultivars being successfully cryostored (Sakai 2000).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bajaj YPS (1995) Cryopreservation of germplasm of potato (Solanum tuberosum L.) and Cassava (Manihot esculenta Crantz). In: Bajaj YPS (ed) Biotechnology in agriculture and forestry, vo l32. Cryopreservation of plant germplasm I. Springer, Berlin Heidelberg New York, pp 398–416

    Google Scholar 

  • Benson EE, Noronha-Dutra AA (1988) Chemiluminescence in cryopreserved plant tissues. The possible role of singlet oxygen in cryoinjury. Cryo Lett 18: 65–76

    Google Scholar 

  • Benson EE, Harding K, Smith H (1988) Variation in recovery of cryopreserved shoot tips of Solanum tuberosum exposed to different pre-and post-freeze light regimes. Cryo Lett 10: 323–344

    Google Scholar 

  • Chang Y, Barker RE, Reed B (2000) Cold acclimation improves recovery of cryopreserved grass (Zoysia and Lolium spp.). Cryo Lett 2: 107–116

    CAS  Google Scholar 

  • Chang Y, Reed BM (1999) Extended cold acclimation and recovery medium alteration improve regrowth of rubus shoot tips following cryopreservation. Cryo Lett 20: 371–376

    Google Scholar 

  • Charoensub R, Phansiri S, Sakai A,Yongmenitchai W (1999) Cryopreservation of Cassava in vitro-grown shoot tips cooled to —196 °C by vitrification. Cryo Lett 20: 89–94

    Google Scholar 

  • Demeulemeester MAC, Vandenbussche B, Proft MPD (1993) Regeneration of chicory plants from cryopreserved in vitro shoot tips. Cryo Lett 14: 57–64

    Google Scholar 

  • George EF (1993) Plant propagation by tissue culture, part 1. The technology, 2nd edn. Exegetics, London, 574 pp

    Google Scholar 

  • Grospietsch M, Stodulkova E, Zamecnik J (1999) Effect of osmotic stress on the dehydration tolerance and cryopreservation of Solanum tuberosum shoot tips. Cryo Lett 20: 339–346

    Google Scholar 

  • Harding K, Benson EE (1994) A study of growth, flowering, and tuberisation in plants derived from cryopreserved potato shoot-tips: implications for in vitro germplasm collections. Cryobiology 15: 59–66

    Google Scholar 

  • Lambardi M, Fabbri A, Caccavale A (2000) Cryopreservation of white poplar (Populus alba L.) by vitrification of in vitro-grown shoot tips. Plant Cell Rep 19: 213–218

    Article  CAS  Google Scholar 

  • Li CJ, Bangerth F (1992) The possible role of cytokinins, ethylene and indoleacetic acid in apical dominance. In: Karssen CML, Vanluon C, Vreugdenhill D (eds) Current plant science and biotechnology in agriculture, vol 13. Progress in plant growth regulators. Kluwer, Amsterdam

    Google Scholar 

  • Luo J, Reed BM (1997) Abscisic acid-responsive protein, bovine serum albumin, and proline pre-treatments improve recovery of in vitro currant shoot-tip meristems and callus cryopreserved by vitrification. Cryobiology 34: 240–250

    Article  CAS  Google Scholar 

  • Matsumoto T, Sakai A, Yamada K (1994) Cryopreservation of in vitro-grown apical meristems of wasabi (Wasabia japonica) by vitrification and subsequent high plant regeneration. Plant Cell Rep 13: 442–446

    Article  Google Scholar 

  • McComb JA, Bennett IJ, Tonkin C (1996) In vitro propagation of Eucalyptus species. In: Taji A, Williams R (eds) Tissue culture of Australian plants. University of New England, Armidale, pp 112–156

    Google Scholar 

  • Moran R, Porath D (1980) Chlorophyll determination in intact tissues using N,N-dimethylformamide. Plant Physiol 65: 478–479

    Article  PubMed  CAS  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15: 473–497

    Article  CAS  Google Scholar 

  • Niino T, Sakai A (1992) Cryopreservation of alginate-coated in vitro grown shoot-tips of apple, pear and mulberry. Plant Sci 87: 199–206

    Article  CAS  Google Scholar 

  • Normah MN, Chin HF (1995) Cryopreservation of germplasm of rubber (Hevea brasiliensis). In: Bajaj YPS (ed) Biotechnology in agriculture and forestry, vol 32. Cryopreservation of plant germplasm I. Springer, Berlin Heidelberg New York, pp 180–190

    Google Scholar 

  • Orr W, Singh J, Brown DCW (1985) Induction of freezing tolerance in alfalfa cell suspension cultures. Plant Cell Rep 4: 15–18

    Article  CAS  Google Scholar 

  • Paulet F, Engelmann F, Glaszmann JC (1993) Cryopreservation of apices of in vitro plantlets of sugarcane (Saccharum sp. hybrid) using encapsulation/dehydration. Plant Cell Rep 12: 525–529

    Article  Google Scholar 

  • Pammenter NW, Berjak P (1999) A review of recalcitrant seed physiology in relation to desicca-tion-tolerance mechanisms. Seed Sci Res 9: 13–37

    Article  Google Scholar 

  • Pierik RLM (1987) In vitro culture of higher plants. Nijhoff, Dordrecht, pp 45–82

    Book  Google Scholar 

  • Potter R, Jones MGK (1991) An assessment of genetic stability of potato in vitro by molecular and phenotypic analysis. Plant Sci 76: 239–248

    Article  CAS  Google Scholar 

  • Reed BM (1990) Survival of in vitro grown apical meristems of pyrus following cryopreservation. Hortscience 25: 111–113

    Google Scholar 

  • Reed BM (1993) Responses to ABA and cold acclimation are genotype dependent for cryopreserved blackberry and raspberry meristems. Cryobiology 30: 179–184

    Article  Google Scholar 

  • Reinhoud PJ, Van Iren F, Kijne JW (2000) Cryopreservation of differentiated plant cells. In: Engelmann F, Takagi H (eds) Cryopreservation of tropical plant germplasm. Current research progress and application. Japan International Research Centre for Agricultural Sciences, Tsukuba, Japan/International Plant Genetic Resources Institute, Rome, Italy, pp 91–102

    Google Scholar 

  • Rosetto M, Dixon KW, Bunn E (1992) Aeration: a simple method to control vitrification and improve in vitro culture of rare Australian plants. In Vitro Cell Dev Biol 28: 65–67

    Google Scholar 

  • Sakai A (2000) Development of cryopreservation techniques. In: Engelmann F, Takagi H (eds) Cryopreservation of tropical plant germplasm. Current research progress and application. Japan International Research Centre for Agricultural Sciences, Tsukuba, Japan/International Plant Genetic Resources Institute, Rome, Italy, pp 1–20

    Google Scholar 

  • Sakai A, Kobayashi S, Oiyama I (1990) Cryopreservation of nucellar cells of navel orange (Citrus sinesis Osb. var brasiliensis Tanaka) by vitrification. Plant Cell Rep 9: 30–33

    Article  Google Scholar 

  • Scowcroft WR (1985) Somaclonal variation: the myth of clonal uniformity. In: Hohn B, Dennis ES (eds) Genetic flux in plants. Springer, Vienna New York, pp 217–245

    Chapter  Google Scholar 

  • Senaratna S, McKersie BD (1986) Lossod desiccation tolerance during seed germination: a free radical mechanism of injury. In: Leopold AC (ed) Membranes, metabolism and dry organisms. Cornell Univ Press, Ithaca, pp 85–101

    Google Scholar 

  • Senaratna T, McKersie BD, Stinson RH (1985) Antioxidant levels in germinating soybean seed axes in relation to free radical and dehydration tolerance. Plant Physiol 78: 168–171

    Article  PubMed  CAS  Google Scholar 

  • Shatnawi MA, Engelmann F, Frattarelli A, Damiano C (1999) Cryopreservation of apices of in vitro plantlets of almond (Prunus dulcis Mill). Cryo Lett 20: 13–20

    Google Scholar 

  • Taiz L, Zeiger E (1991) Plant physiology. Benjamin/Cummings Publishing, Redwood City, pp 473–489

    Google Scholar 

  • Tanino KK, Chen THH, Fuchigami LH, Weiser CJ (1990) Metabolic alterations associated with abscisic acid-induced frost hardiness in bromegrass suspension culture cells. Plant Cell Physiol 31: 505–511

    CAS  Google Scholar 

  • Torres KC, Carlisi JA (1986) Enhanced shoot multiplication and rooting of Camellia sasanqua. Plant Cell Rep 5: 381–384

    Article  CAS  Google Scholar 

  • Touchell DH, Dixon KW (1996) Cryopreservation for the maintenance of commercial collections of Australian plants. In: Taji A, Williams R (eds) Tissue culture: towards the next century. Proceedings of 5th International Association for Plant Tissue Culture (Australian branch) Conference, University of New England, Armidale, New South Wales, pp 169–172

    Google Scholar 

  • Touchell DH, Dixon KW (1999) In vitro preservation. In: Bowes BG (ed) A colour atlas of plant propagation and conservation. Manson Publishing, London, pp 108–118

    Google Scholar 

  • Touchell DH, Walters C (2000) Recovery of embryos of Zizania palustris following exposure to liquid nitrogen. Cryo Lett 21: 261–270

    Google Scholar 

  • Towill LE (1983) Improved survival after cryogenic exposure of shoot tips derived from in vitro plantlet cultures of potato. Cryobiology 20: 567–573

    Article  PubMed  CAS  Google Scholar 

  • Towill LE, Jarret RL (1992) Cryopreservation of sweet potato (Ipomoea batatas [L.] Lam.) shoot tips by vitrification. Plant Cell Rep 11: 175–178

    Article  Google Scholar 

  • Turner SR, Touchell DH, Dixon K, Tan B (2000) Cryopreservation of Anigozanthos viridis subsp. viridis and related taxa from the south west of Western Australia. Aust J Bot 48: 739–744

    Article  Google Scholar 

  • Turner SR, Senaratna T, Touchell DH, Bunn E, Dixon KW, Tan B (2001a) Stereochemical arrangement of hydroxyl groups in sugar and polyalcohol molecules as an important factor in effective cryopreservation. Plant Sci 160: 489–497

    Article  PubMed  CAS  Google Scholar 

  • Turner SR, Senaratna T, Bunn E, Tan B, Dixon KW, Touchell DH (2001 b) Cryopreservation of shoot tips from six endangered Australian species using a modified vitrification protocol. Ann Bot 87: 371–378

    Google Scholar 

  • Wise RR (1995) Chilling-enhanced photooxidation — the production, action and study of reactive oxygen species produced during chilling in the light. Photosynth Res 45: 79–97

    Article  CAS  Google Scholar 

  • Yamada T, Sakai A, Matsumura T, Higgucho S (1991) Cryopreservation of apical meristems of white clover (Trifolium repens L.) by vitrification. Plant Sci 78: 81–87

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Touchell, D., Turner, S.R., Senaratna, T., Bunn, E., Dixon, K.W. (2002). Cryopreservation of Australian Species — The Role of Plant Growth Regulators. In: Towill, L.E., Bajaj, Y.P.S. (eds) Cryopreservation of Plant Germplasm II. Biotechnology in Agriculture and Forestry, vol 50. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-04674-6_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-04674-6_26

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-07502-5

  • Online ISBN: 978-3-662-04674-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics